SME0305 - 2014 Gustavo Carlos Buscaglia

ICMC - Ramal 738176 - Sala 4-219 gustavo.buscaglia@gmail.com

Lista 10 (16 de maio de 2014)

Nessa prática começamos a revisão dos conceitos fundamentais do tratamento numérico de sistemas lineares.

- Consideramos sistemas lineares de n equações com n incógnitas. Diga se verdadeiro ou falso:
 - (a) Se o determinante de um sistema é zero, a matriz do sistema tem um autovetor com autovalor zero.
 - (b) Se o determinante de um sistema é zero, a primeira das colunas da matriz é combinação linear das n-1 restantes.
 - (c) Se $\underline{\underline{A}} \underline{x} = \underline{b}$, e $\underline{\underline{B}}$ é uma matriz obtida a partir de permutações das linhas de \underline{A} , então $\underline{\underline{B}} \underline{x} = \underline{b}$.
 - (d) Se $\underline{\underline{A}}$ é uma matriz triangular superior com todos os elementos da diagonal não nulos, então o sistema $\underline{\underline{A}} \underline{x} = \underline{b}$ pode ser resolvido em aproximadamente n^2 operações.
 - (e) Se $\underline{\underline{A}}$ é uma matriz triangular inferior com todos os elementos da diagonal não nulos, então o sistema $\underline{\underline{A}} \underline{x} = \underline{b}$ pode ser resolvido em aproximadamente n^3 operações.
 - (f) Na eliminação de Gauss, para que a solução não seja muito sensível ao erro de arredondamento, aplica-se o pivotamento parcial.
 - (g) O pivotamento parcial na eliminação de Gauss corresponde a permutar colunas da matriz e por tanto não muda a solução do sistema.
 - (h) O objetivo da decomposição LU é achar, para uma dada matriz $\underline{\underline{A}}$, uma matriz triangular inferior $\underline{\underline{L}}$ com 1's na diagonal, e uma matriz triangular superior $\underline{\underline{U}}$, tais que $\underline{\underline{A}} = \underline{\underline{L}} + \underline{\underline{U}}$.
 - (i) Se obter os fatores LU de uma matriz geral de 100×100 demora 1 segundo, então para uma matriz de 1000×1000 a demora será de aproximadamente 100 segundos.
 - (j) Se obter os fatores LU de uma matriz tridiagonal de 100 × 100 demora 1 segundo, então para uma matriz de 1000 × 1000 a demora será de aproximadamente 100 segundos.
 - (k) A maneira mais eficiente de resolver o sistema $\underline{\underline{A}} \ \underline{x} = \underline{b}$ quando $\underline{\underline{A}}$ é ortogonal é a fatoração
 - (l) Se, durante a fatoração LU, aparece um pivô zero, então a matriz que está sendo fatorada é singular.
 - (m) A eliminação de Gauss é mais conveniente que a fatoração LU quando a mesma matriz será resolvida para vários lados direitos <u>b</u>.

- 2. Resolvendo $\underline{\underline{A}} \underline{x} = \underline{b}$ por eliminação de Gauss sem pivotamento obteve-se um vetor solução \underline{y} . Se suspeita que por erro de arredondamento o vetor \underline{y} obtido não é suficientemente preciso e deseja-se refinar a solução. Então uma solução mais refinada será o vetor $\underline{y} + \underline{z}$, onde \underline{z} é obtido resolvendo (novamente por eliminação de Gauss sem pivotamento) qual sistema?
 - (a) $\underline{\underline{A}} \ \underline{\underline{z}} = \underline{\underline{b}} \underline{\underline{A}} \ \underline{\underline{y}}.$
 - (b) $\underline{A} \underline{z} = \underline{b}$.
 - (c) $\underline{A} \underline{z} = \underline{b} + \underline{A} y$.
 - (d) Não é possível reduzir o erro com essa estratégia.
- 3. Considere o método do gradiente: Dados $\underline{\underline{A}}$ (matriz simétrica definida positiva), \underline{b} e $\underline{x}^{(0)}$, fazer para $k = 0, 1, 2, \ldots$:

$$\underline{r}^{(k)} = \underline{b} - \underline{\underline{A}} \underline{x}^{(k)}$$

$$\underline{d}^{(k)} = \underline{r}^{(k)}$$

$$\alpha_k = \frac{(\underline{d}^{(k)})^T \underline{r}^{(k)}}{\underline{d}^{(k)})^T \underline{\underline{A}} \underline{d}^{(k)}}$$

$$\underline{x}^{(k+1)} = \underline{x}^{(k)} + \alpha_k \underline{d}^{(k)}$$

$$k + + \text{e voltar}$$

e seja \underline{x}^* a solução de $\underline{\underline{A}}\underline{x}^* = \underline{b}$. Dizer se as seguintes afirmações são verdadeiras (V) ou falsas (F).

