A New Construction of Smooth Surfaces from Triangle Meshes Using Parametric Pseudo-Manifolds

M. Siqueira, D. Xu, J Gallier, L.G. Nonato, D.M. Morera, and L. Velho

1UFMS, Campo Grande (MS), Brazil, email: marcelo@dct.ufms.br
2Bryn Mawr College, Bryn Mawr (PA), USA, email: dxu@cs.brynmawr.edu
3University of Pennsylvania, Philadelphia (PA), USA, email: jean@cis.upenn.edu
4ICMC-USP, São Carlos (SP), Brazil, email: gnonato@icmc.usp.br
5UFAL, Maceió (AL), Brazil, email: dimas@mat.ufal.br
6IMPA, Rio de Janeiro (RJ), Brazil, email: lvelho@impa.br

March 27, 2009

Abstract

We introduce a new manifold-based construction for fitting a smooth surface to a triangle mesh of arbitrary topology. Our construction combines in novel ways most of the best features of previous constructions and, thus, it fills the gap left by them. We also introduce a theoretical framework that provides a sound justification for the correctness of our construction. Finally, we demonstrate the effectiveness of our manifold-based construction with a few concrete examples.

1 Introduction

The problem of fitting a surface with guaranteed topology and continuity to the vertices of a polygonal mesh of arbitrary topology has been a topic of major research interest for many years. The main difficulty of this problem lies in the fact that, in general, meshes of arbitrary topology cannot be parametrized on a single rectangular domain and have no restriction on vertex connectivity. Most existing solutions rely on mathematical and computational frameworks capable of guaranteeing low orders (i.e., C^2 and below) of continuity only. However, higher order surfaces are often required for certain numerical simulations and to meet visual, aesthetic, and functional requirements. While a few high order constructions do exist, most are expensive, complex, and/or difficult to implement.

Much of the previous research efforts has been focused on stitching parametric polynomial patches together along their seams, where each patch is the image of a distinct parametrization of a closed, planar domain. Because the patches need to be “pieced” together, ensuring continuity along the borders has proved to be a difficult problem, particularly for closed meshes. Although there is a large number of
C^k/G^k constructions based on the “stitching” paradigm and catered to triangle meshes [7], only very few go beyond C^2-continuity [8, 26]. Existing constructions (even those C^2 and below) are typically complex, they lack shape control and cannot achieve good visual quality without additional processing. Very few were ever implemented and the degree of the polynomial patches required by most constructions grows with the desired order of continuity, which tend to yield surfaces with poor visual quality.

Subdivision surface is another popular approach which has been extensively investigated in the past 30 years [3, 5, 17, 6, 23, 16, 31]. These techniques are intuitive, simple to implement and in general produce smooth surfaces of good visual quality. However, constructions that go beyond C^2/G^2 are rare, and guaranteeing continuity around extraordinary vertices is difficult [24, 15]. Furthermore, previous efforts by Prautzsch and Reif [25, 27] indicate that subdivision schemes to produce C^k surfaces, for $k \geq 2$, cannot be as simple and elegant as existing C^1/G^1 subdivision schemes.

Unlike the two aforementioned approaches, the manifold-based approach pioneered by Grimm and Hughes [9] has proved well-suited to fit, with relative ease, C^k-continuous parametric surfaces to triangle and quadrilateral meshes, including $k = \infty$ [9, 20, 33, 14, 30]. The mathematical theory of manifolds was conceived with built-in arbitrary smoothness, and the differential structure of a manifold provides us with a natural setting for solving equations on surfaces. Manifold-based constructions also share some of the most important properties of splines surfaces, such as local shape control and fixed-sized local support for basis functions. Thus, as pointed out by Grimm and Zorin [12], a manifold is an attractive surface representation form for a handful of applications in graphics, such as reaction-diffusion texture, texture synthesis, fluid simulation, and surface deformation.

Unfortunately, existing manifold-based constructions present some drawbacks that limit their wide use in practical applications. In particular, constructions able to handle triangle meshes either make use of an intricate mechanism to define the manifold structure [9, 30] or produce surfaces with singular (i.e., extraordinary) points [14], which must be removed either at the expense of reduced continuity around those points or the resulting surface being not entirely polynomial (if exponential functions are used). On the other hand, methods with a simpler construction [20] as well as arbitrary smoothness [33] do not establish a complete framework for handling triangle meshes.

1.1 Contributions

The contributions of this paper are two-fold:

1. We introduce a new manifold-based construction for fitting surfaces of arbitrary smoothness (i.e., C^∞-continuous) to triangle meshes. Our construction combines, in the same framework, most of the best features of previous constructions. In particular, it is more compact and simpler than the ones in [9, 30], does not contain singular points as the construction in [14], and shares with [33], a construction devised for quadrilateral meshes, the ability of producing C^∞-continuous surfaces and the flexibility in ways of defining the geometry of the resulting surface.

2. We also briefly describe a theoretical framework that provides a sound justification for
the correctness of our manifold-based construction. This framework is an improvement upon the one developed by Grimm and Hughes [9], which was used to undergird the constructions described in [9, 20, 33, 30].

2 Prior Work

Extensive literature exists on fitting smooth surfaces from meshes. However, in order to better contextualize our approach, we focus this section on manifold-based techniques. For a more detailed review of the manifold-based approach and its applications, we refer the reader to [12].

