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1 Principles and equations of Fluid Mechanics

1.1 Continuous media

e The continuum hypothesis.
e What is a material point?

e The velocity.



1.2 Cartesian vectors and tensors

We assume {z1, zo, 23} to be Cartesian coordinates, with

e @ 5B (1.1)
the Cartesian basis of vectors.
Vector field:
) => ui(x,t)e? (1.2)
Gradient:
0 .
Vi = (;” e = ;e (1.3)
E = (80,17 ¥,2, SO,3>T (14)
Divergence:
ou;
V-u= Z Fo, = Ui (1.5)
Tensor product of two vectors:
uRv = Zulv] ) @ el (1.6)
(u®v)-W:(u®v)w:u(v-W) (1.7)



Double contraction:

(uv): (w®z) =(u-w)(v-z)= Zuivjwizj (1.8)
2%
2%
Gradient of a vector field:
Vu=>» u;e" e (1.10)
12
(Yu),. = ui (1.11)

Theorem 1.1 Volume integral of a gradient.

/go,i dV:/ pn; dS (1.12)
1% ov

Theorem 1.2 Gauss-Green, n is the outward normal.

/V-de:/ z-ndS (1.13)
v av




Outer product, cross product:

W X Z = &k Wj 2k é(l) (114)

Curl of a vector:

V xz= €ijk Zk,j é(i) (115)

Exo. 1.1 Show that the divergence of V X z s zero, for any differentiable vector field z. Show that the
curl of Vi is zero, for any differentiable scalar function .

Exo. 1.2 Let V be a connected volume in 3D, with boundary OV . Assume that the fluid inside V s at
constant pressure, exerting a force

F=pn (1.16)

per unit area on V. Prove that the total force exerted by the inner fluid on the boundary is zero.

Exo. 1.3 Let V be a volume in 3D, with boundary OV . Assume the volume is filled with a fluid of constant
density p. Prove that the total weight can be obtained from surface integrals:

/png:% x~f1dS:pg/ x3n3 dS (1.17)
v 3 Jov ov

Exo. 1.4 Prove Archimedes’ principle. A body immersed in a stagnant homogeneous liquid (which has

pressure proportional to its depth, p = pgh) experiences a net upward force equal to the weight of the
displaced liquid.



1.3

Kinematics, material derivative and transport theorem

The trajectory of particles in a continuum can be described by a function F(x,s,t) which gives the
position at time t of the particle that ocupies position X at time s.

Exo.

F(x,t,t) = x for all t.

Fixing s and ¢, considered just as function of x, the function ¢(x) = F(x,s,t) is the deformation
field of the medium between times s and ¢.

The velocity field is related to F

oF
a(x,s,t) = u(F(x,s,t),t) (1.18)

Here the pair (x,s) are a label for the particle. Another usual label is X, defined as the position
occupied by the particle in some “reference configuration”, which needs not correspond to an instant
of time. This is the so-called Lagrangian frame.

Trajectories are sometimes written as

x(t) = ¢(X,t) (1.19)
Pathlines, streamlines and streaklines.

1.5 A continuum is rigidly rotating with angular velocity w around the azis a = 6 +&® . Compute

its Eulerian velocity field u(x,t) and its kinematic history function F(x, s,t).



The material or total derivative of a quantity ¢ at time ¢ for the particle that at that time is located

at x is defined as the “derivative following the particle”, or, more precisely,

D1/1 w(F(Xatat—i_é)at—i_(s)_w(Xat)

Dt i ; (1.20)
Exo. 1.6 Prove that
Dd]—f)zﬁ—}—u Vi (1.21)
Dt ' '
The acceleration of a fluid is the material derivative of the velocity
Du
a:Ft:atu—i—(u-V)u:atujL(Vu)-u (1.22)

Exo. 1.7 Compute the acceleration field of the rigid rotation described in Exo. |1.5,




Let Q be a region in space, and let f(x,t) be a scalar field defined in Q. To fix ideas, let f be a temperature
field.

Let us select, at time ¢, a region V of €. This defines a material volume, consisting of the set of material
particles that are inside V' at time ¢.

If one follows the particles that are in V' at ¢, they will occupy another region of space V(t') at time t'.
Obviously V(t) = V.

For any ¢/, let I(t') be the integral of f, at time ¢, over the volume occupied V(t') by the particles
I(t") = f(x,t") dv . (1.23)
V(')

Clearly I(t') is the integral of the temperature over the material volume, a volume that changes position
in time but has fixed material identity.

Reynolds transport theorem.

DI

Ft(t):/v[atijV-(uf)] dV:/V&gf av+ [ fu-nds (1.24)

ov

Exo. 1.8 Use the previous formula to prove that a flow in which the volume of each material part is
preserved must be solenoidal (V -u=0), also called incompressible.



Computational exercise:

e Consider a structured mesh in space-time: {x;} x {y;} x {t;}. Consider that a velocity vector is
known on each node and time of the mesh: {uf;}.

e A velocity field u(x, ) is defined by trilinear interpolation of the instantaneous nodal velocity

vectors.

e Consider also that a set of points {X,,} is given.

Build an Octave code that calculates the trajectories of particles that, at time ¢y, are in the positions
{X,.}. Plot and animate in an interesting example.




1.4 Conservation of mass

Let M be the mass contained at time ¢ in volume V,

M = / pdV . (1.25)
1%
Since the mass is conserved,
DM
— =0 1.26
Dt Y ( )
which implies that (integral form)
/@p dV:—/ pu-ndS (1.27)
1% oV
and also that (differential form)
Op+V-(pu)=0 (1.28)
This last equation can be written as
Dp
—_ ‘u = 1.2
D +pV-u=0, (1.29)

which shows that an incompressible flow (V - u = 0) in which the density of the material particles does
not change with time automatically satisfies mass conservation.
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The mass flux is given by
j=pu. (1.30)

The conservation of mass can be written as a conservation law:
op+V-j=g (1.31)

where ¢ represents the sources (in the case of mass equal to zero).

d
— / pdV =— / j-n dS + / g dV variation = inflow - outflow + internal sources
1% v~~~ 1%

J
(1.32)

Exo. 1.9 Let v be the mass density, or mass fraction, of some species A dispersed in the medium. The
mass of this species in some volume V' is

MA:/pw dv . (1.33)
v
Derive conservation laws in differential and integral form for 1. Also prove that
Dy
—=0. 1.34
Dt (1.34)
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1.5 Conservation of momentum

The total momentum contained by a region V' of a continuum is
P= / pudV . (1.35)
1%

The principle of conservation of momentum states that changes in the momentum are equal to the applied

(volumetric and surface) forces, i.e.
DP
—:/de—i—/FdS. (1.36)

Using the transport theorem one arrives at the integral form

d 3
%/Vpudv :/Vde + [)V[F—p(u®u)n] s . (1.37)
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The Cauchy stress tensor

The action-reaction principle requires that, if at a point x of OV the region is subject to a surface force
density F(x), the continuum inside reacts with an equal and opposite force.
It can be proved that there exists a symmetric tensor, the Cauchy stress tensor, such that for all x and ¢

F(x,t) = o(x,t)-n(x,t) , (1.38)

in the sense that the surface forces that a medium exerts on another body through a surface with normal n
(pointing outwards) is equal to —o - 1.

Inserting the stress tensor in ([1.37)) one arrives at

d

— [ pudV :/de + / (0 —pu®u)-nds. (1.39)
dat Jy v ov

The momentum flux through a surface is, thus,

(=—-0c+pu®u (1.40)
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Exo. 1.10 From deduce the following differential forms of momentum conservation:

Conservative form:

O(pu)+V-¢ = f or
O(pu) +V-(pu®u) = V-o+f

Non-conservative form:

pou+p(u-Viu=V-o+f

Also, write the equations above in Cartesian components.

14




1.6 Conservation of energy

Exo. 1.11 Read 1.6 and 1.7 from Wesseling.

The energy of a part of a continuum which occupies volume V' is

1
E:/p (—|u|2+e) dv
voo\2

(1.44)

where e is the internal energy per unit mass, which expresses the capability of a medium storing energy

and is a function of its local state. The principle of conservation of energy reads

DE
E—Q—FW,

where the right-hand side is the sum of the heat and work received from the surroundings.

