
1 

Constraint Satisfaction 
Problems 

Chapter 5 
Section 1 – 3 



2 

Constraint satisfaction problems (CSPs) 

  CSP: 
  state is defined by variables Xi with values from domain Di 
  goal test is a set of constraints specifying allowable combinations of 

values for subsets of variables 

  Allows useful general-purpose algorithms with more power 
than standard search algorithms 



3 

Example: Map-Coloring 

  Variables WA, NT, Q, NSW, V, SA, T  

  Domains Di = {red,green,blue} 

  Constraints: adjacent regions must have different colors 
  e.g., WA ≠ NT 



4 

Example: Map-Coloring 

  Solutions are complete and consistent assignments, 
e.g., WA = red, NT = green,Q = red,NSW = 
green,V = red,SA = blue,T = green 



5 

Constraint graph 

  Binary CSP: each constraint relates two variables 
  Constraint graph: nodes are variables, arcs are constraints 



6 

Varieties of CSPs 

  Discrete variables 
  finite domains: 

  n variables, domain size d  O(d n) complete assignments 
  e.g., 3-SAT (NP-complete) 

  infinite domains: 
  integers, strings, etc. 
  e.g., job scheduling, variables are start/end days for each job: 
    StartJob1 + 5 ≤ StartJob3 

  Continuous variables 
  linear objective & constraints solvable in polynomial time by linear 

programming 
  There are very good, off-the-shelves, methods for convex 

optimization problems. 



7 

Varieties of constraints 

  Unary constraints involve a single variable,  
  e.g., SA ≠ green 

  Binary constraints involve pairs of variables, 
  e.g., SA ≠ WA 

  Higher-order constraints involve 3 or more 
variables, 
  e.g., SA ≠ WA ≠ NT 



8 

Example: Cryptarithmetic 

  Variables: F T U W R O                      X1 X2 X3 
  Domains: {0,1,2,3,4,5,6,7,8,9}            {0,1} 
  Constraints: Alldiff (F,T,U,W,R,O) 

  O + O = R + 10 · X1 
  X1 + W + W = U + 10 · X2 
  X2 + T + T = O + 10 · X3 
  X3 = F, T ≠ 0, F ≠ 0 



9 

Backtracking (Depth-First) search 

WA WA WA 

WA 
NT 

WA 
NT 

D 

D^2 

•  Special property of CSPs: They are commutative: 
  This means: the order in which we assign variables 
   does not matter. 

•  Search tree: First order variables, then assign them values one-by-one.  

WA 
NT 

NT 
WA 

= 

WA 
NT 

D^N 



10 

Backtracking example 



11 

Backtracking example 



12 

Backtracking example 



13 

Backtracking example 



14 

Improving backtracking efficiency 

  General-purpose methods can give huge 
gains in speed: 
  Which variable should be assigned next? 
  In what order should its values be tried? 
  Can we detect inevitable failure early? 

  We’ll discuss heuristics for all these questions in 
the following. 



15 

Which variable should be assigned next?  
minimum remaining values heuristic 

  Most constrained variable: 
choose the variable with the fewest legal values 

  a.k.a. minimum remaining values (MRV) 
heuristic 



16 

 Which variable should be assigned next? 
 degree heuristic 

  Tie-breaker among most constrained 
variables 

  Most constraining variable: 
  choose the variable with the most constraints on 

remaining variables (most edges in graph) 



17 

 In what order should its values be tried?  
 least constraining value heuristic 

  Given a variable, choose the least 
constraining value: 
  the one that rules out the fewest values in the 

remaining variables 

  Leaves maximal flexibility for a solution. 
  Combining these heuristics makes 1000 

queens feasible 



18 

Rationale for MRV, DH, LCV  

  In all cases we want to enter the most promising branch, but we also 
want to detect inevitable failure as soon as possible. 

  MRV+DH: the variable that is most likely to cause failure in a branch is 
assigned first. The variable must be assigned at some point, so if it is 
doomed to fail, we’d better found out soon. E.g X1-X2-X3, values 0,1, 
neighbors cannot be the same.  

  LCV: tries to avoid failure by assigning values that leave maximal 
flexibility for the remaining variables. We want our search to succeed as 
soon as possible, so given some ordering, we want to find the 
successful branch. 



19 

 Can we detect inevitable failure early?  
 forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
    that are connected to current variable. 
  Terminate search when any variable has no legal values 



20 

Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 



21 

Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 



22 

Forward checking 

  Idea:  
  Keep track of remaining legal values for unassigned variables 
  Terminate search when any variable has no legal values 



23 

c a 

d 

e 

b 

CONSTRAINT GRAPH 

2) Consider the constraint graph on the right. 
The domain for every variable is [1,2,3,4]. 
There are 2 unary constraints: 
- variable “a” cannot take values 3 and 4. 
- variable “b” cannot take value 4. 
There are 8 binary constraints stating that variables  
connected by an edge cannot have the same value. 

Find a solution for this CSP by using the following 
heuristics: minimum value heuristic, degree heuristic,  
forward checking. Explain each step of your answer. 



24 

c a 

d 

e 

b 

CONSTRAINT GRAPH 

2) Consider the constraint graph on the right. 
The domain for every variable is [1,2,3,4]. 
There are 2 unary constraints: 
- variable “a” cannot take values 3 and 4. 
- variable “b” cannot take value 4. 
There are 8 binary constraints stating that variables  
connected by an edge cannot have the same value. 