The first manifold-based construction for surface modeling was proposed by Grimm and Hughes [9]. Their seminal work has since then been the basis of most subsequent constructions, including ours. Their construction takes a triangle mesh as input, subdivides by one step of Catmull-Clark subdivision scheme, and then considers the dual of the subdivided mesh (which is no longer a triangle mesh). Surface topology is defined from a structure they named proto-manifold, which contains a finite set \(A \) of connected open sets in \(\mathbb{R}^2 \) (the theory holds in \(\mathbb{R}^n \) indeed) and a set of transition functions that, together with the mesh connectivity, dictate how the sets in \(A \) overlap with each other. Each type of mesh element (vertex, edge, and face) gives rise to a different open set, requiring the construction of three different types of transition functions. Geometry is added by handling the mesh geometry through control points and blending functions explicitly defined from the open sets. The construction in [9] yields \(C^2 \)-continuous surfaces only, but it was later simplified and improved [11] to produce \(C^k \)-continuous surfaces, for any finite integer \(k \). Subsequent efforts [20, 33] aimed at providing a construction that requires a smaller set of open sets, consists of simpler transition functions, and achieves \(C^\infty \)-continuity.

Based on the concept of proto-manifold, Navau and Garcia [20] introduced a construction that takes a quadrilateral mesh and two integers, \(k \) and \(n \), as input. The integer \(k \) specifies the desired degree of (finite) continuity, while \(n \) is related to the extent of the open sets in \(A \). Their construction assigns an open set to each mesh vertex. Differently from [9], only two types of open sets are built, one associated with regular vertices (valence equal 4) and other with irregular vertices. However, three distinct types of transition functions are still needed so as to glue regular-regular, regular-irregular, and irregular-irregular open sets. The size of the set \(A \) grows with \(n \), but it also depends on the mesh topology. In fact, it can be larger than the size of \(A \) in [9] even for smaller values of \(n \). Geometry is defined quite similarly as in [9]. An extension of [20] to meshes of arbitrary topology has been proposed [21], but it shares with the construction in [20] the same advantages and drawbacks.

Ying and Zorin [33] devised a very elegant proto-manifold structure from quadrilateral meshes. Making use of only one type of open set and a simple analytical transition function, the resulting surface is \(C^\infty \)-continuous. This work improves upon the two previous techniques considerably. Another contribution is that control points are replaced by general polynomials, thus offering a more flexible control of the geometry of the resulting surface. Their construction can be extended to deal with triangle meshes, but one has to work out certain elements of its proto-manifold, which are not entirely obvious.

Gu, He, and Qin [14] introduced a triangle-based manifold construction called manifold
splines, which is based on a theoretical framework of its own. This construction employs affine transforms as transition functions and (rational) polynomial functions to derive the geometry. This is the first manifold-based construction to yield a purely (rational) polynomial surface. Manifold splines are in general more compact to represent and cheaper to evaluate than the surfaces produced by any other construction (including ours). However, as closed surfaces (except tori) cannot be covered by an “affine atlas” (see [19]), singular points not belonging to any open set of the atlas must appear on the surface. These points are removed and traditional spline hole-filling techniques are used, which may affect the visual quality of the surface in the vicinity of the holes. Making use of discrete Ricci flow, Gu et al. [13] have simplified and improved the manifold spline construction to reduce to only one singular point on the entire surface.

Very recently, Vecchia, Jüttler, and Kim [30] introduced another triangle-based manifold construction, which also represents the resulting surface with a rational polynomial. However, unlike the constructions in [14, 13], the surface does not contain any singular points. Unfortunately, the construction in [30] suffers from the same problem as the one in [9]: it makes use of an intricate mechanism to define its transition functions and their domains. In addition, the construction is not theoretically guaranteed to build C^k surfaces, for any finite k, although experimental evidence indicates that it does.

Our construction is based on the theoretical framework developed by Grimm and Hughes [9], yet it differs from the aforementioned constructions in the following aspects: the proto-manifold counterpart of our construction is given two additional conditions that render it stronger and more general than the proto-manifold in [9]. As in [33], our construction also has only one type of open set and (simple) transition function, can produce C^∞ surfaces, and defines the geometry of the resulting surfaces using polynomials. Differently from Ying and Zorin [33], our construction is devised to work with triangle meshes, which are far more popular than quadrilateral meshes in graphics applications [2]. In addition, we define geometry from simpler polynomials (i.e., rectangular Bézier patches) which means that the resulting surface is contained in the convex hull of all control points defining its patches. This property allows us to optimize for speed ray tracing and collision detection algorithms. The surfaces produced by our construction are not polynomial, but they do not contain any singular points. Finally, our construction appears simpler to implement than the ones given in [9, 20, 14, 13, 30].

3 Mathematical Background

The formal definition of a manifold can be found in standard mathematics textbooks, such as [1]. Informally, manifolds are spaces that locally behave like the familiar n-dimensional Euclidean space, and on which we can do calculus (e.g., compute derivatives, integrals, volumes, and curvatures). For that, each manifold, \mathcal{M}, is equipped with an atlas, which is a collection of charts. Each chart is a pair (U, φ), where U is an open set of \mathcal{M} and $\varphi : U \to \varphi(U) \subseteq \mathbb{R}^n$ is a homeomorphism. Furthermore, the charts of an atlas must cover \mathcal{M}. The open sets, U_1 and U_2, of any two distinct charts, (U_1, φ_1) and (U_2, φ_2), may overlap (see Figure 1). Transition functions, $\varphi_{21} : \varphi_1(U_1 \cap U_2) \to \varphi_2(U_1 \cap U_2)$ and $\varphi_{12} : \varphi_2(U_1 \cap U_2) \to \varphi_1(U_1 \cap U_2)$, are defined to move between the overlapped regions
consistently. These functions are required to satisfy two conditions: \(\varphi_{21} = \varphi_2 \circ \varphi_1 \) and \(\varphi_{12} = \varphi_1 \circ \varphi_2 \). Basically, functions \(\varphi_{21} \) and \(\varphi_{12} \) define which points in \(\varphi_1(U_1 \cap U_2) \) and \(\varphi_2(U_1 \cap U_2) \) correspond to the same point in \(\mathcal{M} \) under \(\varphi_1 \) and \(\varphi_2 \). Transition functions are often required to be \(C^k \)-continuous, so that the necessary degree of “smoothness” to compute differential properties is ensured.

