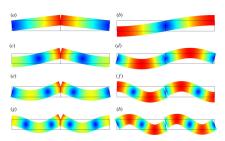
SME0602 - 2017 Gustavo C. Buscaglia

ICMC - Ramal 738176, gustavo.buscaglia@gmail.com

Cálculo de autovalores e autovetores

Existem vários problemas na engenharia em que precisamos calcular os autovalores e autovetores de uma matriz.





Definição: Seja $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$ é autovalor de A se $A - \lambda \mathbb{I}$ é singular.

Por tanto, se λ é autovalor de A, existe $v \in \mathbb{R}^n$, $v \neq \mathbf{0}$ tal que

$$(A - \lambda \mathbb{I}) v = \mathbf{0}$$

ou seja:

$$A v = \lambda v$$

Definição - Polinômio característico

$$P(\lambda) = \det(A - \lambda \mathbb{I})$$

 $P(\lambda)$ é chamado de polinômio característico de A e os autovalores de A são os zeros desse polinômio.

Matrizes semelhantes, matrizes diagonalizáveis

• **Teorema:** Se $A \in B$, matrizes $n \times n$, são **semelhantes**, i.e., satisfazem

$$B = S^{-1} A S$$
, ou $A = S B S^{-1}$

para alguma S não singular, e (λ, ν) é auto-par de A, então $(\lambda, S^{-1}\nu)$ é auto-par de B.

 Definição: Uma matriz A é diagonalizável se ela é semelhante a uma matriz diagonal. Para isto, deverá existir uma matriz S não singular e uma matriz

$$\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

(os λ 's podem ser repetidos) tais que $A = S \wedge S^{-1}$.

• Uma matriz $A \in \mathbb{R}^{n \times n}$ é **diagonalizável** se e só se existem n autovetores linearmente independentes.

Matrizes simétricas

- Toda matriz real simétrica é diagonalizável.
- Sejam v and w autovetores correspondentes a autovalores distintos λ e μ de uma matriz simétrica, i.e.

$$A v = \lambda v$$
, $A w = \mu w$

Então, v e w são ortogonais:

$$(v, w) = v^T w = 0$$

• Se A é simétrica, então $A = S \wedge S^T$, sendo S ortogonal e Λ diagonal.

Mais propriedades importantes

- Se λ é autovalor de A, então $\lambda+q$, $q\in\mathbb{R}$ é autovalor de $A+q\mathbb{I}$.
- Se λ é autovalor de A, então $\frac{1}{\lambda+q}$, $q \in \mathbb{R}$ é autovalor de $(A+q\mathbb{I})^{-1}$.
- O traço de A é:

$$trace(A) = \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_{i}$$

• O determinante de A é:

$$\det(A) = \lambda_1 \, \lambda_2 \dots \lambda_n$$

Método das potências e as suas variantes

O método das potências é um método iterativo para achar o autovalor de maior módulo de uma matriz.

Vamos supor que temos uma matriz A diagonalizável cujo autovalor λ_1 é maior em valor absoluto que todos os autovalores restantes.

Escrevendo um vetor arbitrário z como combinação dos autovetores obtemos

$$z = c_1 v^{(1)} + c_2 v^{(2)} + \cdots + c_n v^{(n)}$$

Agora multiplicamos por A em ambos lados

$$Az = c_1 A v^{(1)} + c_2 A v^{(2)} + \cdots + c_n A v^{(n)}$$

e já que $A v^{(i)} = \lambda_i v^{(i)}, i = 1, ..., n$, resulta

$$Az = c_1 \lambda_1 v^{(1)} + c_2 \lambda_2 v^{(2)} + \cdots + c_n \lambda_n v^{(n)}$$

Tirando fator comum λ_1

$$Az = \lambda_1 \left[c_1 v^{(1)} + c_2 \left(\frac{\lambda_2}{\lambda_1} \right) v^{(2)} + \dots + c_n \left(\frac{\lambda_n}{\lambda_1} \right) v^{(n)} \right]$$

