SME0305 - 2014 Gustavo Carlos Buscaglia

ICMC - Ramal 738176, gustavo.buscaglia@gmail.com

Prova 8 (7 de maio de 2014)

Responda V(erdadeiro) ou F(also) à esquerda de cada item

- 1. Seja $\underline{\underline{A}} = \underline{\underline{L}} \underline{\underline{U}}$ uma matriz e sua fatoração LU, que foi obtida com o algoritmo lugauss sem dar erro ("Null diagonal element"). Se a última linha de \underline{U} é zero, então existe um vetor \underline{w} (distinto do vetor zero) tal que $\underline{A}\underline{w} = \underline{0}$. V
- 2. Seja $\underline{\underline{A}} = \underline{\underline{L}} \underline{\underline{U}}$ uma matriz e sua fatoração LU, que foi obtida com o algoritmo **lugauss** sem dar erro ("Null diagonal element"). Se a última linha de $\underline{\underline{U}}$ é zero, então não existem dois vetores linearmente independentes \underline{w} e $\underline{\widetilde{w}}$ tais que $\underline{\underline{A}} \underline{w} = \underline{0}$ e $\underline{\underline{A}} \underline{\widetilde{w}} = \underline{0}$. V
- 3. Se \underline{A} admite fatoração LU sem pivotamento, então necessariamente \underline{A}^T (sua transposta) também admite. V
- 4. Seja $\underline{\underline{A}} = \underline{\underline{L}}\,\underline{\underline{U}}$ uma matriz e sua fatoração LU. A fatoração LU da matriz transposta é então dada por $\underline{\underline{A}}^T = \underline{\underline{L}}^T\,\underline{\underline{U}}^T$.
- 5. Seja $\underline{\underline{A}} = \underline{\underline{L}}\,\underline{\underline{U}}$ uma matriz e sua fatoração LU. A fatoração LU da matriz transposta é então dada por $\underline{\underline{A}}^T = \underline{\underline{U}}^T\,\underline{\underline{L}}^T$.
- 6. Uma vez obtida a fatoração LU de uma matriz \underline{A} de n linhas e n colunas, para resolver qualquer sistema da forma

$$\underline{A} \underline{x} = \underline{b}$$

são necessárias 2n+2 operações. F

- 7. Para obter a fatoração LU de uma matriz \underline{A} de n linhas e n colunas são necessárias n^2 operações. F
- 8. O custo computacional de obter a fatoração LU de uma matriz $\underline{\underline{A}}$ é muito maior que o custo de resolver um sistema da forma

$$\underline{A} \underline{x} = \underline{b}$$

uma vez que os fatores \underline{L} é \underline{U} já foram calculados. V

9. Uma vez calculada a fatoração LU de uma matriz, $\underline{\underline{L}}\underline{\underline{U}} = \underline{\underline{A}}$, o determinante dela pode ser calculada fazendo