Defining q as the heat flux and () as the heat source per unit volume one gets

DE
E:/‘/(f.u—i_Q) dV+/6V(u~0'—q)-f1dS

Exo. 1.12 From the equation above, prove the following differential form

De

pﬁz—v-qua:VquQ

15

(1.45)

(1.46)

(1.47)



1.7 Constitutive laws

If one counts the equations up to now we have
e Conservation of mass (1 equation).
e Conservation of momentum (3 equations).
e Conservation of energy (1 equation).
Total: 5 equations.

Counting the unknowns: p (1), u (3), o (6), e (1), q (3). Total: 14 unknowns.

The 9 equations that are lacking come from the so-called constitutive laws, that describe the material
behavior (notice that the equations up to now hold for any continuum).

Essentially we need laws for e, & and q. For the latter Fourier’s law is almost universally adopted,
q=—-kVT, (1.48)

where T is the temperature and & the thermal conductivity (in general a tensor).
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1.8

Newtonian and quasi-newtonian behavior

The stress of a fluid at a point x and instant ¢ can in principle depend on the whole deformation
history of the vicinity of x.

However, not all constitutive laws correspond to fluids. The definition of fluid requires that “if the
vicinity of the point has not deformed at all, then the stress tensor must be spherical”. Spherical, in
this context, means that o is a multiple of the identity.

A most important class of fluid constitutive laws corresponds to the so-called quasi-Newtonian fluids:
o= (—p+AV-u)l+u (Vu+ Vu') (1.49)

in which A and p can depend on the instantaneous deformation rate tensor
1
e(u) =Du= 5 (Vu+vu’) . (1.50)

Since A and p are scalars, the model is objective only if they depend on e(u) through is invariants:

I = tracee(u)=1:e(u)=V-u (1.51)
- % [(trace e(w))® — e(u) : e(w)] (1.52)
Il = dete(u) (1.53)

Notice that, in particular, the deformation rate

le(u)]| = Ve(u) : e(u) (1.54)
If A and p are constants, eventually dependent on the temperature, the fluid is called Newtonian.

17



e Shear thinning (resp. shear thickening) describe fluids in which p is a decreasing (resp. increasing)
function of |le(u)||.

Exo. 1.13 Knowing that the velocity field of a rigid body motion is given by
u(x,t) =z(t) +r(t) xx, (1.55)
1. Prove that e(u) is zero.

2. Compute the vorticity w = V x u and find its relation to r and to the antisymmetric part of
the velocity gradient, V4u =1 (Vu - vu’).

Exo. 1.14 For an incompressible fluid, the term ® = o : Vu in the differential equation dissipation of
enerqy, i.e., the power transformed into heat. Write down ® in Cartesian coordinates.

1.9 Boundary conditions

Exo. 1.15 Read 1.6 from Kirby.

Exo. 1.16 Read, fill in the details and reproduce (part of ) the results of the articles by N. Morhell and
H. Pastoriza (Microfluidics and Nanofluidics, 2013, Sensors and Actuators B, 2016).
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2 Brief overview of numerical methods for CFD

For this chapter we follow basically the two references:

e Finite Volume Methods. R. Eymard, T. Gallouét and R. Herbin. 2003. Pages 4-26, and also
some small parts of Chapter 3.

e Principles of Computational Fluid Dynamics. P. Wesseling. 2001. Chapter 3.
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2.1 Differential, integral and variational formulations

Consider the general second-order differential equation
Lo = —(aijp,j)i + (bip) i +co=q. (2.1)
This equation is said to be uniformly elliptic if there exists C' > 0 such that
v (a(x) - v) = a;(x) viv; > C ||v]]? Vx Vv. (2.2)

This condition, together with suitable boundary conditions, guarantees the existence of a unique ¢ in the
space H'(2). This solution is continuous (a.e.) across any surface.

Equation (2.1)) can be seen as a steady conservation law in differential formulation,

Vij=gy, (2.3)
by taking
j=J(p,Vyp)=—aVyp + by (2.4)
and
g=q—cyp. (2.5)

There thus exists a unique ¢ € H'(Q) that satisfies the boundary conditions and also (2.3)) for all x in
the domain 2 of the problem. This is the differential formulation, which is the start point of finite
difference approximation methods.

20



The differential equation must be understood in a weak sense, i.e.,
—/j-V@/)dV—I— wj-fldS:/gz/}dV (2.6)
Q o0 Q

for all v € H'(Q). Notice that this formula has no derivative of j and thus makes sense in cases in which
the strong form (22.3) does not.

Considering homogeneous Dirichlet boundary conditions, the variational formulation of the problem
reads: “Find ¢ € Hj(€) such that

- / I, Vi) - Vi dV = / o(0) 0 AV 2.7)
Q

Q

for all v € HL(Q).”

This formulation is adopted in primal finite element methods, in which ¢ belongs to some subspace
V}, and satisfies (2.7]) only for functions 1 belonging to V,.

21



Let ' be a surface that divides €2 into two parts, €2; and €2,. Integrating by parts (2.7)) in each €2; one
obtains

/Ql [V-J(p, Vo) —g(p)] ¥ dV+/

Q2

V-3(p, Vo) —g()] ¢ dV - / 3o, V)] vdS=0 Wi e HYQ).

(2.8)
This implies that

e The solution of (2.7)) satisfied the differential equation a.e. in €2; and .

e The normal flux J - nn is continuous across I'.

Exo. 2.1 Give arguments to support (or prove) both previous statements.
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Let K be an open polyhedral subset of €2, with facets e € £. Integrating (2.3) over K and using Gauss-

Green formula one gets
> [3eve)nas = [ o) ik (2.9
e K

ecOK

Notice that J - n is well defined on e. The integral formulation of the problem corresponds to “find the
unique ¢ € H'(Q) such that (2.9) holds for all polyhedra K contained in Q7.

e The integral formulation is the basis of finite volume methods. The discretization methodology
consists of selecting a finite number of polyhedra as the finite volume mesh 7}, and obtaining a finite
number of equations by only requiring that (2.9)) holds for those polyhedra. This leads to

> Fre :/ g dv VK € T, . (2.10)
K

ecOK

e The next step is the selection of degrees of freedom for the discrete solution. The most usual choice
is to have one unknown g per finite volume K, i.e., Ny unknowns for Ny equations. In addition,
a node xy is defined for each K.

o Letting ¢ € R™M be the column array of unknowns, a numerical flux function Fi o) is intro-
duced satisfying a consistency condition

Freo(9*) = Fre(p, Vo) (2.11)

where ¢* = (p(x1, ¢(x2,...)" is the array of nodal values of any exact solution ¢ of the problem.

e The discrete system of equations reads

D Frelp) = / g(p) dV VK € Ty . (2.12)

ecOK K
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e The finite volume method extends naturally to transient problems. If the equation considered is
oo+ Lop=q, (2.13)

then upon FV discretization in space one ends up with

d
VK%+ > Frely) = / gly) dV VK € Ty . (2.14)
e€cOK K

Above, Vi is the volume of cell K. The numerical problem thus reduces to a system of ODE that is
then discretized in time with a variety of methods.

e For the method to be strictly conservative, it must happen that if a given facet e separates cell K
from cell L then

Fre(p) = —Fre(p) - (2.15)

e An interesting alternative to our choice of degrees of freedom is to add an additional unknown per
facet. Let £ be the “skeleton” of the mesh, consisting of all facets e, and let ¢;, with j =1,..., Ng
be the facet unknowns. One now has Ny equations and Ny + Ng unknowns. The required additional
equations are , closing the system.

e Other possibilities exist, such as overlapping finite volumes, but we will not discuss them here.

24



2.2 A one-dimensional example

Let us take

Lo=—(ag1)1=¢
in the domain (0, £), which has nodes 0 = g, z1,...,x, = {. Let h; = x;—x;_1. Also, let x
and hy 1 = T(hi + hisa).