A manifold-based approach for surface construction requires first building a manifold, \(\mathcal{M} \), which is a smooth surface in \(\mathbb{R}^3 \). The classic definition of a manifold assumes the existence of a manifold \textit{a priori}, which is not very helpful from the constructive point of view. Fortunately, it is possible to define \(\mathcal{M} \) in a constructive manner from a set of \textit{gluing data} and a set of \textit{parametrizations}.

![Figure 1: Constituents of a manifold.](image)

Definition 1. Let \(n \) be an integer with \(n \geq 1 \) and let \(k \) be either an integer with \(k \geq 1 \) or \(k = \infty \). A set of gluing data is a triple,

\[
\mathcal{G} = (\{\Omega_i\}_{i \in I}, \{(\Omega_{ij})_{(ij) \in I \times I}, (\varphi_{ji})_{(i,j) \in K}\}),
\]

satisfying the following properties, where \(I \) and \(K \) are (possibly infinite) countable index sets, and \(I \) is non-empty:

1. For every \(i \in I \), the set \(\Omega_i \) is a non-empty open subset of \(\mathbb{R}^n \) called parametrization domain, for short, \(p \)-domain, and the \(\Omega_i \) are pairwise disjoint (i.e., \(\Omega_i \cap \Omega_j = \emptyset \) for all \(i \neq j \)).

2. For every pair \((i,j) \in I \times I \), the set \(\Omega_{ij} \) is an open subset of \(\Omega_i \). Furthermore, \(\Omega_{ii} = \Omega_i \) and \(\Omega_{ji} \neq \emptyset \) if and only if \(\Omega_{ij} \neq \emptyset \). Each non-empty \(\Omega_{ij} \) (with \(i \neq j \)) is called a gluing domain.

3. If we let

\[
K = \{(i, j) \in I \times I \mid \Omega_{ij} \neq \emptyset \},
\]

then \(\varphi_{ji} : \Omega_{ij} \rightarrow \Omega_{ji} \) is a \(C^k \) bijection for every \((i, j) \in K \) called a transition function (or gluing function) and the following conditions hold:

(a) \(\varphi_{ii} = \text{id}_{\Omega_i} \), for all \(i \in I \),

(b) \(\varphi_{ij} = \varphi_{ji}^{-1} \), for all \((i, j) \in K \), and

(c) For all \(i, j, k \), if \(\Omega_{ji} \cap \Omega_{jk} \neq \emptyset \), then

\[
\varphi_{ji}^{-1}(\Omega_{ji} \cap \Omega_{jk}) \subseteq \Omega_{ik} \quad \text{and} \quad \varphi_{ki}(x) = \varphi_{kj} \circ \varphi_{ji}(x), \quad \text{for all } x \in \varphi_{ji}^{-1}(\Omega_{ji} \cap \Omega_{jk}).
\]

4. For every pair \((i,j) \in K \), with \(i \neq j \), for every \(x \in \partial(\Omega_{ij}) \cap \Omega_i \) and \(y \in \partial(\Omega_{ji}) \cap \Omega_j \), there are open balls, \(V_x \) and \(V_y \), centered at \(x \) and \(y \), so that no point of \(V_y \cap \Omega_{ji} \) is the image of any point of \(V_x \cap \Omega_{ij} \) by \(\varphi_{ji} \).

There is a direct correspondence between some of the constituents of the traditional definition of a manifold and the constituents of a set of gluing data (refer to Figure 2):

- each \(p \)-domain, \(\Omega_i \subseteq \mathbb{R}^n \), is the image, \(\Omega_i = \varphi_i(U_i) \), of an open set, \(U_i \), of \(\mathcal{M} \) under the map \(\varphi_i \) of the chart \((U_i, \varphi_i) \) of an atlas of \(\mathcal{M} \);
• each gluing domain, \(\Omega_{ij} \subseteq \Omega_i \), is the image, \(\Omega_{ij} = \varphi_i(U_i \cap U_j) \), of the overlapping subset, \(U_i \cap U_j \), of \(U_i \) and \(U_j \) under the map \(\varphi_i \) of the chart \((U_i, \varphi_i)\) of an atlas of \(M \);

• each transition function, \(\varphi_{ij} : \Omega_{ji} \to \Omega_{ij} \), is a function from \(\varphi_j(U_i \cap U_j) = \Omega_{ji} \) to \(\varphi_i(U_i \cap U_j) = \Omega_{ij} \).

As customary in mathematics, one in general assumes some extra conditions on a manifold in order to be able to do mathematical analysis with it. A very common choice is to require that the manifold be Hausdorff. Condition 4 of Definition 1 ensures that a Hausdorff manifold can always be constructed from a set of gluing data. It turns out that this condition is necessary and sufficient [28].

Theorem 1. For every set of gluing data,

\[
G = \left((\Omega_i)_{i \in I}, (\Omega_{ij})_{(i,j) \in I \times I}, (\varphi_{ij})_{(i,j) \in K} \right),
\]

there is an \(n \)-dimensional \(C^k \) manifold, \(M_G \), whose transition functions are the \(\varphi_{ji} \)'s.

Proof. See [28] for a proof.

Unfortunately, our proof of Theorem 1 gives us a theoretical construction, which yields an “abstract” manifold, \(M_G \), but no information on the geometry of this manifold. Furthermore, \(M_G \) may not be orientable or compact. However, for the problem we are dealing with, we are given a triangle mesh and we want to build a “concrete” manifold: a surface in \(\mathbb{R}^3 \) that approximates the given mesh. It turns out that it is always possible to define a parametric pseudo-manifold from any given set of gluing data, whose image in \(\mathbb{R}^3 \) is a surface if certain conditions hold.