V

10. Se uma matriz tem determinante negativo, então ela não pode ser fatorada da forma

$$\underline{A} = \underline{H} \underline{H}^T$$

V

11. Se uma matriz é simétrica, então ela pode ser fatorada da forma

$$\underline{A} = \underline{H} \underline{H}^T$$

F

- 12. O pivotamento é necessário para evitar divisões por zero, mas não ajuda na precisão. F
- 13. A precisão da fatoração LU é maior quanto menor é o número de condição da matriz (razão entre o maior e o menor autovalor). V
- 14. O custo de realizar a fatoração LU de uma matriz tridiagonal é proporcional a n^2 (o quadrado do número de linhas). F
- 15. Sabemos que na fatoração LU com pivotamento por linha, são calculadas matrizes $\underline{\underline{P}}$, $\underline{\underline{L}}$ e $\underline{\underline{U}}$ tais que $\underline{\underline{P}}\underline{\underline{A}} = \underline{\underline{L}}\underline{\underline{U}}$. Ainda, a matriz de permutação $\underline{\underline{P}}$ é sempre simétrica. F
- 16. Sabemos que na fatoração LU com pivotamento por linha, são calculadas matrizes $\underline{\underline{P}}$, $\underline{\underline{L}}$ e $\underline{\underline{U}}$ tais que $\underline{\underline{P}}\underline{\underline{A}} = \underline{\underline{L}}\underline{\underline{U}}$. Ainda, os elementos da matriz de permutação $\underline{\underline{P}}$ são 0 ou 1. V
- 17. Em Octave, quando se resolve um sistema linear $\underline{\underline{A}} \underline{x} = \underline{b}$, se o lado direito \underline{b} é fornecido com 14 dígitos corretos, então a solução x é obtida com $\sqrt{14} \simeq 4$ dígitos corretos. F
- 18. Apenas matrizes não singulares admitem fatoração QR. F

- 19. Na fatoração QR, se computam matrizes $\underline{\underline{Q}}$ e $\underline{\underline{R}}$ tais que $\underline{\underline{A}} = \underline{\underline{Q}} \underline{\underline{R}}$ sendo $\underline{\underline{Q}}$ uma matriz ortogonal e $\underline{\underline{R}}$ uma matriz de rotação. F
- 20. Na fatoração QR, se computam matrizes $\underline{\underline{Q}}$ e $\underline{\underline{R}}$ tais que $\underline{\underline{A}} = \underline{\underline{Q}} \underline{\underline{R}}$ sendo $\underline{\underline{Q}}$ uma matriz ortogonal e $\underline{\underline{R}}$ uma matriz racional. F
- 21. Na fatoração QR de uma matriz, o determinante de \underline{Q} é sempre distinto de zero. V
- 22. Se $\underline{\underline{A}} \ = \ \underline{\underline{Q}} \ \underline{\underline{R}}$ (fatoração QR), então $\underline{\underline{A}}^T \underline{\underline{A}} = \underline{\underline{R}}^T \underline{\underline{R}}$. V
- 23. A fatoração QR só pode ser calculada se o número de linhas da matriz for maior ou igual ao número de colunas. F
- 24. O sistema $\underline{A} \ \underline{x} = \underline{b}$, sendo \underline{A} de m linhas e n colunas, é dito sobre determinado se n > m. F
- 25. Um sistema sobredeterminado nunca (i.e., para nenhum \underline{b}) tem solução. F
- 26. Um sistema sobredeterminado sempre (i.e., para todo \underline{b}) tem infinitas soluções. F
- 27. Se \underline{Q} é uma matriz $m \times m$ ortogonal, então suas colunas constituem uma base ortogonal de \mathbb{R}^m . V
- 28. Se \underline{Q} é uma matriz $m \times m$ ortogonal, então suas linhas constituem uma base ortogonal de \mathbb{R}^m . V
- 29. Se $\underline{\underline{A}}^{-1}$ é a inversa de uma matriz $\underline{\underline{A}}$ quadrada de $m \times m$, então as linhas de $\underline{\underline{A}}^{-1}$ constituem uma base de \mathbb{R}^m .V
- 30. Se o sistema $\underline{A} \underline{x} = \underline{b}$ é sobredeterminado, o comando x=A\b calcula um vetor x tal que A*x = b. F
- 31. Se o sistema $\underline{\underline{A}}$ \underline{x} = \underline{b} é sobredeterminado, o comando x=A\b calcula um vetor x tal que

$$A'*A*x = A'*b.$$

V

- 32. Se o sistema $\underline{\underline{A}} \underline{x} = \underline{b}$ é sobredeterminado, o comando x=A b calcula um vetor x tal que o resíduo (isto é, o vetor b-A*x) tenha o máximo número possível de componentes nulas. F
- 33. Se o sistema $\underline{\underline{A}} \underline{x} = \underline{b}$ é sobredeterminado, o comando x=A\b calcula um vetor x tal que a norma euclidiana do vetor A*x-b seja mínima.V