Section 10.3 * External Searching: B-Trees 489

- move akey to the right void MoveRight(Treenode *current, int pos)

int c;

Treenode *t;

t = current->branch [pos];

for (¢ = t->count; ¢> 0; ¢c——) {

1 Shift all keys in the right node one position. */
t->entry[c + 1] = t->entry[c];
t—>branch[c + 1] = t->branch [cl;

1

t->branch[1] = t->branch[0]; _
t->count++;

t->entry[1] = current->entry[pos];

t = current->branch[pos—11; /« Move last key of left node into parent. - %/
current->entry [pos] = t->entry [t->count];

current->branch[pos] ->branch[0] = t->branch [t->count];
t->count——;

I* Move key from parent to right node. if

% Moveleft--move akey to the feft.
Pre: current points to a node in a B-tree with entries in the branches pos and
pos — 1, with too few in branch pos — 1.

Post: The leftmost entry from branch pos has moved into *current, which has sent
an entry into the branch pos — 1. /
‘move a key to the left void MoveLeft(Treenode *current, int pos)

intc;
Treenode =*t;
t = current->branch [pos—11];
t—>count++;
- t=entry[t->count] = current->entry [pos];
t->branch [t->count] = current->branch [pos]->branch[0];
t = current->branch[pos]; /= Move key
current->entry [pos] = t->entry[1];
t->branch[0] = t->branch[1];
t->count——;
for (¢ =1; ¢ <=t->count; c++) {
1% Shift all keys in right node one position leftward. */
t->entry[c] =t->entry[c + 1];
t->branch[c] = t->branch[c + 1];

I* Move key from parent into left node. #f

from right node into parent. *f

}

}

‘ 490 Chapter 10 * Multiway Trees
|
' [+ Combine: combine adjacent nodes.
Pre: current points to a node in a B-tree with entries in the branches pos ang
pos — 1, with too few to move entries.
Post: The nodes at branches pos — 1 and pos have been combined into one node,
which also includes the entry formerly in «current at index pos. */
combine adjacent void Combine(Treenode *current, int pos)
nodes {
intc;
Treenode *right;
Treenode =left;
right = current->branch [pos]; , _
left = current—>branch[pos—1]; [+ Work with the left node. %/
left->count++; I* Insert the key from the parent. i
left—>entry [left—>count] = current->entry[pos];
left—>branch [left->count] = right->branch[0];
for (¢ = 1; ¢ <=right->count; c++) { /= Insert all keys from right node. %
left->count++; ;
left—>entry [left->count] = right—>entry[c];
left—branch [left—count] = right—>branch[c];
-1

for (¢ = pos; ¢ < current=scount; c++){/+ Delete key from parent hode.- -
current->entry[c] = current->entry[c + 1];
current->branch[c] = current->branch[c + 1];
}

current—>count——;
free(right); I+ Dispose of the empty right node.

Exercises 10.3 E1. Insert the six remaining letters of the alphabet in the order
zZvoqwy

into the final B-tree of Figure 10.7 (page 476).

E2. Insert the entries below, in the order stated, into an initially empty B-tree
order (a) 3, (b) 4, (c) 7.

agfbkdhmjesirxclntup
E3. What is the smallest number of entries that, when inserted in an appropria
order, will force a B-tree of order 5 to have height 2 (that is, 3 levels)?

E4. Draw all the B-trees of order 5 (between 2 and 4 keys per node) that can &
constructed from the keys 1, 2, 3,4, 5, 6,7, and 8.

E5. If a key in a B-tree is not in a leaf, prove that both its immediate predeceSS;_
and immediate successor (under the natural order) are in leaves.