Definition 2. Let \(n \) and \(d \) be two integers with \(n > d \geq 1 \) and let \(k \) be integer with \(k \geq 1 \) or \(k = \infty \). A parametric \(C^k \) pseudo-manifold of dimension \(d \) in \(\mathbb{R}^n \), \(M \), is a pair,

\[
M = (G, (\theta_i)_{i \in I})
\]

where \(G = ((\Omega_i)_{i \in I}, (\Omega_{ij})_{(i,j) \in I \times I}, (\varphi_{ij})_{(i,j) \in K}) \) is a set of gluing data, for some finite set \(I \), and

![Figure 2: Constituents of a parametric pseudo-manifold.](image)
each θ_i is a C^k function, $\theta_i : \Omega_i \to \mathbb{R}^n$, called a parametrization such that

$$\theta_i = \theta_j \circ \varphi_{ji},$$

for all $(i, j) \in K$. The subset, $M \subset \mathbb{R}^n$, given by

$$M = \bigcup_{i \in I} \theta_i(\Omega_i)$$

is called the image of the parametric pseudo-manifold, M.

When $d = 2$ and $n = 3$ in Definition 2, we call M a parametric pseudo-surface (PPS). If we require the θ_i’s to be bijective and to further satisfy the two conditions

$$\theta_i(\Omega_i) \cap \theta_j(\Omega_j) = \theta_i(\Omega_{ij}) = \theta_j(\Omega_{ji}), \text{ for all } (i, j) \in K,$$

and

$$\theta_i(\Omega_i) \cap \theta_j(\Omega_j) = \emptyset, \text{ for all } (i, j) \notin K,$$

then the image, M, of the PPS, M, is guaranteed to be a surface in \mathbb{R}^3 [28]. The following remarks state important facts regarding the theoretical contributions of our work:

Remark 1. There is a subtle and yet important difference between our definition of a set of gluing data (i.e., Definition 1) and the definition of a proto-manifold in [9]: our cocycle condition (condition 3(c) of Definition 1) is stronger than the one in [9], as the latter does not always guarantee that a (valid) manifold can be constructed from a proto-manifold (see [28] for a proof).

Remark 2. In the definition of a proto-manifold (see [9]), there is no condition similar to condition 4 above. In order to ensure that the manifold built from a proto-manifold is Hausdorff, a local embedding property of certain gluings is required (see [10]). This requirement is stronger than condition 4, as it prevents us from obtaining certain manifolds such as a 2-sphere resulting from gluing two open discs in \mathbb{R}^2 along an annulus.

4 The Construction of a PPS

Recall that our goal is to fit a surface, $S \in \mathbb{R}^3$, to a triangle mesh T. More specifically, we want to build a surface S that approximates the vertices of T and has the same topology as the underlying space, $|T|$, of T (i.e., $|T|$ is the point set resulting from the union of all points comprising the vertices, edges, and triangles of T). We also assume that $|T|$ is a surface in \mathbb{R}^3 with empty boundary. Finally, to build S, our construction defines a set of gluing data and a set of parametrizations of a PPS.

The set of gluing data,

$$G = \left((\Omega_i)_{i \in I}, (\Omega_{ij})_{(i,j) \in I \times I}, (\varphi_{ji})_{(i,j) \in K} \right),$$

is defined from the elements of T, while the set of parametrizations, $(\theta_i)_{i \in I}$, where $\theta_i : \Omega_i \to \theta(\Omega_i) \subset \mathbb{R}^3$, for every $i \in I$, is defined from $|T|$. The key idea is to define a PPS,

$$\mathcal{M} = (G, (\theta_i)_{i \in I}),$$

such that the image,

$$S = \bigcup_{i \in I} \theta_i(\Omega_i),$$

of \mathcal{M} in \mathbb{R}^3 is a surface, $S \subset \mathbb{R}^3$, that approximates $|T|$. In what follows we describe how to build G and $(\theta_i)_{i \in I}$.

4.1 Building a Set of Gluing Data

Let

$$I = \{ u \mid u \text{ is a vertex of } T \}.$$
To build the set of gluing data, \mathcal{G}, we must define its collection of p-domains, gluing domains, and transition functions. These collections are defined in terms of two abstractions, a P-polygon and its canonical triangulation, and a composite bijective function. Before we describe these elements, we make a remark regarding our notation:

Remark 3. Each element to be defined next is either related to a vertex, u, or to an edge, $[u,v]$, of \mathcal{T}. So, we use the subscript u (e.g., as in Ω_u), to denote an element related to vertex u, and the subscripts (u,v), (v,u), uv, or vu (e.g., as in Ω_{uv} and Ω_{vu}) to denote two elements related to $[u,v]$.

Definition 3. For every $u \in I$, the p-domain Ω_u is the set

$$\Omega_u = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < [\cos(\pi/m_u)]^2\},$$

where m_u is the valence of vertex u. For any two $u,v \in I$, we assume that Ω_u and Ω_v belong to distinct “copies” of \mathbb{R}^2. So, $\Omega_u \cap \Omega_v = \emptyset$, and condition 1 of Definition 1 holds.

To build gluing domains and transition functions, we define the notions of a P-polygon and its canonical triangulation, as well as a bijective function that is a composition of two rotations, an analytic function, and a double reflection. For each vertex u of \mathcal{T}, the P-polygon, P_u, associated with u is the regular polygon in \mathbb{R}^2 given by the vertices

$$u'_i = \left(\cos\left(\frac{2\pi \cdot i}{m_u}\right), \sin\left(\frac{2\pi \cdot i}{m_u}\right)\right),$$

for each $i \in \{0, \ldots, m_u - 1\}$, where m_u is the valence of u (see Figure 3). We assume that P_u resides in the copy of \mathbb{R}^2 that contains the p-domain Ω_u. So, Ω_u is the interior, $\text{int}(C_u)$, of the circle, C_u, inscribed in the P-polygon, P_u, i.e., $\Omega_u = \text{int}(C_u)$.