Finite differences

a(z 1)@ (w5,1) —alz;_1)¢'(z; 1)
(acp’)’(x-) ~ JT3 2 2 2
J hj+%
ajtajrr e@it1)—e(®i)  aj_1ta; e(@j)—e(@j—1)
N2 3 2 h;
hj+§

For equispaced nodes this leads to the discrete scheme (3.9) of Wesseling.

1
2

(2.16)

%($i+$i+1)

(2.17)

Exo. 2.2 Build a small code for this problem and solve the interface problem of page 84 of Wesseling.

Compare to the results shown in the book.
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Finite volumes

Notice that J(p,¢") = —a¢’. Letting the finite volumes be given by V; = ($j_%,$j+%) a reasonable
numerical flux (for continuous a) is

P i tajn Y
2 hjta

J+

(2.18)

N

Exo. 2.3 Build the corresponding finite volume method in terms of nodal quantitiecs. Compare to the
finite-difference scheme.

Improved finite volumes

Let us introduce as additional degrees of freedom the values ¢, 1 and

‘ 90]‘-1-5 —¥;

F...1=— 2.19
M+% & hj+1/2 ( )
Similarly, we have
Pj+1 — Pl
F.i.1=a4——= (2.20)
J+1.j+35 7+ hj+1/2
Conservation condition 1} then allows to eliminate the unknown ¢; 1
ajpj + 119541
Fj+§ - Fj,j+% - _Fj+1,j+§ = Pj+l = e (2.21)

aj; + a1

Exo. 2.4 Build the finite volume scheme corresponding to the flux above. Compare to (3.17) de Wesseling.
Modify the code of exercise[2.4to implement it. Test it. Compute the convergence order in a smooth problem
with analytical solution.
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Exo.

2.5 Study and discuss cell-centered finite volumes for the 1D problem, in which the nodes are Tji1

instead of x; and the finite volumes are of the form (xj,x;41). Modify the code to deal with cell-centered
discretization and compare to previous results.

Exo.

2.6 Analyze the consistency (truncation error) of the fluzes and of the overall stencil of the vertex-

centered scheme of Ezo. . Consider a =1, f =1 and h; equal to h if i is even and equal to h/2 when i
15 odd. Discuss the result together with a numerical experiment.

Exo.

1.

S & S

2.7 Study Chapter 2 (and part of Chapter 3) of Eymard et al’s “Finite Volume Methods”:

What is the definition of an admissible one-dimensional mesh? Are cell-centered and vertezx-centered
meshes admissible?

Do the calculations showing that a cell-centered scheme is not consistent in the usual finite-difference
sense (Ezample 2.1 and Remark 2.3).

Follow step by step the proof of Theorem 2.1.
Do the calculations that lead to equation 2.26 and to the harmonic mean formula of Example 2.2.
Follow step by step the proof of Theorem 2.3.

What is an admissible mesh in 2D? Give examples of admissible meshes and of inadmissible meshes.
What is a Voronoimesh? Are Voronoimeshes always admissible? Why?

Ezxplain Equation 3.86: What s the equation corresponding to a cell that has its boundary at the
boundary of 17

Explain in simple words Definition 3.7 of Neumann restricted admissible meshes.
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Exo. 2.8 (Miniproject) Consider a microchannel with (electrically) non-conducting walls and a con-
ducting fluid. The geometry is given by a mask on a rectangular mesh, so that the mask takes different
values depending on the cell being fluid, wall, inlet, outlet. The electric potential satisfies

A® =0 (2.22)

in the fluid, with 0P /0n = 0 at the walls, and ¢ given at inlets and outlets. Code a finite volume solver
for the electric potential and compute from it the electric field E = —V®.
In electro-osmotic flows with homogeneous material properties the fluid velocity satisfies

u=—kxE (2.23)

where Kk 1s a material constant. With the computed electric field simulate the transport of inert particles

for a non-straight microchannel.
Also, take a look at the video

https://br.comsol.com/video/simulating-electrokinetic-phenomena-microfluidics#
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3.1

Numerical approximation of fully developed flow

The physical setting

Incompressible flow along a long cylinder of cross section  C R2. The flow domain is B = Qx (0, L).

The flow is driven by a pressure gradient

_ p(L) = p(0)

- (3.1)

notice that when G > 0 we expect w = ug < 0 and viceversa.

If L is sufficiently large, the entry and exit effects can be neglected and all cross sections are essentially
identical, except for the pressure.

Decomposing the stress tensor in pressure and non-pressure components, we assume
o(z1, 9, x3,1) = —p(3,t) [ + (1, 22,1) . (3.2)
Let w be an arbitrary region in ) and let V' be the corresponding cylinder, i.e.,
V=wx(0,L). (3.3)
We denote also w, = w x {z} (the cross section at x3 = z) and S = 0w x (0, L) (the lateral surface)

so that
OV =wyUS Uwp . (3.4)
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3.2 Conservation principles

e Mass: Because of incompressibility, and assuming p is a constant, this principle reads

0:/ u~f1dS:—/wdS+/wdS—|- /u~f1dS. (3.5)
v wo wr, S

This condition is automatically satisfied in parallel flows which we consider hereafter, i.e., flows in
which the velocity is of the form

u(xy, xe, x3,t) = (0,0, w(wy, x2,1)) . (3.6)
e Momentum: In parallel flows,
d .
L%/pwdw:—gL|w|+L/‘r~l/d0w (3.7)
w Ow
where
T = ((713, O'23)T and 2 = (Hl,ng)T . (38)

In incompressible isothermal flows the mass and momentum conservation principles form a closed system.

In this case one equation, which is (3.7)), in one unknown w.
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3.3

Boundary conditions

Exo. 3.1 Read Section 1.6 and Chapter 2 of Kirby.

1.
2.

Prove Eq. 1.59.
What is the Navier slip boundary condition? Give a physical argument that determines the sign of b.

Solve the unidirectional flow between two parallel plates located at xs = 0 and 3 = h, subject to
a pressure gradient Vp = (01p, Oap) and with the upper plate moving at a velocity u = (U,0) with
respect to the lower one. Compute the flur j = fohu dxs as a function of Vp, U and h (and of the
fluid viscosity ).

Justify the claim V - j = 0171 + 0252 = 0, and use this claim to arrive at the lubrication equation
(also known as Reynolds equation).
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e The no-slip boundary condition holds when a fluid is in contact with a solid surface, in this case

it translates to
w(xy, x2,t) =0 YV (21,22) € 0. (3.9)

e Under certain conditions, the fluid has been observed to slip at the solid boundary (e.g., in very
rarefied flows). In the parallel flows we are considering, the adopted (Navier) condition amounts to

T-U=—b(w—wyy)) - (3.10)

e If an electric field is applied along the channel, then a non-zero velocity “appears” at the wall (read
Chapter 6 of Kirby to understand why). This is an apparent wall velocity, which in fact only takes
place at a finite distance ~ 5 Ap from it, where Ap is the Debye-Hiickel length. Its value is given
by the Helmholtz-Smoluchowski equation

W = Mo Ewall (3.11)

where m,, is the electroosmotic mobility and is a property of the fluid and the surface material
(of the order of 1078m?/(V s)).
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3.4 Viscous parallel flow

If the fluid is Newtonian-like (Boussinesq),

0 0 w1

ot =p 0 0 wy = T=pVuw.

w1 Wpe 0

We can, applying Gauss-Green theorem, rewrite (3.7)) as
/ pow+G— V- (uVw)] dw=0

and arrive at the differential form (with no-slip conditions for example)

pOrw+G(t)— V- (uVw)=0 inQ,
w =10 on 0f) .

Writing it as a conservation law

A(pw)+V-j=g, j=-uVuw, g=-G.
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3.5 Discretization in Cartesian grids
3.5.1 Finite differences

Consider a rectangular pipe = (0, L;) x (0, L) with a uniform vertex-centered Cartesian grid with nodes

at positions
Xj1j2 = ((]1 — 1)]7,1, (jQ — 1)h2), ja = 1, ey Ny T+ 1, o € {1, 2} , (316)

where n,, is the number of subdivisions in the « direction and n,h, = Lq.