Multiplicamos novamente por A em ambos lados

$$A^{2}z = \lambda_{1}^{2} \left[c_{1} v^{(1)} + c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{2} v^{(2)} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{2} v^{(n)} \right]$$

$$\vdots$$

$$A^{k}z = \lambda_{1}^{k} \left[c_{1} v^{(1)} + \underbrace{c_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{k} v^{(2)} + \dots + c_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{k} v^{(n)}}_{r} \right]$$

Claramente, se $\left(\frac{\lambda_i}{\lambda_1}\right)$ < 1, i=2,3,...,n, então, quando $k\to\infty$, $\left(\frac{\lambda_i}{\lambda_1}\right)^k\to0$. Isto é, quando $k\to\infty$, A^kz tende a ficar alinhado com $v^{(1)}$, já que o resto r tende para zero.

Motivados por isto, vamos propor o método das potências:

- Dado $\mathbf{x}^{(0)} \in \mathbb{R}^n$, $\mathbf{y}^{(0)} = \frac{\mathbf{x}^{(0)}}{\|\mathbf{x}^{(0)}\|}$, $\eta^{(0)} = \mathbf{y}^{(0)}^T A \mathbf{y}^{(0)}$
- for k = 1, 2, ...

$$- \mathbf{x}^{(k)} = A \mathbf{y}^{(k-1)}$$

$$- y^{(k)} = \frac{x^{(k)}}{\|x^{(k)}\|}$$

$$- \eta^{(k)} = \mathbf{v}^{(k)}^T A \mathbf{v}^{(k)}$$

- Se
$$|\eta^{(k)} - \eta^{(k-1)}| < TOL |\eta^{(k)}| \Rightarrow Sair$$

- · end for
- return $\eta^{(k)}$

Convergência do método:

$$|\eta^{(k)} - \lambda_1| \leq C \left(\frac{|\lambda_2|}{|\lambda_1|}\right)^k$$

$$\|\mathbf{y}^{(k)} - v^{(1)}\| \leq C \left(\frac{|\lambda_2|}{|\lambda_1|}\right)^k$$

Assim, $\eta^{(k)}$ tende ao autovalor **mais afastado do zero**, e $\mathbf{y}^{(k)}$ tende ao autovetor correspondente normalizado.

Método das potências inversas

Lembremos que se (λ, ν) é autopar de $A \Rightarrow (\frac{1}{\lambda}, \nu)$ é autopar de A^{-1} , i.e.,

$$A^{-1} v = A^{-1} \left(\frac{1}{\lambda} A v \right) = \frac{1}{\lambda} v$$

Então os autovalores de $B=A^{-1}$ serão: $\{\frac{1}{\lambda_1},\frac{1}{\lambda_2},\dots,\frac{1}{\lambda_n}\}$, o que significa, que o autovalor de maior módulo da matriz $B=A^{-1}$, corresponderá ao autovalor de menor módulo de A

$$\lambda_{\sf max}(B) = rac{1}{\lambda_{\sf min}(A)}$$

Podemos aplicar o método das potências que acabamos de introduzir na matriz $B(=A^{-1})$ para determinar o autovalor de menor módulo de A.

Vamos supor $A \in \mathbb{R}^{n \times n}$ que posui autovalores λ_i , i = 1, ..., n e se verifica que

$$|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \dots > |\lambda_n|$$

O algoritmo é:

• Dado
$$\mathbf{x}^{(0)} \in \mathbb{R}^n$$
, $\mathbf{y}^{(0)} = \frac{\mathbf{x}^{(0)}}{\|\mathbf{x}^{(0)}\|}$, $\lambda^{(0)} = \mathbf{y}^{(0)}^T \mathbf{A}^{-1} \mathbf{y}^{(0)}$

• for
$$k = 1, 2, ...$$

$$\begin{array}{l} \mathbf{-} \ \mathbf{x}^{(k)} = \mathbf{A}^{-1} \ \mathbf{y}^{(k-1)} \\ \mathbf{-} \ \mathbf{y}^{(k)} = \frac{\mathbf{x}^{(k)}}{\|\mathbf{x}^{(k)}\|} \\ \mathbf{-} \ \mu^{(k)} = \mathbf{y}^{(k)} \ \mathbf{A}^{-1} \ \mathbf{y}^{(k)} \\ \mathbf{-} \ \mathrm{Se} \ |\mu^{(k)} - \mu^{(k-1)}| < TOL \ |\mu^{(k)}| \ \Rightarrow \ \mathrm{Sair} \end{array}$$

- end for
- return $\frac{1}{\mu^{(k)}}$

Lembremos que em geral não precisamos calcular a inversa da matriz.

$$A^{-1} \mathbf{v}^{(k)} = \mathbf{x}^{(k)} \implies A \mathbf{x}^{(k)} = \mathbf{v}^{(k)}$$

Este sistema pode ser resolvido para achar $\mathbf{x}^{(k)}$ usando a fatoração LU ou de Cholesky.