- (a) Se $\underline{x}^{(0)}$ é autovetor de $\underline{\underline{A}}$, o método converge em 1 (uma) iteração.
- (b) Se \underline{x}^* é autovetor de $\underline{\underline{A}}$, o método converge em 1 (uma) iteração.
- (c) Se \underline{b} é autovetor de $\underline{\underline{A}}$, o método converge em 1 (uma) iteração.
- (d) Se $\underline{x}^* \underline{x}^{(0)}$ é autovetor de $\underline{\underline{A}}$, o método converge em 1 (uma) iteração.
- (e) Se $\underline{\underline{A}}$ é um múltiplo da identidade, o método converge em 1 (uma) iteração.
- (f) O valor de α_k é tal que $\underline{x}^{(k+1)}$ é o mínimo de

$$F(\underline{x}) = \frac{1}{2} \underline{x}^T \underline{\underline{A}} \underline{x} - \underline{x}^T \underline{b}$$

ao longo da reta $\underline{x}^{(k)} + \alpha \underline{d}^{(k)}, \alpha \in \mathbb{R}$.

- (g) O valor de α_k é tal que, no ponto $\underline{x}^{(k+1)}$, o resíduo $\underline{b} \underline{Ax}^{(k+1)}$ é ortogonal a $\underline{d}^{(k)}$.
- (h) O valor de α_k é tal que, no ponto $\underline{x}^{(k+1)}$, o resíduo $\underline{b} \underline{\underline{Ax}}^{(k+1)}$ é ortogonal a $\underline{r}^{(k)}$.
- (i) O método do gradiente é equivalente ao algoritmo geral, com $\underline{\underline{P}} = \underline{\underline{I}}$ (a identidade) e uma escolha especial de α_k .
- (j) O método do gradiente escrito acima é equivalente ao escrito na louça da aula de 16 de maio.

- 4. Responda se verdadeiro (V) ou falso (F):
 - (a) Para um sistema linear simétrico e definido positivo, o método do gradiente e o método dos gradientes conjugados são equivalentes.
 - (b) Para um sistema linear $n \times n$ simétrico e definido positivo, o método dos gradientes conjugados converge em no máximo n iterações (com aritmética exata).
 - (c) Para um sistema linear $n \times n$ simétrico e definido positivo, com n grande, o método dos gradientes conjugados é mais favorável que o método do gradiente.
 - (d) Para um sistema linear $n \times n$ simétrico e definido positivo, o ponto $\underline{x}^{(k+1)}$ do método do gradiente minimiza a função

$$F(\underline{x}) = \frac{1}{2} \underline{x}^T \underline{\underline{A}} \underline{x} - \underline{x}^T \underline{b}$$

sobre todos os \underline{x} da forma

$$\underline{x}^{(0)} + a_0 \underline{d}^{(0)} + a_1 \underline{d}^{(1)} + \ldots + a_k \underline{d}^{(k)}$$

- (e) O item anterior é falso, mas é verdadeiro quando referido ao método dos gradientes conjugados.
- (f) O método dos gradientes conjugados é uma variação do método do gradiente, no qual a direção $\underline{d}^{(k)}$, em vez de ser igual a $\underline{r}^{(k)}$, é dada por

$$d^{(k)} = r^{(k)} - \beta_k d^{(k-1)}$$

- com β_k escolhido para que as direções $\underline{d}^{(k-1)}$ e $\underline{d}^{(k)}$ sejam A-conjugadas.
- (g) Duas direções \underline{d} e $\underline{\widetilde{d}}$ se dizem A-conjugadas se $d^T \widetilde{d} = 0$.
- (h) Duas direções \underline{d} e $\underline{\widetilde{d}}$ se dizem A-conjugadas se $\underline{d}^T \underline{A} \underline{\widetilde{d}} = 0$.

Boa prática!!