3. C Functions

We can write a deletion algorithm with overall structure similar to that used for
insertion. Again we shall use recursion, with a separate main function to start
the recursion. Rather than attempting to pull an entry down from a parent node
during an inner recursive call, we shall allow the recursive function to return even
though there are too few entries in its root node. The outer call will then detect this
occurrence and move entries as required.

The main function is:

[+ DaleteTree: delefestarget from the B-iree.”
Pre: target js the key of some entry in the B-tree fo which root points.
Post: This entry has been deleted from the B-tree.
Uses: RecDeleteTree. =/

B-tree deletion Treenode »DeleteTree(Key target, Treenode *root)
!
Treenode »oldroot; r+ ysed to dispose of an empty root r’
RecDeleteTree(target, root};
if (root->count == Q) { /= Root is empty. #f

oldroat = root;
root = root-»branch[0];
free(oldroot);

}

return root; : P

4. Recuarsive Deletion

Most of the work is done in the recursive function. Tt first searches the current node
for the target. If it is found and the node is not a leaf, then the immediate successor
of the key is found and is placed in the current node, and the successor is deleteq,
Deletion from a leaf is stralghtforward, and otherwise the process continues by
recursion. When a recursive call returns, the function checks to see if enougf-l
entries remain in the appropriate node, and, if not, moves entries as required,
Auxiliary functions are used in several of these steps.

I+ RecDeleteTree. look for target to delete.
Pre: target /s the key of some entry in the subtree of a B-tree o which current points,
Post: This entry has been deleted from the B-tree.

Uses: RecDeleteTree recursively, SearchNode, Suceassor, Remove, Restore.)
void RecDeleteTree(Key target, Treenode scurrent} = '

{

int pos; = location of target or of branch on which o search uf
if (Teurrent) { '
Warning(" Target was not in the B-tree.");
return; I* Hitling an empty tree is an error. f
~ relse { e
I (SearcRNGUS(ATGSL. SRt &pis)]
o if{current>branch[pos—-11) { . = :

H

Successor{current, pos); f* re,éféces entry [pos] by its successor #f
RecDeleteTree({current-»entry [pos1.key, current--branch [pos]);
} else
Femove(current, pos); 7+ removes key from pos of =current %/
else /* Target was not found in the current node. #f

RecDsleteTree(target, current->branch [pos]);
if {current->branch[pos])
it {curreni->branch[pos] —count < MIN)
Restare(current, pos);

488 Chapter 10 » Multiway Trees

I* Restore: restore the minimum number of entries. .
Pre: current points to a node in a B-tree with an entry in index pos; the branch t;
the right of pos has one too few eniries. 4ok
Post: An entry taken from elsewhere is to restore the minimum number of entries by -
entering it at current—>branch [pos].

Uses: Movel eft, MaveRight, Combine. =/

void F{estore(T reenode *current, int pos)
{
if (pos == 0) I* case: leftmost key
if (current—branch[1]->count > MIN)
Movel eft(current, 1);

< N Y et I T
Combine(current, 1);

else if (pos == current->count) /* case: rightmost key
if (current—>branch [pos—1] ->count > MiN})
MoveRight(current, pos);
______‘__ _____ :_________v;_ _e_ISe B e S =4 e e s e L

Combine{(current, pos);

I* remaining cases =f
else if (current->branch [pos— 1] ->count > MIN)
MoveRight(current, pos);

else if (current->branchpos + 1]->count > MIN)
MoveLeft(current, pos + 1);

else
Combine(current, pos);