Uma vez que essa fatoração está pronta, ela pode ser usada cada vez que precisar dentro do algoritmo fazendo:

$$z = L \setminus y$$

 $x = U \setminus z$

Potências inversas com deslocamento

Já vimos métodos para calcular:

- O autovalor de maior módulo, i.e., o autovalor mais afastado de zero;
- O autovalor de menor módulo, i.e., o autovalor mais perto de zero;

Que fazer se quisermos o autovalor mais próximo de um certo número q? Neste caso podemos usar o **método das potências inversas com deslocamento**. Procedemos assim:

- Vamos supor uma matriz A com autovalores $\{\lambda_1, \lambda_2, ..., \lambda_n\}$.
- Lembremos que a matriz $A_q = A q \mathbb{I}$ tem autovalores $\{\lambda_1 q, \lambda_2 q, \dots, \lambda_q q, \dots, \lambda_n q\}$ e seja λ_q o autovalor de A mais próximo de um número q.
- Aplicando o método das potências inversas a A_a, i.e.

$$\lambda_{\mathsf{max}}(A_q^{-1}) = rac{1}{\lambda_{\mathsf{min}}(A_q)} = rac{1}{\lambda_q - q}$$

Então:

$$\lambda_q = rac{1}{\lambda_{\sf max}(A_q^{-1})} + q$$

Para ter uma ideia da região aonde procurar os autovalores podemos usar os chamados discos de Gershgorin (ver slides do Prof. Afonso Paiva).

O comando eig

O comando eig calcula a fatoração $A = S \wedge S^{-1}$:

```
[S Lam]=eig(A) ---> A=S*Lam*inv(S)
```

- As colunas de S são os autovetores de A correspondentes a cada autovalor.
- Se A é simétrica, Lam é real e S ortogonal.
- Em geral, tanto *S* como Lam são complexas, mas se *A* é real os autovalores aparecem em pares conjugados.
- Para isto, Octave utiliza o **método de Francis** (ver slides do Prof. Afonso).

No cálculo de estruturas é usual encontrar o problema generalizado de autovalores

$$A v = \lambda M v$$

onde *M* é uma matriz definida positiva ("matriz de massas").

O comando eig de Octave também resolve esse problema:

As colunas de S são os autovetores de A correspondentes a cada autovalor,
 i.e.,

$$A*S(:,k)-Lam(k,k)*M*S(:,k)$$
 e' igual a zero.

• Se A é simétrica, Lam é real.

A decomposição SVD

É a generalização mais útil da diagonalização de matrizes.

Valores singulares e vetores singulares

• Um real não negativo σ é valor singular de uma matriz $M \in \mathbb{R}^{m \times n}$ se e só se existem vetores unitários $u \in \mathbb{R}^m$ e $v \in \mathbb{R}^n$ tais que

$$A v = \sigma u$$
, $e \quad A^T u = \sigma v$. (1)

Os vetores u e v são chamados de vetores singulares para σ a esquerda e a direita, respectivamente.

• **Teorema:** Toda matriz real $A \in \mathbb{R}^{m \times n}$ pode ser fatorada como

$$A = U \Sigma V^{T} \qquad \Leftrightarrow \qquad [U S V] = svd(A) \tag{2}$$

onde $U \in \mathbb{R}^{m \times m}$ e $V \in \mathbb{R}^{n \times n}$ são matrizes ortogonais, e a matriz $\Sigma \in \mathbb{R}^{m \times n}$ é diagonal, satisfazendo $\Sigma_{11} \geq \Sigma_{22} \geq ... \Sigma_{rr} > 0$, e todos os elementos restantes são zero. O inteiro $r \leq \min(m,n)$ é o posto de A. Usaremos também a notação $\sigma_i = \Sigma_{ii}$ para os valores singulares.