![Figure 3: A P-polygon (left) and its canonical triangulation (right).](image)

We can triangulate P_u by adding m_u diagonals and the vertex, $u' = (0,0)$, to P_u. Each diagonal connects u' to a vertex, u'_i, of P_u, for each $i = 0, \ldots, m_u - 1$. The resulting triangulation, denoted by T_u, is called the canonical triangulation of P_u (see Figure 3). Denote the set of vertices of T_u by $V(T_u)$, and let $\mathcal{N}(u,T)$ be the subset of vertices of \mathcal{T} such that $v \in \mathcal{N}(u,T)$ if and only if $v = u$ or v is a vertex connected to u by an edge, $[u,v]$, of \mathcal{T}. Then, we can define a bijection, $s_u : \mathcal{N}(u,T) \to V(T_u)$, such that $s_u(u) = u'$ and $[u,u_i,u_{i+1}]$ is a triangle in T if and only if $[s_u(u) = u', s_u(u_i), s_u(u_{i+1})]$ is a triangle in T_u, where $i = 0, 1, \ldots, m_u - 1$ and $i+1$ should be considered congruent modulo m_u.

We can extend the bijection s_u to map triangles incident to u in T onto triangles in T_u. In particular, if $\sigma = [u,u_i,u_{i+1}]$ is a triangle of \mathcal{T} then $s_u(\sigma) = [u', s_u(u_i), s_u(u_{i+1})]$ is its corresponding triangle in T_u. Unless explicitly stated otherwise, we may occasionally denote vertex $s_u(v)$ by v', for every $v \in \mathcal{N}(u,T)$.

For each u in I and for each $p \in \mathbb{R}^2$, with $p \neq (0,0)$, let $g_u : \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}^2 - \{(0,0)\}$ be given by

$$g_u(p) = \Pi^{-1} \circ f_u \circ \Pi(p),$$
for every \(p \in \mathbb{R}^2 - \{(0, 0)\} \), where \(\Pi : \mathbb{R} \to (-\pi, \pi] \times \mathbb{R}_+ \) is the function that converts Cartesian to polar coordinates, and \(f_u(-\pi, \pi] \times \mathbb{R}_+ \to (-\pi, \pi] \times \mathbb{R}_+ \) is given by

\[
f_u(\theta, r) = \left(\frac{m_u}{6} \cdot \theta, \frac{\cos(\pi/6)}{\cos(\pi/m_u)} \cdot r \right), \tag{1}
\]

where \((\theta, r) = \Pi(p)\) are the polar coordinates of \(p \). Function \(g_u \) has the following interpretation (refer to Figure 4): it maps the interior of the circular sector, \(A \), of \(C_u \) onto the interior of the circular sector, \(B \), of the circle of radius \(\cos(\pi/6) \) and centers at \((0, 0)\), where \(A \) consists of \((0, 0)\) and all points with polar coordinates \((\theta, r) \in [-2\pi/m_u, 2\pi/m_u] \times (0, \cos(\pi/m_u))\) and \(B \) consists of \((0, 0)\) and all points with polar coordinates \((\beta, s) \in [-\pi/3, \pi/3] \times (0, \cos(\pi/6))\). We say that \(B \) is the canonical sector.

![Figure 4: The action of \(g_u \) upon a point \(p \in C_u \).](image)

Note that \(g_u \) is a bijection. Its inverse, \(g_u^{-1} \), is given by

\[
g_u^{-1}(q) = \Pi \circ f_u^{-1} \circ \Pi^{-1}(q),
\]

for every \(q \in \mathbb{R}^2 - \{(0, 0)\} \), where

\[
f_u^{-1}(\beta, s) = \left(\frac{6}{m_u} \cdot \beta, \frac{\cos(\pi/m_u)}{\cos(\pi/6)} \cdot s \right), \tag{2}
\]

where \((\beta, s) = \Pi(q)\) are the polar coordinates of \(q \).

Let \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) be the function

\[
h(p) = h((x, y)) = (1 - x, -y), \tag{3}
\]

for every point \(p \in \mathbb{R}^2 \) with rectangular coordinates \((x, y)\). Function \(h \) is a “double” reflection: \(p = (x, y) \) is reflected over the line \(x = 0.5 \) and then over the line \(y = 0 \).

For any two vertices \(u, v \) of \(T \) such that \([u, v]\) is an edge of \(T \), let

\[
g_{(u,v)} : C_u - \{(0, 0)\} \to g_{(u,v)}(C_u - \{(0, 0)\})
\]

be the composite function given by

\[
g_{(u,v)}(p) = R_{(v,u)}^{-1} \circ g_v^{-1} \circ h \circ g_u \circ R_{(u,v)}(p), \tag{4}
\]

for every \(p \in C_u - \{(0, 0)\} \), where \(R_{(u,v)} \) is a rotation around \((0, 0)\) that identifies the edge \([s_u(u) = u', s_u(v)]\) of \(T_u \) with its edge \([u', u_0']\).

Likewise, \(R_{(v,u)}^{-1} \) is a rotation around \((0, 0)\) that identifies the edge \([s_v(v) = v', v_0']\) of \(T_v \) with its edge \([v', v_0']\), where \(j \in \{0, 1, \ldots, m_v - 1\} \) and \(s_v(v_j') = u \). Figure 5 shows the action of \(g_{(u,v)} \) upon a point \(p \in C_u - \{(0, 0)\} \).

