
Chapter 11

GRAPHS

1. Mathematical Background

2. Computer Representation

3. Graph Traversal

4. Topological Sorting

5. A Greedy Algorithm: Shortest Paths

6. Graphs as Data Structures

Outline Data Structures and Program Design In C, 2nd. ed.
Transp. 1, Chapter 11, Graphs 405  1997 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458



Graphs: Definitions

1. A graph G consists of a set V , whose members are called
the vertices of G, together with a set E of pairs of distinct
vertices from V .

2. The pairs in E are called the edges of G.
3. If e = (v, w) is an edge with vertices v and w, then v and w

are said to lie on e, and e is said to be incident with v and
w.

4. If the pairs are unordered, G is called an undirected graph.
5. If the pairs are ordered, G is called a directed graph. The

term directed graph is often shortened to digraph, and the
unqualified term graph usually means undirected graph.

6. Two vertices in an undirected graph are called adjacent if
there is an edge from the first to the second.

7. A path is a sequence of distinct vertices, each adjacent to the
next.

8. A cycle is a path containing at least three vertices such that
the last vertex on the path is adjacent to the first.

9. A graph is called connected if there is a path from any vertex
to any other vertex.

10. A free tree is defined as a connected undirected graph with
no cycles.

11. In a directed graph a path or a cycle means always moving in
the direction indicated by the arrows. Such a path (cycle) is
called a directed path (cycle).

12. A directed graph is called strongly connected if there is a
directed path from any vertex to any other vertex. If we sup-
press the direction of the edges and the resulting undirected
graph is connected, we call the directed graph weakly con-
nected.

13. The valence of a vertex is the number of edges on which it
lies, hence also the number of vertices adjacent to it.

Graphs: Definitions Data Structures and Program Design In C, 2nd. ed.
Transp. 2, Sect. 11.1, Mathematical Background 406  1997 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458



Honolulu

Tahiti
Fiji

Samoa

Noumea

Sydney
Auckland

C

A

B

C

D

Selected South Pacific air routes

Message transmission in a network

C

C

H

H

H

H

C

H

C

C

H

E

F

Benzene molecule

1 2

Connected

(a)

4 3

1 2

Path

(b)

4 3

1 2

Cycle

(c)

4 3

1 2

Disconnected

(d)

4 3

1 2

Tree

(e)

4 3

Directed cycle Strongly connected Weakly connected

(a) (b) (c)

Various kinds of graphs Data Structures and Program Design In C, 2nd. ed.
Transp. 3, Sect. 11.1, Mathematical Background 407  1997 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458



DEFINITION A graph G consists of a set V , called the vertices
of G, and, for all v ∈ V , a subset Av of V , called the set of
vertices adjacent to v.

Directed graph

Adjacency sets
Adjacency table

1

vertex

2

4 3

1 2 3 4

1
2
3
4

Set
{2, 3}
{3, 4}

φ
{1, 2, 3}

1
2
3
4

F
F
F
T

T
F
F
T

T
T
F
T

F
T
F
F

1 2

4 3

graph

Directed graph

(a) Linked lists

(b) Contiguous lists (c) Mixed

vertex 1

vertex 2

vertex 3

vertex 4

edge (1, 2) edge (1, 3)

edge (2, 3) edge (2, 4)

edge (4, 1) edge (4, 2) edge (4, 3)

vertex valence adjacency list firstedge

2 3

3 4

1 2 3

n = 4 n = 4

2

2

0

3

−

−

−

2

3

−

1

−

−

−

3

4

−

2

−

−

−

−

−

−

3

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

1

2

3

n = 4

5

6

max = 7

1

2

3

n = 4

5

6

max = 7

Computer representation of graphs Data Structures and Program Design In C, 2nd. ed.
Transp. 4, Sect. 11.2, Computer Representation 408  1997 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458



Start 1 2 3

459

Depth-first traversal

6 7 8

Start 1 2 5

734

Breadth-first traversal

6 8 9

G
raph

traversal
D

ata
S

tru
ctu

res
an

d
P

rogram
D

esign
In

C
,2n

d
.

ed
.

T
ran

sp.5,S
ect.11.3,G

raph
T

raversal
409


1997

P
ren

tice-H
all,In

c.,U
pper

S
addle

R
iver,N

.J.07458



Topological Sorting

Let G be a directed graph with no cycles. A topological order for
G is a sequential listing of all the vertices in G such that, for all
vertices v, w ∈ G, if there is an edge from v to w, then v precedes
w in the sequential listing.

Directed graph with no directed cycles

Depth-first ordering

Breadth-first ordering

54321

109876

10 7 4 3 1 6 85 9 2

4 7 10 5 2 6 81 3 9

Topological Sorting Data Structures and Program Design In C, 2nd. ed.
Transp. 6, Sect. 11.4, Topological Sorting 410  1997 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458



A Greedy Algorithm: Shortest Paths

The problem of shortest paths:

Given a directed graph in which each edge has a nonnegative
weight or cost, find a path of least total weight from a given
vertex, called the source, to every other vertex in the graph.

2 5

3
6

10
4

2

1

6

2

0

1

23

4

Method:

We keep a set S of vertices whose closest distances to the
source, vertex 0, are known and add one vertex to S at each
stage. We maintain a table D that gives, for each vertex v, the
distance from 0 to v along a path all of whose vertices are in S ,
except possibly the last one. To determine what vertex to add
to S at each step, we apply the greedy criterion of choosing
the vertex v with the smallest distance recorded in the table
D, such that v is not already in S .

A Greedy Algorithm: Shortest Paths Data Structures and Program Design In C, 2nd. ed.
Transp. 7, Sect. 11.5, A Greedy Algorithm: Shortest Paths 411  1997 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458



Example of Shortest Path

2 5

3
6

10
4

2

1

6

2

0

1

23

4

2 5

3
1

23

4

2 5

3
6

10
4

0

1

23

4

2 5

4

2

1

3
1

3

2

3

2

1

6

3

2

3

2

1

0

4

2

1

2

4

0

14

3 2

0

Source

(a) (b)

d = 2 d = 5

d = 3d = ∞

S = {0}

S = {0, 4} S = {0, 4, 2}

S = {0, 4, 2, 1} S = {0, 4, 2, 1, 3}

d = 2 d = 4

d = 3d = 5

d = 2 d = 4

d = 3d = 5

d = 2 d = 4

d = 3d = 5

d = 2 d = 5

d = 3d = 6

(c) (d)

(e) (f)

0

Example of Shortest Path Data Structures and Program Design In C, 2nd. ed.
Transp. 8, Sect. 11.5, A Greedy Algorithm: Shortest Paths 412  1997 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458



Pointers and Pitfalls

1. Graphs provide an excellent way to describe the essential fea-
tures of many applications, thereby facilitating specification
of the underlying problems and formulation of algorithms for
their solution. Graphs sometimes appear as data structures
but more often as mathematical abstractions useful for prob-
lem solving.

2. Graphs may be implemented in many ways by the use of dif-
ferent kinds of data structures. Postpone implementation de-
cisions until the applications of graphs in the problem-solving
and algorithm-development phases are well understood.

3. Many applications require graph traversal. Let the appli-
cation determine the traversal method: depth first, breadth
first, or some other order. Depth-first traversal is naturally re-
cursive (or can use a stack). Breadth-first traversal normally
uses a queue.

4. Greedy algorithms represent only a sample of the many par-
adigms useful in developing graph algorithms. For further
methods and examples, consult the references.

Pointers and Pitfalls Data Structures and Program Design In C, 2nd. ed.
Transp. 9, Chapter 11, Graphs 413  1997 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458