Exo.: Mostrar que, se se cumpre (2), então as colunas de U e de V são vetores singulares de A, a esquerda e direita respectivamente, e os elementos diagonais de Σ são valores singulares de A.

• Denotemos por $u^{(i)}$ a coluna número i de U, e por $v^{(i)}$ a coluna número i de V. Quando resultar conveniente e não gerar confusão, usaremos também u_i e v_i para os mesmos fins.

Exo. Ação sobre um vetor z:

Dizer se alguma das identidades abaixo está errada:

$$Az = A [(v_1^T z)v_1 + ... + (v_n^T z)v_n]$$

$$= (v_1^T z)Av_1 + ... + (v_n^T z)Av_n$$

$$= \sigma_1(v_1^T z)u_1 + ... + \sigma_r(v_r^T z)u_r$$

$$= [\sigma_1 u_1 v_1^T + ... + \sigma_r u_r v_r^T] z$$

Supondo que a última esteja correta, responda se ela é suficiente para poder afirmar que

$$A = \sum_{i=1}^{r} \sigma_i u^{(i)} \left(v^{(i)} \right)^T$$

Exo.: Os seguintes itens são verdadeiros:

- As colunas r + 1 a n de V são uma base ortogonal do núcleo de A.
- As colunas 1 a r de U são uma base ortogonal da imagem de A.
- A diagonal de Σ tem comprimento $\min(m, n)$, quando A é matriz $m \times n$.
- Dada a decomposição A = UΣV^T, o posto de A é r se e só se os elementos r + 1 a min(m, n) da diagonal de Σ são zero, e os primeiros r elementos positivos.

• **Teorema:** Seja $A \in \mathbb{R}^{m \times n}$ uma matriz cuja decomposição SVD é dada por $A = U \Sigma V^T$. A melhor aproximação a A com matrizes de posto k < r é dada por

$$\tilde{A} = U\tilde{\Sigma}V^{T}, \qquad (3)$$

onde $\tilde{\Sigma}$ é também diagonal, seus elementos diagonais 1 a k coincidem com os de Σ , e o resto são zero.

• **Teorema:** Seja $A \in \mathbb{R}^{n \times n}$ uma matriz quadrada, com decomposição $A = U \Sigma V^T$. A matriz **ortogonal** mais próxima a A é, então, a matriz $Q = U V^T$.

Pseudoinversa

• A **pseudoinversa** de uma matriz $A \in \mathbb{R}^{m \times n}$, que denotaremos por A^{\dagger} , é de $n \times m$ e definida por

$$A^{\dagger} = V \Sigma^{\dagger} U^{T} , \qquad (4)$$

onde $\Sigma^{\dagger} \in \mathbb{R}^{n \times m}$ é a matriz diagonal cujos elementos valem $1/\Sigma_{ii}$ se $\Sigma_{ii} \neq 0$, e zero se $\Sigma_{ii} = 0$.

• O problema de mínimos quadrados

$$Ax = b$$

com A arbitrária (de posto incompleto, em particular), se resolve de maneira simples como

$$x = A^{\dagger}b \Leftrightarrow x=pinv(A)*b$$
 (5)

Quando A é de posto completo a solução coincide com a obtida com a fatoração QR, que é solução de

$$A^T A x = A^T b . (6)$$

Quando A é de posto incompleto, e a fatoração QR fornece então infinitas soluções, a solução obtida é a de mínima norma.

As seguintes afirmações são verdadeiras?

•
$$AA^{\dagger}A = A$$

•
$$A^{\dagger}AA^{\dagger}=A^{\dagger}$$

•
$$(AA^{\dagger})^T = AA^{\dagger}$$

•
$$(A^{\dagger}A)^T = A^{\dagger}A$$

•
$$A^TA = V\Sigma^T\Sigma V^T$$

•
$$AA^T = U\Sigma\Sigma^TU^T$$

- As colunas de V são autovetores de A^TA.
- As colunas de U são autovetores de AA^T.