Considering as unknowns the values at the nodes wj, ;,, we have wj, ;, = 0 if (j1,72) is at the boundary.
For an internal node, on the other hand, a FD space discretization of (3.14]) with constant density and
viscosity leads to

Wi 41,4o = 2Wjy g + Wji—155 Wizl = 2Wj, jy + Wiy jo—1

~0. (3.17)
ht h3

d
P gy Wing2 + G—u

Our first issue is the implementation of this method.
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Node-to-unknown mapping:

There are (ny + 1) x (ng + 1) unknowns, they can be numbered by row or by column (or else) to get the
mapping. Denoting Ny =n; + 1, No = ny + 1,

function ng = ij2n (i,j)
global N1 N2

ng = i + (j-1)*N1;
endfunction

Exo. 3.2 Build a function n2ij(n) that is the inverse of the previous one.
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Viscous matrix:

pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=1ij2n(i-1,j);

The following matrix row provides the viscous contribution (L,w)p ~ —pu V?w(P) to equation P (interior
node):

auxl = mu/dx"2; aux2 = mu/dy~2;
A(pP,pP) = 2*x(auxl+aux?2);

A(pP,pN)=-aux2; A(pP,pS)=-aux2;
A(pP,pE)=-auxl; A(pP,pW)=-auxi;

so that

Wy 41,5 — 2Wjy jo + Wji—1,5, Wjy jot1 — 2Wjy jo + Wiy jo—1 A
— = W . 3.18

Considering just the interior nodes, we get the system

pSW AW = b() (3.19)

where bp(t) = —G(t). Discretizing now in time by the #-method,

i n+l __ i _ . n n+0
(Ath 9é>w —(Atl (1 0)4)w + b (3.20)
or

gwn—l—l — ﬁwn_‘_ l_)n+9 (321)



#-- Assembly: loop over nodes
for i=1:N1
for j=1:N2
if (i==1 || i==N1 || j==1 || j==N2)
continue;
else
# viscous matrix
pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,3);
auxl = mu/dx"2; aux2 = mu/dy~2;
Af (pP,pP) = 2*x(auxl+aux2);
Af (pP,pN)=-aux2; Af(pP,pS)=-aux2; Af(pP,pE)=-auxl; Af(pP,pW)=-auxl;
# mass matrix
Am(pP,pP)=rho/dt; bm(pP)=dx*dy;
endif
endfor
endfor
#-— Timestepping Matrices: M, R
M = Am + thetaxAf;
R = Am - (1-theta)*Af;
#-- Correct M for no-slip boundary conditions
for i=1:N1
for j=1:N2
if (i==1 || i==N1 || j==1 || j==N2)
pP=ij2n(i,j); M(pP,pP)=1;
endif
endfor
endfor
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Exo. 3.3 (Miniproject: electroosmotic pump) Consider a pipe of rectangular cross section

(0, W) x (0, H) and length L, such that the horizontal walls are made of glass and the vertical ones of
PDMS. Considering water as the fluid, the corresponding electroosmotic mobilities are me, = 3 x 1078
and 1.5 x 1078 m?/(V-s). The water has p = 1000 kg/m* and = 1073 Pa-s.

Take W = 20 microns, H = 10 microns and L = 3 mm.

Adapt the code pipe_fd_t.m and answer the following questions:

1. Considering that both ends of the pipe are at atmospheric pressure, what is the steady flow rate
and average velocity for a voltage difference of 1 Volt between the ends of the pipe? What is the
shape of the steady velocity profile? How long does it take to reach the steady flow rate?

2. If one end of the pipe is closed, what will be the pressure difference between its ends?
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3.6 Vertex-centered finite volumes

e The node-to-unknown mapping remains the same. To allow for variable spacing we assume that
arrays X (1 : Ny) and Y(1: N,) are given, containing the nodal coordinates.

e From (3.7), the equation for the (interior) finite volume P is

Fpn + Fpe + Fps + Fpw = / (3.22)

wp

(=G — pow) dw ~ m(wp) (—Q - p%)

where we have treated d;w as a source and the left-hand side approximates |, B j - v ds (remember
that j = —uVuw).

e Now we have to define the discrete fluxes

.. _ Wp —Wx xp —aw .
/.]'del:/ J2 d[L‘lz/ (—,uwvg) d[Elﬁ—/,L P N B W:FPN (323)

EN enN enN Yp — YN 2

and analogously

Wp—Wg yn — ys

F = — 3.24

PE 2 tp— g 9 ( )
Wp —W, —

Fpg = p—Lt— "SI IW (3.25)
yp — Ys 2
Wp — W, —

Fow = 4 P W YN — Ys (3.26)
rp — Tw 2
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e If we consider the mesh uniform and divide everything by hihs, we arrive at the discrete equation

aw. Wp —W, Wp —W Wp —W, Wp —W,
p P_HL P2 N+u P2 S+,u P2 E—I—u P2 W:_g’ (3.27)
dt h3 h3 hi hi

which shows that balancing fluxes over control volumes indeed leads to a discretization of the
Laplacian (equivalent to finite differences, in simple cases).
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e In the F'V case the inertia matrix is diagonal but not proportional to the identity:

Bpp = m(wp) P - (328)

e Similarly, the right-hand side is now
bp = —m(wp) g . (329)

e The viscous matrix can be built by summing up the contributions of each face:

# viscous matrix
pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,7j);
xP=X(i); xN=xP; xS=xP; xE=X(i+1); xW=X(i-1);
yP=Y(j); yE=yP; yW=yP; yN=Y(j+1); yS=Y(j-1);
# north face
aux=mux* (xE-xW) / (yN-yP) /2;
Af (pP,pP) = Af(pP,pP) + aux;
Af (pP,pN) = Af(pP,pN) - aux;
# east face
aux=mu* (yN-yS) / (xE-xP) /2;
Af (pP,pP) = Af(pP,pP) + aux;
Af (pP,pE) = Af(pP,pE) - aux;
etcetera
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e Variable viscosity: Let us assume that the viscosity is not uniform, but a given function u(x,y). The
modification in the previous code is straightforward:

# viscous matrix
pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,3j);
xP=X(1); xN=xP; xS=xP; xE=X(i+1); xW=X(i-1);
yP=Y(j); yE=yP; yW=yP; yN=Y(j+1); yS=Y(j-1);
# north face
xF=xP; yF=(yP+yN)/2;
aux=mu (xF,yF) * (xE-xW) / (yN-yP) /2;
Af (pP,pP) = Af(pP,pP) + aux;
Af (pP,pN) = Af(pP,pN) - aux;
# east face
xF=(xP+xE)/2; yF=yP;
aux=mu (xF,yF) * (yN-yS) / (xE-xP) /2;
Af (pP,pP) = Af(pP,pP) + aux;
Af (pP,pE) = Af(pP,pE) - aux;
etcetera

42



With the FV formulation we arrive at the system

d
BoW + AW = b(t). (3:30)

Discretizing now in time by the #-method,

1 1
— B+ OA) W= —B—-(1-0)A) W"+ b+’ 3.31
(gp2+oa)wrt= (5B (-04) W' b 331
or

%wn-l-l — ﬁwn—f_ [_)n-‘r@ ) (332)

Quite similar to the FD, uniform spacing case, but now with more general properties and mesh.
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e Quasi-newtonian fluid: Viscosity may depend on the shear rate, for incompressible flows given by

¥=+vDu:Du (3.33)

—
(=]

+r3 | —— Newtonian [7]
Plasma|[36]
---Power Law [8]
- Carreau 8]
==-=Walbum-Schneck [9]
e Casson(H=33%) [10.37]
1 |~ =Casson(H=40%) [10,37]
===Casson(H=45%) [10,37]
Generalised Power Law [7]
Viscometric data - mean of 100 male donors [25]
Viscometric data of healthy women [26]
O Huang et al. [27]
¢ Rand et al. [28]
* Chien et al. [29]
Merrill et al. [30]
Cokelet et al. (1963) [31]
1] Cokeletetal. (1972) [32]
3| © Skalaketal. [33]
2

.
[

—
(=

1| + walbum and Schneck [9]
 Cokelet (1987) [34]

M | L M | n M | n MR |

Apparent Blood Viscosity (Pa.s)

10" 10" 10'
Strain Rate (1/s)

Fig 2. Experimental measurements of blood viscosity and non-Newtonian blood rheological modeis.
doi:10.1371fournal.pone.0128178.g002
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Different models exist for blood

Table 1. Blood rheological model equations.