Function \(g_{(u,v)} \) also has the following interpretation: it maps a lens-shaped subset a sector, \(A \), of \(C_u \) onto a lens-shaped subset of a sector, \(B \), of \(C_v \). These two sectors are closely related. Let \(w \) and \(z \) be the two vertices of \(T \) such that \([u, v, w] \) and \([u, v, z] \) are the two triangles of \(T \) sharing the edge \([u, v]\). Then, sector \(A \) is the circular sector of \(C_u \) contained in the quadrilateral \([s_u(u) = u', s_u(w), s_u(v), s_u(z)]\), while sector \(B \) is the circular sector of \(C_v \) contained in the quadrilateral \([s_v(v) = v', s_v(z), s_v(u), s_v(w)]\). Function \(g_{(u,v)} \) is also a bijection, and its inverse, \(g_{(u,v)}^{-1} \), is equal to the function \(g_{(v,u)} \):

\[
g_{(v,u)}(q) = R_{(v,u)}^{-1} \circ g_u^{-1} \circ h \circ g_v \circ R_{(u,v)}(q), \tag{5}
\]

for every \(q \in g_{(u,v)}(C_u - \{(0, 0)\}) \). Function \(g_{(u,v)} \) plays a crucial role in the definitions of gluing domains and transition functions.
Definition 4. For any $u, v \in I$, the gluing domain Ω_{uv} is defined as

$$
\Omega_{uv} = \begin{cases}
\Omega_u & \text{if } u = v, \\
g_{(v,u)}(\Omega_v) \cap \Omega_u & \text{if } [u,v] \in T, \\
\emptyset & \text{otherwise.}
\end{cases}
$$

Although it is not obvious, the above definition of gluing domain satisfies condition 2 of Definition 1 [28]. In particular, the fact that $\Omega_{uv} = \emptyset$ if and only if $\Omega_{vu} = \emptyset$ is crucial to defining transition functions in a consistent manner. In what follows we give the formal definition of a transition function in our construction:

Definition 5. Let K be the index set,

$$
K = \{(u,v) \in I \times I \mid \Omega_{uv} \neq \emptyset\}.
$$

Then, for any pair $(u,v) \in K$, the transition function,

$$
\varphi_{vu} : \Omega_{uv} \rightarrow \Omega_{vu},
$$

is such that, for every $p \in \Omega_{uv}$, we let $\varphi_{vu}(p) = g_{(u,v)}(p)$ if $u \neq v$ and $\varphi_{vu}(p) = p$ otherwise.

Figure 6 illustrates Definition 5.

4.2 Building Parametrizations

Let \mathcal{G} be a set of gluing data built from a triangle mesh, T. Our goal now is to define a family of parametrizations, $\{\theta_u\}_{u \in I}$, from \mathcal{G}. To that end, we assume that we are given a surface, $S' \subset \mathbb{R}^3$, that approximates $|T|$. More specifically, we assume that S' is the union of finitely many parametric surface patches, $b_\sigma : \mathbb{R}^2 \rightarrow \mathbb{R}^3$,

$$
S' = \bigcup_{\sigma \in T} b_\sigma(\triangle),
$$

each of which is associated with a triangle, σ, of T and defined in the same affine frame, $\Delta \subset \mathbb{R}^2$. In addition, we require S' be at least C^0 continuous. We can view S' as describing the geometry we want to locally approximate with the parametrizations. To define each parametrization θ_u, we specify a family, $\{\psi_u\}_{u \in I}$, of shape functions and a family, $\{\gamma_u\}_{u \in I}$, of weight functions.
Definition 6. For each $u \in I$, we define the shape function,

$$\psi_u : \square_u \subset \mathbb{R}^2 \to \mathbb{R}^3,$$

associated with Ω_u as the Bézier surface patch of bi-degree (m,n),

$$\psi_u(p) = \sum_{0 \leq j \leq m} \sum_{0 \leq k \leq n} b_{j,k}^u \cdot B_j^m(x) \cdot B_k^n(y),$$

where $\square_u = [-L,L]^2$, with $L = \cos(\pi/m_u)$, (x,y) are the coordinates of $p \in \square_u$, $\{b_{j,k}^u\} \subset \mathbb{R}^3$ are the control points, and

$$B_i^l(t) = \binom{l}{i} \left(\frac{L - t}{2 \cdot L} \right)^{l-i} \left(\frac{t + L}{2 \cdot L} \right)^i$$

is the i-th Bernstein polynomial of degree l over the interval $[-L,L] \subset \mathbb{R}$, for every $i \in \{0,1,\ldots,l\}$. We let the bi-degree, (m,n), of ψ_u be (m_u+1,m_u+1), where m_u is the valence of u.

The controls points are determined by solving a least squares fitting problem. In particular, $\{b_{j,k}^u\}$ is the family of control points that uniquely defines a Bézier patch of bi-degree (m,n) (i.e., ψ_u) which best fits (in a least squares sense) a finite set, P, of pairs, (q,p), of points, where q belongs to P_u and p belongs to the surface S'. We compute P iteratively by starting with $P = \emptyset$ and then proceeding as follows:

- We uniformly sample the domain of ψ_u (i.e., the quadrilateral $\square_u = [-L,L]^2$) to generate a set, $Q \subset P_u$, with $4 \cdot (m_u+1)^2$ points. Note that \square_u is the smallest quadrilateral that contains Ω_u. Note also that a uniform sampling of \square_u will contain points that are not in P_u. These points are not placed into Q.

- For each point $q \in Q$, we find the triangle τ of T such that q is contained in the triangle $s_u(\tau)$ of T_u. Then, we compute the barycentric coordinates, $((\lambda,\nu,\eta))$, of q with respect to $s_u(\tau)$ and use these coordinates to compute a point, $r = \lambda \cdot a + \nu \cdot b + \eta \cdot c$, in $\triangle = [a,b,c]$, where \triangle is the common affine frame of all parametric patches defining S'. Finally, we compute $b_\tau(r)$, let $p = b_\tau(r)$, and add the pair, (q,p), to P. Figure 7 illustrates the computation of q and p.

Figure 7: Local sampling of S' (white-filled vertices are not in Q).

