next up previous
Next: External boundary conditions Up: Numerical method Previous: Numerical method

Discretization of the TDGL equations

In the following, discrete approximations for each term of (3)-(4) are derived, maintaining second order accuracy in space.

Term
$(- \imath \nabla - {\bf A})^2 \psi$ : From the identity

\begin{displaymath}
(-\imath \nabla - {\bf A} )^2 \psi =
- {\overline {\cal{U}}}...
...)
- {\overline {\cal{U}}}^y \partial^2_{yy} ({\cal{U}}^y \psi)
\end{displaymath}

a second order approximation at (xi,yj) reads

\begin{displaymath}
\left . (-\imath \nabla - {\bf A} )^2 \psi \right \vert _{(x...
... \psi_{i,j}
+ {\overline U}^{x}_{i-1,j} \psi_{i-1,j}}{a_x^2}
\end{displaymath}


\begin{displaymath}
- \frac {U^{y}_{i,j} \psi_{i,j+1} - 2 \psi_{i,j}
+ {\overline U}^{y}_{i,j-1} \psi_{i,j-1}}{a_y^2} + {\cal{O}}(a_x^2+a_y^2)
\end{displaymath} (10)

Term
$( \vert\psi\vert^2-1) \psi$ : It is readily approximated by
\begin{displaymath}
({\overline \psi}_{i,j} \psi_{i,j} - 1) \psi_{i,j}
\end{displaymath} (11)

Term
${\rm Re} \left[ {\overline \psi}
\left( -\imath\nabla -{\bf A}\right) \psi \right]$ : From the identity

\begin{displaymath}
\left ( - \imath \,\partial_x - A_x \right ) \psi
= - \imath\, {\overline {\cal{U}}^x} \partial_x ({\cal{U}}^x \psi )
\end{displaymath}

it follows that

\begin{displaymath}
\left . {\rm Re} \left[ {\overline \psi}
\left( -\imath\, \p...
...},y_j}=
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\end{displaymath}


\begin{displaymath}
=
{\rm Im} \left ( \, \frac{
{\overline {\cal{U}}^x_{i,j}} ...
...{\cal{U}}^x_{i,j} \psi_{i,j}}{a_x}
\right )
+ {\cal{O}}(a_x^2)
\end{displaymath}


\begin{displaymath}
= \frac{1}{a_x} {\rm Im} \left (
{\overline \psi_{i,j}} {\ov...
...{i,j}} { U}^x_{i,j}
\psi_{i+1,j} \right )
+ {\cal{O}}(a_x^2)
\end{displaymath} (12)

and analogously for the y component.

Term
$\nabla \times \nabla \times {\bf A}$ ( $=\nabla \times {\bf B}$) : We introduce as auxiliary variable
\begin{displaymath}
L_{i,j} = U^x_{i,j} U^y_{i+1,j}
{\overline U}^x_{i,j+1} {\overline U}^y_{i,j}
\end{displaymath} (13)

In the program, the corresponding array is bloop(i,j). From this and Stokes' identity it follows that
\begin{displaymath}
L_{i,j}= \exp \left (
- \imath a_x a_y B_z (x_i+\frac{a_x}{...
...y}{2})
\right )
\left ( 1 + {\cal{O}}(a_x^4 + a_y^4)
\right )
\end{displaymath} (14)

so that, since ${\bf B} = (0,0,B_z)$ and thus $\nabla \times {\bf B} = (\partial_y B_z, - \partial_x B_z, 0)$, we can use the approximations
$\displaystyle \partial_y B_z (x_i+\frac{a_x}{2},y_j)$ = $\displaystyle \frac{\imath}{a_x a_y^2} \left (
{\overline L_{i,j-1}} L_{i,j} - 1 \right ) +
{\cal{O}}(a_x^2+a_y^2)$ (15)
$\displaystyle -\partial_x B_z (x_i,y_j+\frac{a_y}{2})$ = $\displaystyle \frac{\imath}{a_x^2 a_y} \left (
{\overline L_{i,j}} L_{i-1,j} - 1 \right ) +
{\cal{O}}(a_x^2+a_y^2)$ (16)

Term
${\partial_t {\bf A}}$ : From

\begin{displaymath}
{\partial_t}
\left [ {\overline {\cal{U}}}^x(x,y,t) {\cal{U...
...delta,y,t)
\int_x^{x+\delta} {\partial_t A_x} (\xi,y,t) ~d\xi
\end{displaymath}


\begin{displaymath}
=- \imath \,\delta~{\overline {\cal{U}}}^x(x,y,t) {\cal{U}}^...
...\partial_t A_x} (x+\frac{\delta}{2},y,t)
+ {\cal{O}}(\delta^2)
\end{displaymath}

it follows that
\begin{displaymath}
{\partial_t A_x} (x_i+\frac{a_x}{2},y_j,t)
= \frac{\imath}{a...
...\overline U}^{x}_{i,j}
\partial_t U_{i,j}^x + {\cal{O}}(a_x^2)
\end{displaymath} (17)

and similarly for $\partial_t A_y$.
Collecting the previous results, the numerical method for interior nodes reads:


$\displaystyle \partial_t \psi_{i,j}$ = $\displaystyle \frac {U^{x}_{i,j} \psi_{i+1,j} - 2 \psi_{i,j}
+ {\overline U}^{x...
...si_{i,j+1} - 2 \psi_{i,j}
+ {\overline U}^{y}_{i,j-1} \psi_{i,j-1}}{\eta a_y^2}$  
    $\displaystyle - \frac{1-T}{\eta}
({\overline \psi}_{i,j} \psi_{i,j} - 1) \psi_{i,j}
+\tilde{f}_{i,j}$ (18)
$\displaystyle \partial_t U^x_{i,j}$ = $\displaystyle - \imath (1-T) U^x_{i,j} {\rm Im}
\left ( {\overline \psi_{i,j}} ...
...frac{\kappa^2}{a^2_y} U^x_{i,j}
\left ( {\overline L_{i,j-1}}L_{i,j}-1 \right )$ (19)
$\displaystyle \partial_t U^y_{i,j}$ = $\displaystyle - \imath (1-T) U^y_{i,j} {\rm Im}
\left ( {\overline \psi_{i,j}} ...
...frac{\kappa^2}{a^2_x} U^y_{i,j}
\left ( {\overline L_{i,j}}L_{i-1,j}-1 \right )$ (20)

Finally, a simple forward-Euler scheme is adopted to discretize the time variable with step $\Delta t$, namely
\begin{displaymath}
\psi_{i,j}(t+\Delta t) = \psi_{i,j}(t)
+ \Delta t \, \partial_t \,\psi_{i,j}(t)
\end{displaymath} (21)

and analogously for Uxi,j and Uyi,j. Notice that the random force $\tilde{f}$ is also treated as a vertex variable. At each vertex it is selected from a Gaussian distribution with zero mean and standard deviation $\sigma $ given by

\begin{displaymath}
\sigma =\sqrt{(\pi E_0/6 \Delta t)(T/T_c)}
\end{displaymath}

as done in Ref. [5].


next up previous
Next: External boundary conditions Up: Numerical method Previous: Numerical method
Gustavo Carlos Buscaglia
2000-07-20