Blood Model Effective Viscosity (Pa-s)
Newtonian [7] p=0.00345 Pas
Plasma [36] p=0.00122 Pas
[F;(]Jwer Law (Modified) _ { m{y)”" 1’ v < 497 = 01638, 1= 08
0.00345Pa s, y > 427
Walburn-Schneck TPMA
(Modtied) [5] y= clercw!e(c" (T)) (7). ¥ <414, C1 = 0.00797, C2 = 0.0608, C3 = 0.00499, C4 = 14.585, H = 40, TPMA = 25.9

Casson [10,37]

Carreau [8]

Generalised Power
Law [7]

0.00345Pa s, y > 414

2
p=0.1 ( [ﬁ+ 1, (1,.|;|nm) ) 1y = (0.625H)3, n = n0(1-H)>®, 1o = 0.012, H = 40% (female normal), 33% (post-angioplasty)
or 45% (male nomal)

=+ (U, — )1+ (A7) A = 3.313, ng = 0.3568, g = 0.056, and . = 0.00345

H=2Y"" A= +Aw&0[—(1 +J£')BXP(— ﬁ]] n=n,—An exp[—(l + '%‘)em(— h%)] Hoca = 0.0035, n = 1.0, Ap =
0.025, An=0.45,a=50,b=3,c=50,andd=4

doi:10.1371/journal.pone.0128178.1001

PLOS ONE | DOI:10.1371/journal.pone.0128178 June 12,2015 6/19
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3.7 Cell-centered finite volumes

The same problems as before can be solved by cell-centered finite volumes. It is interesting to see how the

imposition of boundary conditions is quite different.

We adopt a convention for the numeration of unknowns in structured quadrilateral finite volumes.

e We consider a “covering domain” (z~,2%) X (y~,y"). The mesh is provided by two arrays, X and

Y, such that

=X <Xo<.. < Xyu=z"y=Yi<Yo<.. . <Y,a=y".

e The cell with numbering (i, ) will be

Vi =

(X, Xig1) X (Y}, Yjq1) -

(3.34)

(3.35)

e The cell unknowns have the same numbering as the corresponding cell, and it is located at the

nodes given by the arrays X and Y:

12

~

w(X;,Y)) (3.36)
1

5 (Xi + Xi) (3.37)
1

5 (i + Y1) (3.38)
X — X, (3.39)
Vi =Y (3.40)

e The face and vertex unknowns will be numbered as follows:
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(4,5 +1) (i,j+1) (i+1,5+1)

Yiqg -
v, (i) o) (i+1,5)
Y}. ,,,,,,,, Z.J,-Z.),,‘ (Z"]> ‘<i+1aj)

X, X; Xit1

e All cells will have all unknowns, meaning that there will be:

— ny X ny cell unknowns.
— (ny +1) X (ng + 1) vertex unknowns.
— ny X (ng + 1) horizontal face unknowns.
— (n1 + 1) X ny vertical face unknowns.
e A mask will be a cell variable M;;, with 1 <7 < ny, 1 < j < ny, such that if M;; = 0 we have a

fluid cell. Other values of the mask will correspond to walls, which can have different boundary
conditions depending on the value.
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Exo. 3.4 Miniproject (electroosmotic pump 2): Build a cell-centered code for the solution of the
transient parallel flow of a viscous fluid with the following characteristics:

e The pressure gradient G(t) can be arbitrary.

Time integration is performed with the method of lines (6-method).

o M;; =11,12 = Smoluchowski condition, with me, given and E,,;(t) programmable.

Computes the flow rate () = fQ w dS) as a function of time.

Then answer the same questions as in the previous miniproject.
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4 Incompressible Navier-Stokes equations

e In the previous sections we have applied the basic principles of fluid mechanics to parallel flows.

e In more general situations, one has to go back to the basic principles as introduced in section 1.
They can be equivalently written in integral or differential form, and the latter can equivalently be
conservative or non-conservative.

e In this section we particularize the basic principles for the case of an incompressible Newtonian fluid,
arriving at the Navier-Stokes equations.
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4.1 Equations and fluxes

e The basic conservation principles of Continuum Mechanics, as discussed in the first chapter, are
conservation of mass,

d
—/de—i—/ pu-ndoQd=0, (4.1)
dt Jo P
conservation of momentum,
d y
— pudQ—i—/ (pu@ua)-nd@Q:/fdQ, (4.2)
dt Jo o9 0
conservation of energy,
d
— Ed§2+/ (Eu—a-u+q)-ﬁd89:/(f~u—|—Q)dQ, (4.3)
dt Jo o0 Q

where the fourth principle, conservation of angular momentum, is automatically satisfied
by requiring that the stress tensor o be symmetric. Above, E is the total energy, i.e. £ =
p(e+u-u/2), and q is the heat flux.

e The fluxes of mass, momentum and energy are highlighted in red above.
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e A Newtonian fluid is defined by the linear constitutive relation
o=—pl+p (Va+Vu')+ AV ul. (4.4)

e Under some frequent conditions p is constant and p can be assumed given, which leads to a closed
system of equations which only involves the mass and momentum conservation principles.

Exo. 4.1 Deduce the following equations and write them down explicitly in 2D Cartesian coordinates.

Incompressible Navier-Stokes equations (non-conservative form):

pou+pu-V)yu—-V - [p(Va+Vu")]|+Vp = f (4.5)
Vou = 0 (4.6)

The simplest form, when p is constant, reads

pou+p(u-Viu—puVu+Vp = f (4.7
v.u =

Exo. 4.2 Prove that for an incompressible flow all the following expressions for the acceleration are
equivalent:

D 1 1
FI: = Jdyu+(u-V)u = dyu+V-(u®u) = 8tu—u><(V><u)+§V(u-u) = 8tu+§ (u-V)u+V:(u®u)

(4.9)

They are called convective, conservative, rotational and skew-symmetric forms, respectively.
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Exo. 4.3 Deduce that the differential equations in conservative form are the

Incompressible Navier-Stokes equations (conservative form):

pou+V - [pl—p(Vu+Vu')+pu®u] = f (4.10)
V-u = 0 (4.11)

Incompressible Navier-Stokes equations (integral form):

/p@tudVJr/C-fldS = /de (4.12)
1% S 1%
/u-fldS =0 (4.13)
S

where the momentum flux ¢ is

C=pl—p(Vu+Vu')+puu=—-0c+puu. (4.14)

e The main difficulties for the numerical simulation of incompressible flows come from

1. The coupling of velocity and pressure.
2. The nonlinearity of the convective term.

3. If viscosity is small (Re, large), the convective term dominates the viscous term (singular
perturbation, boundary layers, etc.).
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4.2 Initial and boundary conditions

e The equations (4.5)-(4.6) are first order in time and second order in space for the velocity. The
well-posedness of the problem requires an initial velocity field, which has to be divergence-free,

ie.,

u(x,t =0) = uy(x) withV -uy =0 inf) . (4.15)
Remark: In fact, it is also required that the imposed normal velocity at the boundary be compatible
with ug.

e There are several types of possible boundary conditions:

1. Imposed velocity: At rigid walls, if u,, is the velocity of the wall, set u = u,,.

2. Imposed force: Used when the force L applied on the fluid (per unit surface) at some boundary
is known. The condition reads
oc-n=1L. (4.16)

3. Drag law: This corresponds to
o-n=-D(u). (4.17)

An impermeable wall with drag would have the following condition:
u-n=0, (o-n) = —-D(u), (4.18)
where v, refers to the tangential component of a vector v, i.e.,
v,=v — (v-n)n. (4.19)

4. The drag law is an example of the decomposition between tangential and normal conditions
at boundaries. Typically, one specifies the tangential component of either velocity or force, and
the normal component of either velocity or force, with these two choices being independent of
one another.
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5. Free surface with surface tension:
o-n=—yHn+ (V~), (4.20)

where H is the mean curvature.

