SME0305 - 2016 Roberto Ausas/Gustavo Buscaglia

Lista 11 - Método das potências e variantes

 ${\it Material}$ complementar de estudo: Slides do prof. Afonso Paiva.

- 1. Para diferentes valores de n, gerar matrizes M em Octave usando as seguintes intruções:
 - A = rand(n,n);
 - B = A'*A;
 - [Q, R] = qr(B);
 - d = [1:n];
 - D = diag(d);
 - M = Q'*D*Q;

e usando a instrucção

Calcular os autovetores e autovalores. A funcção eig devolve uma matriz V cujas colunas são os autovetores e uma matriz LAMBDA diagonal com os autovalores.

- (a) Verificar que os autovetores são ortogonais.
- (b) Verificar que os autovalores s\u00e3o exatamente os n\u00eameros 1,2,...,n.
- (c) Medir o tempo de cálculo como função do tamanho da matriz.
- (d) Mudar na mão o vetor d para que apareçam entradas repetidas. Calcular novamente os autovalores e autovetores e verificar que os autovetores asociados ao autovalor repetido não são ortoganais entre eles.
- (e) No item anterior, aplicar o método de Gram-Schmidt e ortoganalizar esses autovetores, para redefinir a matriz Q.
- Como são os autovalores de uma matriz triangular?
- 3. Seja $\underline{\underline{A}}$ uma matriz $n \times n$ que tem n autovalores distintos, $\lambda_1, \ldots, \lambda_n$, satisfazendo $|\lambda_i| \neq |\lambda_j|$ sempre que $i \neq j$. Suponha os autovalores ordenados de maneira que $|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$. Os correspondentes autovetores são $\underline{v}^{(1)}$, $\underline{v}^{(2)}$, etc., são normalizados na norma euclidiana ($\|\underline{z}\| = \sqrt{\underline{z}^T \underline{z}}$). Dizer se verdadeiro ou falso:
 - (a) A matriz \underline{A} é diagonalizável.
 - (b) A matriz $\underline{A} \lambda_1 \underline{I}$ é diagonalizável.
 - (c) O método das potências aplicado à matriz A^{-1} permite obter $1/\lambda_n$.
 - (d) O método das potências inversas aplicado à matriz A permite obter λ_n .
 - (e) O método das potências aplicado à matriz A convergirá mais rápido quanto menor seja o cociente $|\lambda_2/\lambda_1|$

- (f) O método das potências, com B = A, convergirá mais rapidamente que com $B = A^2$.
- (g) A matriz $\underline{\underline{A}} \lambda_1 \underline{\underline{I}}$ tem autovalores 0, $\lambda_2 \lambda_1$, $\lambda_3 \lambda_1, \ldots, \lambda_n \lambda_1$.
- 4. Seja $\underline{\underline{A}}$ uma matriz 4×4 cujos autovalores são 1, 2, 3 e 4. Então, começando com um vetor $\underline{x}^{(0)}$ escolhido aleatoriamente, e aplicando o método das potências à matriz $\underline{\underline{B}} = \underline{\underline{A}} 3 \, \underline{\underline{I}}$, a sequência dos $\lambda^{(k)}$ convergirá para:
 - (a) 1
 - (b) 3
 - (c) -1
 - (d) -2
 - (e) 1/3
 - (f) -1/2
 - (g) 0
 - (h) Não convergirá
- 5. Seja $\underline{\underline{A}}$ uma matriz 4×4 cujos autovalores são 1, 2, 3 e 4. Então, começando com um vetor $\underline{x}^{(0)}$ escolhido aleatoriamente, e aplicando o método das potências à matriz $\underline{\underline{B}} = (\underline{\underline{A}} + 2 \ \underline{\underline{I}})^{-1}$, a sequência dos $\lambda^{(k)}$ convergirá para:
 - (a) 1
 - (b) 1/2
 - (c) -1/2
 - (d) 1/4
 - (e) 1/3
 - (f) 1/6
 - (g) -1/5
 - (h) Não convergirá
- 6. Seja $\underline{\underline{A}}$ uma matriz $n \times n$ conhecida. Começando com um vetor $\underline{x}^{(0)}$ escolhido aleatoriamente, e aplicando o método das potências à matriz $\underline{\underline{B}} = (\underline{\underline{A}} 0.2 \ \underline{\underline{I}})^{-1}$, a sequência dos $\lambda^{(k)}$ converge para 5. Então é possível concluir que:
 - (a) 5 é autovalor de \underline{A} .
 - (b) 1/5 é autovalor de \underline{A} .
 - (c) 2/5 é autovalor de \underline{A} .
 - (d) 0 é autovalor de \underline{A} .
 - (e) $\underline{\underline{A}}$ não tem autovalores positivos menores que $\overline{1/5}$.
 - (f) $\underline{\frac{A}{2}}$ não tem autovalores positivos menores que $\overline{\frac{A}{2}}$ 5.
 - (g) $\underline{\underline{\underline{A}}}$ não tem autovalores positivos menores que $\overline{\underline{4}}/5.$
- 7. Programar numa mesma função de Octave o método das potências, o método das potências inversas e das potências inversas com deslocamento. Dependendo da escolha do usuario, a função aplicará um ou outro método para calcular o autovalor de maior módulo, o de menor módulo ou autovalor mais próximo de um certo valor q (também fornecido pelo usuario).