Once P is computed, we use a standard least squares fitting procedure to compute $\{b_{j,k}^u\}$ (see [7], p. 278). To define the family, $\{\gamma_{u}\}_{u \in I}$, of weight functions, we first specify a scalar function. For every $t \in \mathbb{R}$, we define

$$\xi : \mathbb{R} \to \mathbb{R}$$

as

$$\xi(t) = \begin{cases}
1 & \text{if } t \leq H_1 \\
0 & \text{if } t \geq H_2 \\
1/(1 + e^{2 \cdot \xi}) & \text{otherwise}
\end{cases}$$

where H_1, H_2 are constant, with $0 < H_1 < H_2 < 1$.

1,
\[s = \left(\frac{1}{\sqrt{1-H}} \right) - \left(\frac{1}{\sqrt{H}} \right) \quad \text{and} \quad H = \left(\frac{t-H_1}{H_2-H_1} \right) \]

Figure 8 shows a plot of function \(\xi(t) \), for \(t \in [0,1] \subset \mathbb{R} \). Note that \(\xi(t) \) is constant for \(t \leq H_1 \) and \(t \geq H_2 \), and it is strictly decreasing when \(t \) varies from \(H_1 \) to \(H_2 \). Function \(\xi(t) \) is \(C^\infty \), and its \(i \)-th derivative, \(D^i \xi(t) \), vanishes for \(t \leq H_1 \) and \(t \geq H_2 \), and it is nonzero for \(t \in (H_1,H_2) \subset \mathbb{R} \).

Definition 7. For each \(u \in I \), the weight function,
\[\gamma_u : \mathbb{R}^2 \rightarrow \mathbb{R} , \]
associated with \(\Omega_u \) is given by
\[\gamma_u(p) = \xi \left(\sqrt{x^2 + y^2} \right) , \]
for every \(p = (x,y) \in \mathbb{R}^2 \), where \(\sqrt{x^2 + y^2} \) is the Euclidean distance from \(p \) to the center point, \((0,0) \), of \(\Omega_u \). The constants \(H_1 \) and \(H_2 \) (in the definition of \(\xi \)) are experimentally chosen to be \(0.25 \cdot H_2 \) and \(\cos(\pi/m_u) \), respectively.

![Plot of \(\xi(t) \) for \(t \in (0,1) \subset \mathbb{R} \), using \(H_1 = 0.2 \) and \(H_2 = 0.8 \).](image)

Note that \(\gamma_u \) attains its maximum, which is equal to 1, at \(p = (0,0) \) and in the neighborhood of \(p \) given by \(\{ q \in \Omega_u \mid \| p - q \| < H_1 \} \). Moreover, function \(\gamma_u \) decreases as \(p \) moves towards the boundary of \(\Omega_u \) and vanishes outside \(\Omega_u \). This is because \(\| p - q \| \geq H_2 \), for every point \(q \in \mathbb{R}^2 \) on the boundary of \(\Omega_u \) or outside it. So, \(\gamma_u \) is non-negative and its support, \(supp(\gamma_u) = \Omega_u \), is compact. Finally, we can show that function \(\gamma_u \) is also \(C^\infty \) [28].

Definition 8. For each vertex \(u \in I \), the parametrization, \(\theta_u : \Omega_u \rightarrow \theta_u(\Omega_u) \subset \mathbb{R}^2 \), associated with \(\Omega_u \) is given by
\[\theta_u(p) = \sum_{v \in J_u(p)} \omega_{uv}(p) \times (\psi_v \circ \varphi_{uv}(p)) , \quad (7) \]
for every \(p \in \Omega_u \), where
\[\omega_{uv}(p) = \frac{\gamma_u \circ \varphi_{uv}(p)}{\sum_{w \in J_u(p)} \gamma_w \circ \varphi_{wu}(p)} \quad (8) \]
and
\[J_u(p) = \{ v \mid p \in \Omega_{uv} \} \subset I . \]

Note that \(J_u(p) \), for \(p \in \Omega_u \), must contain vertex \(u \) and one or two more vertices (as at most two \(p \)-domains can be glued to \(\Omega_u \) at \(p \)). So, the term \(\psi_v \circ \varphi_{uv}(p) \) in Eq. (7) can be viewed as the contribution of \(\psi_v \) to the position of \(\theta_u(p) \). This contribution has a “weight”: \(\omega_{uv}(p) \). By construction, the weights are all non-negative and they also add up to 1. So, \(\theta_u(p) \) is the result of a convex combination of the points \(\psi_v \circ \varphi_{uv}(p) \), for all \(v \in J_u(p) \). The reason to define \(\theta_u \) as above is that we are guaranteed to satisfy
\[\theta_u(p) = \theta_u(\varphi_{uv}(p)) , \]
for every \(v \in J_u(p) \), which in turn guarantees that the union set \(S = \bigcup_{u \in I} \theta_u(\Omega_u) \) is the image
of a PPS (see Definition 2). The above condition is extremely unlikely to be satisfied by the shape functions ψ_u and ψ_v. The technique we used to define θ_u is based on the concept of \textit{partition of unity}, which is well known in mathematics and also crucial to certain methods for reconstructing implicit surfaces from point sets [22].

5 Implementation and Results

To implement our manifold-based construction, we augmented a simple object-oriented, topological data structure, such as a Doubly Connected Edge List (DCEL) [4], to store the information about the set of gluing data, G, and the family of parametrizations, $\{\theta_u\}_{u \in I}$. It is worth mentioning that there is no need to compute and store p-domains, gluing domains, P-polygons and their associated triangulations. All we need to define the differential structure of a PPS can be derived from the topological information of T: the valence, m_v, of each vertex, v, and a cyclic ordering of the edges incident to v. Transition functions, shape functions, and weight functions become "methods" associated with the edges and vertices of the data structure. So, although our construction description may seem complicated, its implementation is fairly simple.