6. Outflow: Some combination of the above that tries to minimize the upstream effect of domain
truncation.

The incompressible Navier-Stokes equations are by themselves widely used in Physics and Engineer-
ing, thus justify the interest in their numerical approximation.

They are also a fundamental building block of more sophisticated models that can predict the
behavior of thermally buoyant flows, averaged turbulent flows, two-phase flows, among others.
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5 The MAC discretization method of the incompressible Navier-
Stokes equations

5.1 Conservation in a rectangle

Consider a finite volume V' which is a rectangle of sides h, and h,, and denote its edges by E, W, N and
S, with exterior normals (1,0), (—1,0), (0,1) and (0, —1), respectively. Our aim here is to obtain explicit
expressions for the mass and momentum conservation equations in this rectangle.

The mass flux vector pu must satisfy

/ pu-ndS=0. (5.1)
v
The momentum flux vector

C=pl—p(Vu+Vu')+pu®u (5.2)

consists of three terms, which we denote by pressure, viscous and inertia terms.

The momentum equation contains the integral of ¢ -1 over the boundary of V', which is the only nontrivial
part to calculate and is detailed below. In what follows we adopt the usual notation of (x,y) instead of
(x1,9), and (u,v) instead of (uq,us).
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5.2 Mass conservation
The exact mass conservation equation reads
(= uiy) by + (vh = v5) b = 0. (5.3)

where uj,, ujy,, vy and vy are the face-averaged velocities over the East, West, North and South faces; i.e.,

Y+
uhy = —/u nds—— u(zp,y) dy (5.4)
hy Jy_
1 [v+
uly = ——/ u-fldSZ—/ u(zw,y) dy (5.5)
Iy hy J,
1 L[
vy = h—/u-flds:h—/ v(z,yy) dx (5.6)
x JN T Jx_
1 I
vh = _h_z/gu.ﬁdszh_z/z v(x,ys) dx (5.7)
N

Vs
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Basic methodology:
1. Define degrees of freedom for u: 6;(u), 62(u), etc.

2. Approximate up >~ uj, uw ~ ujy, vy = vy and vg >~ v§ by linear combinations of the degrees of
freedom (using interpolation).

3. Build a linear equation for the degrees of freedom

(up(0) — uw(0)) hy + (vn(8) — vs(0)) hy =0 . (5-8)

Caution: The basic methodology above can fail. In what sense?” Depending on the choice of 6, the
equations corresponding to the different finite volumes may become linearly dependent! This
gives rise to spurious pressure modes, which polute the pressure field.

Awu Ay 0,\ [(f momentum (5.9)
Aw 0 0, ) \0O incompressibility '

Example: If the degrees of freedom of u are taken at the centers of the cells (collocated grid), then the
resulting matrix is rank-defficient.
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MAC discretization:
A - A A

0, — u at vertical faces.

6, — v at horizontal faces. Vi1

Darker pink is mass F'V numbered as (i, 7).

The intervening unknowns are larger.

A A A

Xi X Xit1

X

Discrete incompressibility equation for mass FV number (i, j):

(Uit = Uij) (Yia = Y;) + (Vijr —Viy) (Xipn = X3) = 0 (5.10)
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Discrete incompressibility equation for mass FV number (i, j):

(Uisrj — Usj) (Vi = Y;) + (Vijr — Vig) (X1 — Xi) = 0 (5.11)

e The finite volumes for this equation are centered at pressure nodes and have as unknowns ug, uy,
vy and vg, exactly as needed (for second order) and thus requiring no interpolation.

e Dividing by h;h, ...
Uit1; — Ui i Vij+1— Vij
Xiy1 — X; Yjii =Y

one puts in evidence the link with V - u = 0.

~ 0 (5.12)

e In matrix form (ignoring boundary conditions and with uniform mesh),

Dyu+ Dyv =0. (5.13)
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5.3 Momentum along the z; direction

The z-momentum equation reads

/p@tu dV+/ (puu-n+pn, —2p0un, — poyvn, — poyun,) dS = /fx av
% ov 1%
(5.14)

Now we particularize for a rectangle of sides h, and h,,.
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For the pressure term,

= thy7

—Pw h’y )
0,
0.
A
> ®
Vij+1 A
Pit1j
o
Uit1,5
Vij A
> ®
A
Xit1
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For the viscous term, integrating edge by edge,

— (/ u(Vu+VuT)ﬁdS> = —/ 200 0,u dy = =2 poulphy, = (VE), (5.19)
E . E
- (/ p(Vua+ VuT)fldS> = +/ 210 0,u dy =2 poyulw hy = (VW) (5.20)
w e w
(/ 1 (Vu+ vu?) ndS) = —/ p(Oyu + 0pv) do = — p (Oyu + 0yv)|N hy = (VN) (5.21)
N . N
(/u (Vu+ Vu )ndS) = —|—/u(8yu+8xv) dr = p(0yu+ 0,0)|n hy = (VS) . (5.22)
s . S
A A A
> o P o > o »
Y/+1 A AVM*I A
Pi_1j B Pit1,
> e p ® p o »

=)
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For the inertia term, the x component being fav puu-n ds,
/Epuu-fldS = puyh,,
puu-ndS = —puih,,

I8
/puu'ﬁdS = puyonh,,
N
J

puu-ndS = —pusvsh, .

A

> ()
Vij+1 A
Pit1j

[ J

Uit1,5

i A
> ()

A

Xit1
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Now we consider the staggered arrangement of degrees of freedom, in which the unknowns are
e Lor pressure: pp = P, pw = Pi_1;.
e For u: up = Uij; UEE = Ui+1,j; Uww = Uifl,jy UNN = Ui,j+17 uss = Ui,jfl-
e For v: vyg = Vz‘,j+1, UNwW = Vi—l,j+1, VSgE = Vz‘j, vsw = ‘/%—1,3‘-

and interpolate to approximate each term.
Then, the pressure term becomes

(P) = /avpnx dS ~ (pp —pw)hy = (Pj — Pi—1;) (Y11 —Y)) . (5.27)

In matrix form (uniform mesh)
(P) = hehyGyp. (5.28)



The viscous term becomes (notice that p may vary from face to face)

e East face:
Upg — Up Uit — Uy
VE) ~ —2updyulghy, ~ —2up-22 P — 9y, 20" Zuy . 5.29
(VE) 1 Ogulp hy HE tpp —xp Y HE X1 — X, (Vi i) ( )
o West face:
(VW) = 2 p Opulw by = 2 pw % hy =2 pw Xf_—X_llj (Yir = Y)) (5.30)

e North face (beware of hat coordinates!):

Ugii Uy Vign —Viagn ) o o
(VN) = —UN (a u+ 8$U)|N h:c = — UN /\7] — + 7]/\ S ( i Xz‘_l) (531)
’ Via—Y%  Xi—Xia

J

e South face:

U:~U.:y ViieViii\ o =
(VS) 2 s (Oyu+ 0p0) [ n ha =~ ps | == + L—=—L | (Xi = Xiy) (5.32)
Y=Y i — Xi

Notice that all faces contribute positively to the diagonal.
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The inertia term, integrated over the cell boundary, reads

(IX) = p (uphy — uiphy +unvnhy, — usvshy) (5.33)
which we complement with a centered interpolation:

~upptup Ui+ U uww +up Ui + Uy

pr— p— p— p— 5‘34
uE 2 2 ’ tw 2 2 o (5:34)
uyny +up U j1 + Uy uss +up U j-1+ Uy

_ _ 2 _ _ 2 5.35
N 2 2 ’ s 2 2 ’ (5:35)

ovve tovw  Vijg + Vicj vse +vsw  Vig+Vicy
_ _VY : _ _ Y g 5.36
UN 5 5 R Vs 7 5 ( )

Notice that the vector of values of up at all east faces of finite volumes centered in nodes of © can be built
as ug = AL u, where A%, is an interpolation matrix. Similar matrix operations can be devised for the

other necessary quantities.
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5.4 Momentum along the r; direction

The y-momentum equation reads
/ p O dV —I—/ (pru-n+pn, —2pdvn, — povn, — poun,) dS = / fy dV
v v 1%
(5.37)

Exo. 5.1 Deduce the MAC' discretization of the pressure and viscous terms of the xo-momentum equation,
with the finite volume depicted in the Figure.
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5.5 Boundary conditions and a software for Stokes flow

In file codemac.m (which also uses ij2ng.m) you will find an Octave implementation of the MAC
method for Stokes flow (in which inertia terms have been neglected).
Some characteristics:

The encompassing domain €y = (0, L,) % (0, L,)) is discretized with (N, = N1 +2) x (N, = No+2)
“pressure” cells. The first and last rows and columns are dummy cells that lie outside €2y and
are only used to specify the boundary conditions.

