SME0306 - 2013 Gustavo Carlos Buscaglia

ICMC - Ramal 738176 gustavo.buscaglia@gmail.com

Prova 5 (24 de setembro de 2013, tempo de prova: 80 minutos)

1. Dados três pontos, $x_1=10$, $x_2=12$ e $x_3=13$, construa uma fórmula de derivação numérica por interpolação polinomial que aproxime f'(z) considerando conhecidos $y_1=f(x_1)=-4$, $y_2=f(x_2)=4$ e $y_3=f(x_3)=4$ e sendo $z=(x_2+x_3)/2=12.5$.

f'(z) =

2. Dados três pontos, $x_1=1, x_2=3$ e $x_3=6$, construa uma fórmula de integração numérica (por interpolação polinomial) que aproxime $\int_a^b f(x) \ dx$ considerando conhecidos $y_1=f(x_1), \ y_2=f(x_2)$ e $y_3=f(x_3)$. Os valores de a e b são $a=0,\ b=7$.

A fórmula desejada deve ser da forma

$$\int_a^b f(x) \ dx \simeq W_1 f(x_1) + W_2 f(x_2) + W_3 f(x_3)$$

e por tanto as incógnitas são os pesos $W_1,\,W_2$ e $W_3.$

$W_1 =$	
$W_2 =$	
$W_3 =$	

3. Construa a spline natural S(x) que passa pelos pontos

$$(x_1, y_1) = (3, 4);$$
 $(x_2, y_2) = (4, 7);$ $(x_3, y_3) = (6, 4)$

O resultado pedido é o valor da interpolada e de sua derivada no ponto x=5.

S(5) =	
S'(5) =	