The input to our implementation consists of T and S'. In our experiments, we defined the surface S' either as a PN triangle surface [32] or a Loop subdivision surface [18]. In the latter case, we replaced the function b_σ with the algorithm for exact evaluation of Loop subdivision surfaces at any parameter point of its base mesh, T (see [29]).

We ran the aforementioned implementation on the mesh models in Table 1. For each mesh, we generated two parametric pseudo-surfaces (PPSs), one of which approximates a PN triangle surface defined from the mesh, while the other one approximates a Loop subdivision surface also defined from the same mesh.

<table>
<thead>
<tr>
<th>Model ID</th>
<th>n_v</th>
<th>n_e</th>
<th>n_f</th>
<th>n_h</th>
<th>n_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172</td>
<td>512</td>
<td>344</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>144</td>
<td>96</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3,674</td>
<td>11,016</td>
<td>7,344</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>60,880</td>
<td>183,636</td>
<td>122,424</td>
<td>173</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 1: Mesh model identifier (first column) and the number of vertices (second column), edges (third column), faces (fourth column), holes (fifth column), and connected components (sixth column) of the mesh.

Table 2 shows the CPU time for the construction of each PPS, which is highly dominated by the least squares procedure that computes the control points of the shape functions. This procedure is executed n_v times, where n_v is the number of vertices of the input mesh model. Each execution solves a system of about $4 \cdot (m_u + 1)^2$ linear equations using LU decomposition and substitution, where m_u is the valence of the vertex associated with the shape function. Later, we used a procedure for placing a point on a PPS to sample the PPSs in a triangle midpoint subdivision manner [28]. We did the same for sampling the corresponding PN triangles and subdivision surfaces.

Figure 9 shows the mesh models in Table 1. Figures 10-13 show Gaussian curvature plots for the PN triangle, Loop subdivision, and parametric pseudo-surfaces in Table 2. These plots demonstrate two important features of our surfaces. First, they show that the image of our PPSs "mimic" closely the shape of the PN triangle or Loop subdivision surface being approx-
Table 2: CPU time in milliseconds for the construction of the PPS surfaces from the models in the first column and the approximated surfaces in the second column. The timing was measured on a Dell Precision 670 with Duo Pentium Xeon 3.2 GHz processors (single-core), 3Gb RAM, and running Fedora core 9.

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Approximated surface</th>
<th>CPU time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PN triangle</td>
<td>540</td>
</tr>
<tr>
<td>1</td>
<td>Loop</td>
<td>577</td>
</tr>
<tr>
<td>2</td>
<td>PN triangle</td>
<td>1,971</td>
</tr>
<tr>
<td>2</td>
<td>Loop</td>
<td>2,112</td>
</tr>
<tr>
<td>3</td>
<td>PN triangle</td>
<td>41,160</td>
</tr>
<tr>
<td>3</td>
<td>Loop</td>
<td>44,274</td>
</tr>
<tr>
<td>4</td>
<td>PN triangle</td>
<td>679,588</td>
</tr>
<tr>
<td>4</td>
<td>Loop</td>
<td>735,221</td>
</tr>
</tbody>
</table>

In this article we have introduced a new manifold-based construction for fitting a smooth surface to a triangle mesh of arbitrary topology. Our construction combines in the same framework most of the best features of previous constructions, and thus it fills the gap left by other methods. In fact, the manifold structure produced by our construction is more compact and effective than the ones in [9, 20, 30], because it has only one type of p-domains and transition functions, the gluing domains are larger, and the number of p-domains is smaller. Like the construction in [33], ours produces C^∞-continuous surfaces and is very flexible in ways of defining their geometry. However, differently from the construction in [33], ours generates surfaces from triangle meshes, rather than quadrilateral meshes, and the surfaces are contained in the convex hull of all control points used to define their geometry. Finally, unlike the surfaces produced by the triangle-based constructions in [14, 13, 30], the ones produced by our construction are not given by purely (rational) polynomial functions. However, our surfaces are free of singular points, and thus they do not present the visual artifacts caused by the hole-filling techniques used by [14, 13] to deal with those points. Our construction is also based on a solid theoretical framework, which is an improvement upon the one in [9] and ensures the construction correctness. In addition, we provided experimental examples and concrete evidences of the effectiveness of our construction.

We are currently working on the problem of adaptively fitting C^∞ surfaces to dense triangle meshes. To this end, we are developing a new solution that closely approximates meshes with a very large number of vertices by a smooth PPS containing a small number of charts. We also plan to extend this adaptive fitting algorithm to generate a hierarchical manifold structure that can represent surfaces in multiresolution. In addition, we intend to further investigate the existence of (rational) polynomial transition functions that can replace the ones currently used by our construction (without requiring us to change
the construction gluing and \(p \)-domains).

Acknowledgments

All mesh models used here are provided courtesy of INRIA and MPII by the AIM@SHAPE repository, except for Model 1. We would like to thank Jos Stam for making available to us his own implementation of the algorithm in [29], as well as Peer Stelldinger for providing us with function \(\xi \). In addition, we thank the anonymous reviewers for helpful comments that improved the presentation of this paper.

References

Figure 9: Mesh models (a) 1, (b) 2, (c) 3, and (d) 4 from Table 1.

Figure 10: Curvature plots for the surfaces generated from mesh model 1: (a) PN triangle, (b) PPS from the surface in (a), (c) Loop, and (d) PPS from the surface in (c).

Figure 11: Curvature plots for the surfaces generated from mesh model 3: (a) PN triangle, (b) PPS from the surface in (a), (c) Loop, and (d) PPS from the surface in (c).
Figure 12: Curvature plots for the surfaces generated from mesh model 2: (a) PN triangle, (b) PPS from the surface in (a), (c) Loop, and (d) PPS from the surface in (c).
Figure 13: Curvature plots for the surfaces generated from mesh model 4: (a) PN triangle, (b) PPS from the surface in (a), (c) Loop, and (d) PPS from the surface in (c).