The first dimU (= (N, + 1)N,) equations correspond to conservation of x;-momentum, and
correspondingly the first dimU unknowns are the u-values at vertical faces.

The next dimV (= N,(N, + 1)) equations correspond to conservation of z,-momentum, and
correspondingly the next dimV unknowns are the v-values at horizontal faces.

The last dimP (= N,N,) equations correspond to conservation of mass (incompressibility). The
last dimP unknowns are the p-values at cell centers.

A mask, mask(1:Nx,1:Ny) defines whether a cell is fluid or boundary. This implies that all
boundaries coincide with pressure-cell boundaries.
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Imposition of Dirichlet boundary conditions

Consider the boundary shown in the picture. In brown is a wall where both components of the
velocity are imposed. How will the momentum and mass equations be affected?

A

IS / i
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Vit

The unknowns that lie entirely in the brown region become dummy variables. They must be assigned
some arbitrary value.

The mass equations will not be affected at all.

The z-momentum equations will be only slightly affected: Just specify the value of U;; to the
imposed value.

The y-momentum equations need more consideration. Specifically, for FV number ij in the
Figure,

Vi = Vi
Xi+1 — XZ)/Q

/ (10,0 dy =~ iy (Vi1 —Yj)
w (

where Vjy is the imposed value at the point (X;,Y;).
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Imposition of normal forces

Y

If the wall imposes tangential (vertical) velocity as before, but normal (horizontal) force instead, then
the z-momentum equation changes significantly:

e The x-momentum finite volume is reduced by half: (Xi,)?i) x (Y;,Y;+1) instead of ()A(i_l,)A(i) X
(Y}’Y}H)'

e The integral on the West face becomes —Fy (Y41 — Y;), which moves to the right-hand side, where
Fy is the normal force imposed.

e The North and South integrals of ;1 0,v require values of v at (X, Y;4+1) and (X;, Y;), which are taken
from the imposed tangential velocity.

Exo. 5.2 Write down the complete x-momentum discrete equation (Stokes flow) for volume number (i, j),
assuming vy and Fy given.
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nguP=ij2ng(Nx+1,i,j); mskl=mask(i-1,j); mskr=mask(i,j); ## masks of left and right half cells
elseif (mskl!=0) ## left-half of cell is boundary, imposes x force and y velocity
### W boundary (rhs+=integral of force)
rhs (nguP)=rhs (nguP) +dy (j) *vbcx (mskl) ;
### E boundary (integral of p-2*muExdu/dx)
muE=mu; nguEE=ij2ng(Nx+1,i+1,j); ngpE=ij2ng(Nx,i,j)+dimU+dimV;
Ag(nguP,nguP)=Ag(nguP,nguP)+2*muExdy (j)/dx(i);
Ag(nguP,nguEE)=Ag (nguP ,nguEE) -2*muE*xdy (j) /dx (i) ;
Ag(nguP,ngpE)=dy (j);
### N boundary (integral of -mu(dv/dx), E half of upper cell bound.)
muN=mu; vN=0.5%(vbcy(mskl)+vbcy(mask(i-1,j+1)));
ngulNN=1ij2ng(Nx+1,1, j+1) ;ngvNE=1j2ng(Nx,i, j+1)+dimU;
Ag(nguP,ngvNE)=Ag (nguP,ngvNE) -mulN* (dx (i) /2) /(dx (1) /2);
rhs (nguP) =rhs (nguP) -muN* (dx (i) /2) / (dx (i) /2) *vN;
### N boundary (integral of -mu(du/dy), E half)
Ag(nguP,nguP) =Ag(nguP,nguP) +muN=*0.5xdx(i)/dyh(j);
Ag(nguP,nguliN) =Ag (nguP ,ngulN) -muN=*0.5*dx (i) /dyh(j) ;
### S boundary (integral of mu(dv/dx), E half)
muS=mu; vS=0.5%(vbcy(mskl)+vbcy(mask(i-1,j-1)));
nguSS=ij2ng(Nx+1,1i,j-1) ;ngvSE=ij2ng(Nx,i,j)+dimU;
Ag(nguP,ngvSE)=Ag (nguP,ngvSE) +muS* (dx (i) /2) /(dx (i) /2);
rhs (nguP) =rhs (nguP) +muS* (dx (1) /2) / (dx (i) /2) *vS;
### S boundary (integral of mu(du/dy), E half)
Ag(nguP,nguP) =Ag(nguP,nguP) +muS*0.5%dx(i)/dyh(j-1);
Ag(nguP,nguSS)=Ag(nguP,nguSS) -muS*0.5*dx (i) /dyh(j-1);
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An example:

—10

u=0,F, =
F,=10,v=0
u
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Pressure field
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5.6 Laplacian form of the viscous term

The general viscous term —V - [,u (Vu+ VuT)] can, when the viscosity is constant, be replaced by the
simpler term —pu V?2u.

Proof: V - Vul = u;,e; =V (V-u)=0.

The MAC discretization allows for this simplification to be carried out at the discrete level. Consider for
simplicity the uniform-spacing case. Then

(Uit1; = Uij) by + (Vijs1 = Vij)he =0, and (U — Ui—15) by + (Vicrjpr — Vierj) ha = 0. (5.38)

Exo. 5.3 Prove that the viscous contribution ends up being simplified to

Uiy, — U Ui—1; — U Uijr1— Ui, Uij-1— Ui
(VX) = —u (—“;l % hy + 1’2 ~ hy + ’”*}l > hy ;l ’ hx) (5.39)
T T Yy Y
and verify that this corresponds to a finite volume approzimation of —u V2u.
In matrix form, L being the Laplacian matrix,
(VX) = —phyhyLu. (5.40)
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5.7 Full set of equations in matrix form

To visualize the full set of equations, let us consider the uniform spacing case (after dividing by h,h,) with
the Laplacian form of the viscous term:

d
pu+ Gep = pLu+ X(w,v) = fo (5.41)
d
pou + Gyp —uLly + IY(u,0) = fy 5.42
D,u + Dyjv = 0 (5.43)

which can even be simplified to, with some additional quite natural notations,

d
PEQ +

I

p— pLlU+

| =

U

IS

|Q} ~—
[
S =
—~ —
o o
W~ H~
(G2 SN
N—

This is a so-called differential-algebraic equation (DAE) system.
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5.8 Monolithic system

The monolithic approach solves for U™ and an in a straightforward manner:

Un+1_Un ) ) ; )
p——xy— + G = pLUM 1U) =

Q Qn—l-l _ 0

Matrices G, D and L are built only once.

The term I(U ”*9) is nonlinear. Linearize by Newton, fixed-point, etc.

This approach is efficient for Stokes flow mainly.