Find a solution for this CSP by using the following 
heuristics: minimum value heuristic, degree heuristic,  
forward checking. Explain each step of your answer. 
            MVH   a=1 (for example) 

 FC+MVH  b=2 
 FC+MVH  c=3 
 FC+MVH  d=4 
 FC   e=1   



25 

Constraint propagation 

  Forward checking only checks consistency between 
assigned and non-assigned states. How about constraints 

   between two unassigned states? 

  NT and SA cannot both be blue! 
  Constraint propagation repeatedly enforces constraints 

locally 



26 

Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X  there is some allowed y of Y 

constraint propagation propagates arc consistency on the graph. 

consistent arc. 



27 

Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

inconsistent arc. 
remove blue from source consistent arc. 



28 

Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

  If X loses a value, neighbors of X need to be rechecked: 
    i.e. incoming arcs can become inconsistent again  
    (outgoing arcs will stay consistent). 

this arc just became inconsistent 



29 

Arc consistency 

  Simplest form of propagation makes each arc consistent 
  X Y is consistent iff 

for every value x of X there is some allowed y 

  If X loses a value, neighbors of X need to be rechecked 
  Arc consistency detects failure earlier than forward checking 
  Can be run as a preprocessor or after each assignment 
  Time complexity: O(n2d3) 

# arcs 

d^2 for checking, each node can be checked d times at most 



30 

Arc Consistency 

  This is a propagation algorithm. It’s like sending messages to neighbors 
on the graph! How do we schedule these messages? 

  Every time a domain changes, all incoming messages need to be re-
send. Repeat until convergence  no message will change any 
domains. 

  Since we only remove values from domains when they can never be 
part of a solution, an empty domain means no solution possible at all  
back out of that branch. 

  Forward checking is simply sending messages into a variable that just 
got its value assigned. First step of arc-consistency. 



Constraint Propagation Algorithm 

31 

•  Maintain all allowed values for each variable. 
•  At each iteration pick the variable with the fewest remaining values 
•  For variables with equal nr of remaining values, break ties by checking 
  which variable has the largest nr of constraints with unassigned variables 
•  After we picked a variable, tentatively assign it to each of the remaining  
  values in turn and run constraint propagation to convergence. 
  (This involves  iteratively making all arcs consistent that flow into domains that  
  just have been changed, beginning with the neighbors of 
   the variable you just assigned a value to and iterating until no more changes occur.) 
•  Among all checked values, pick the one that removed the least values  
  from other domains using constraint propagation. 
•  Now run constraint propagation once more (or recall it from memory) for the 
  assigned value and remove the the values from the domains of the other variables. 
•  When domains get empty, back out of that branch. 
•  Iterate until a solution has been found. 
•  (as an alternative you only do constraint propagation after an assignment to prune 
   domains of other variables but avoid doing it for all values. Use simply forward  
   checking with the LCV heuristic to pick a value)  



32 

Try it yourself 

[R] 

Use all heuristics including arc-propagation to solve this problem. 

[R,B,G] [R,B,G] 

[R,B,G] [R,B,G] 



33 



34 

This removes any inconsistent values from Parent(Xj), 
it applies arc-consistency moving backwards. 

B 
R 
G 

B 
G 

B 
R 
G 

R G B 

B G R R G B 

Note: After the backward pass, there is guaranteed 
         to be a legal choice for a child node for any of its 
         leftover values. 

a priori 
constrained 
nodes 



35 



36 

Junction Tree Decompositions 



37 

Local search for CSPs 

  Note: The path to the solution is unimportant, so we can  
             apply local search!  

  To apply to CSPs: 
  allow states with unsatisfied constraints 
  operators reassign variable values 

  Variable selection: randomly select any conflicted variable 

  Value selection by min-conflicts heuristic: 
  choose value that violates the fewest constraints 
  i.e., hill-climb with h(n) = total number of violated constraints 



38 

Example: 4-Queens 

  States: 4 queens in 4 columns (44 = 256 states) 
  Actions: move queen in column 
  Goal test: no attacks 
  Evaluation: h(n) = number of attacks 



39 



Hard satisfiability problems 

  A,B,C,D,E can take value (true, false). 
   ¬A=true means that A must be false. 
  (B ∨ ¬A ∨ ¬C) =true means that B=true or A=false or C=false 
  Consider random conjunctions of constraints: 

 (¬D ∨ ¬B ∨ C)=true ∧ (B ∨ ¬A ∨ ¬C)=true ∧ (¬C ∨  ¬B ∨ E)=true 
     ∧ (E ∨ ¬D ∨ B)=true ∧ (B ∨ E ∨ ¬C)=true 
  We want to find assignments that make all constraints true 

m = number of clauses (5)  
n = number of symbols (5) 

  Hard problems seem to cluster near m/n = 4.3 (critical point) 

Implementing algorithms for random 3-SAT problems will be your project 



Hard satisfiability problems 



Hard satisfiability problems 

  Median runtime for 100 satisfiable random 3-
CNF sentences, n = 50 



43 

Summary 

  CSPs are a special kind of search problem: 
  states defined by values of a fixed set of variables 
  goal test defined by constraints on variable values 

  Backtracking = depth-first search with one variable assigned per 
level. 

  Variable ordering and value selection heuristics help significantly 

  Forward checking prevents assignments that guarantee later 
failure 

  Constraint propagation (e.g., arc consistency) does additional 
work to constrain values and detect inconsistencies 

  Iterative min-conflicts is usually effective in practice 