It is considered expensive because all unknowns are solved at once (big matrices).
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5.9 Projection method

Chorin’s (1968) original projection method was defined as follows:

¢ Momentum predictor:
gt - um
—Qx  ALUTHIUT) = £ (5.48)

A 1 ~ 1
The resulting Qn+ does not satisty D Qn+ = 0, it has to be projected back on the discretely-
incompressible space.

p

e Pressure Poisson equation:

DGyt = DU (5.49)

IS

P
At
The product D G is a matrix that, leaving aside boundary conditions, coincides with L (the discrete
Laplacian maE"i;). This is a salient property of the MAC discretization. N

e Velocity correction:
~n At
Uttt =gt - =gt (5.50)
) ==
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~n+1
e Eliminating U ™ one gets

Qn—l—l o Qn

Gptt — uLU”

1wy = f (5.51)

P +
DU™ = 0 (5.52)

which shows that the algorithm is consistent, but clearly of first order in At because the viscous and
inertia term are evaluated at t,,.

e Eliminating U™ instead one gets

~n+1 ~n
u -U
P+ G - LU LU = S (5.53)
A At
QQ +1 . 7 Qggn+l = 0 (554)

which shows the appearance of a pressure Laplacian in the incompressibility equation, with coef-
ficient At/p.

e In collocated grids, DG # L. However, if nevertheless the pressure is computed from

n+1

Lp = ot (5.55)

[~

N
At
there is a stabilization effect on the incompressibility constraint, so that projection
schemes work well with collocated grids, if At/p is not too small.
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5.10 ABCN time discretization

The following combination of Adams-Bashforth scheme for time discretization of the inertia terms, com-
bined with Crank-Nicolson scheme for the viscous term, is a popular method with formally second order

accuracy in time.

e Momentum predictor:

~n+1
U —Un 1% 3 1 -1 1
P L@ U+ S I - S 1) = (5.56)

e Pressure Poisson equation:

é_n—&-l Aﬁt 2 Qn+1 (5.57)
e Velocity correction:
~m At
Qn—i-l —Q +1 = Q n+1 (558)
p ==

Exo. 5.4 Read further details from Chapter 2 of Prosperetti & Tryggvasson.
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Exo. 5.5 Read Chapter 6 of Wesseling. FExplain the necessity of pressure stabilization in the case of
collocated discretization (all variables located at cell centers). What is the key modification that stabilizes
the scheme?

Exo. 5.6 Read Sousa et al (2015) for more projection-like methods and a warning about the usage of
projection methods for low inertia flows.
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Code NSMAC

You will find in the site a vector implementation of the MAC-ABCN discretization, for the problem of flow
past a partial obstruction.
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Development of the velocity field
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Home reading;:

For next week, reed Lectures 8 and 10 of Bakker. Complement with Chapter 9 of Ferziger & Peric and
with the material available at the site.

Discuss the following topics:

1. What is turbulence?
2. What happens to flows as the Reynolds number is increased?
3. Transition to turbulence.
4. Objectives of turbulence modeling.
5. Direct Numerical Simulation.
6. Velocity decomposition. Averaging. Filtering.
7. Large Eddy Simulation.
8. Reynolds Averaged Navier-Stokes simulation.
9. Reynolds stresses.

10. Boussinesq hypothesis.

11. Turbulent viscosity.

12. The k — € model.
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6 A bit of turbulence

6.1 Flow in a long pipe

A long pipe conveys water between two reservoirs that are far apart. The inclination of the pipe is s (in
meters of descent per meter of length) and its diameter D. Compute the velocity field in the pipe and the
flow rate.

Applying the general expression for conservation of momentum in fully developed flow to the case in
which w is the circle of radius r and the flow steady we obtain

2m
0=-Grr*+r / 7(r,0) db (6.1)
0

where 7 is the radial shear stress along x3, given by 7 - €,. Because of the symmetry, 7 does not depend
on #, which gives
T(r)2rr=Gnr?. (6.2)

where o, is the shear stress along z (the axial direction) on surfaces with normal & = ¥. The inclination
generates the pressure gradient

Gg=-spg, (6.3)
and from the Newtonian law p
w
=u—. 6.4
() =p (6.4
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Notice that

1 d dw
Le (*““%) g (6.5)

in agreement with (3.14)), since the left-hand side of (6.5]) is V- (¢ Vw) in cylindrical coordinates and we
have assumed steady flow. This is the equation that determines w, with boundary condition w(R) = 0.
The condition w'(0) = 0 is generally also imposed, but truly speaking r = 0 is not a boundary.

Anyway, the governing equation is

dw spg T
)= 2L 6.6
which can be integrated with initial condition w(r = 0) = wWyax to yield
spg [T r'dr
W(r) = Wpax — —— . 6.7
(r) 2 o k(') (6.7)
The unknown wp,.x can be computed from w(R) = 0, namely
R 7.0
d
Wmax — °P9 / d 7: . (68)
2 Jo wplr')
If the viscosity is constant one recovers the familiar parabolic Poiseuille profile
SPY 2
=y — 2PY 6.9
w() = = 2 7 (6.9
with spg
max — D2 . 6.10

Assuming D = 0.5 m and a gentle slope of s = 1072 (ten meters per kilometer), since u = 1072 Pa-s and
p = 1000 kg/m? one gets
Wmax = 1530 m/s = 5512 km/h ! (6.11)
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6.2 Turbulence

It is obvious that the huge velocity obtained above does not occur in reality. The parallel flow is indeed a
solution of the conservation equations, but it is an unstable solution. Both mathematically and physically
one observes a flow that is neither steady nor parallel, that is called turbulent.

e Turbulent flows are stochastic. They are described with the tools of statistical theory. Though the
instantaneous values of velocity and pressure are randomic, the mean values of the variables are
quite deterministic.

e These mean values (of velocity, of pressure, of force on solid surfaces, etc.) are in fact what engineers
are most interested in. If the boundary conditions do not depend on time, the mean values also
do not depend on time, as would be the case, in our pipe example, some seconds after the valve
connecting the two reservoirs is opened.

e [t is customary to decompose all variables into mean and fluctuating components, e.g.,
u=u+u, p=p+p . (6.12)

Inserting this into the momentum balance equation and taking the mean, one arrives at
oz/FdV + / (=p+pu(Vi+Va') —pua@ua—pd@u)- -nds . (6.13)
1% oV

Exo. 6.1 Verify the previous assertion.

We observe that the averaged equation is the same as the original equation if the so-called Reynolds
stress tensor is added to the average stresses:

o<+—o(Vu,p)+ ohe , with oRe — —pu' @u’ . (6.14)
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Equation (6.2)) then becomes, for a long circular pipe,
(0w — puldl] 2rr =Gmr?. (6.15)

Though u!. and v/, are rapidly fluctuating functions with zero mean, they are correlated and the mean
of their product is not zero. Typically, velocity fluctuations that have u/ > 0 (outwards from the
center) also have u/, > 0, because u, is larger near the centerline.

Remark 6.1 The Reynolds stress should not be thought as a “correction” or a “small perturba-
tion” to an underlying laminar flow. Quite to the contrary, it is the term puo,w that is negligible
througout the flow, with the exception of a narrow layer near the walls.
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6.3 Turbulence models

e If one could express o€ somehow in terms of @ and/or its derivatives, then one could substitute
into (6.13]) and solve for u and p. This is accomplished by the so-called Boussinesq turbulent viscosity
hypothesis. It states that

2
o€ ~ -3 pk1+ pt(Va+ va?) (6.16)

where

1
k=g llu’ff? (6.17)

is the turbulent kinetic energy (per unit mass) and ut is the turbulent viscosity. This hypothesis
agrees with physical observations in many flows, especially if there are no large wakes and if the
boundary layer is attached to the wall. The agreement is not perfect in general, but it is sufficient
for engineering predictions.

e Prandtl (1904) produced a model for ut inspired in molecular models of gases. His mizing length
theory leads to

pt = pl?||vu+ va' || (6.18)
where / is the so-called Prandtl’s mixing length. Again particularizing to the pipe example, it leads
to

dw
t 2
=pl°|—| . 6.19
wo=pl | (6.19)

e If y is the distance to the wall, it is intuitive that the length scale of the turbulent vortices, and thus
of the mixing, is y itself. In fact, it is fairly accurate that

=Ky (6.20)
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where k, the von Karman constant, turns out to be quite universal (all flows, pipes or planes).
Beautiful theories have been built that explain this universality and other properties of turbulent
flows, we suggest the interest reader to look for the books by Tennekes & Lumley and by Pope.

For some flows one can follow the more pragmatic approach of Launder & Spalding (1972) and look
for empirical expression for £. A vast experience exists on steady flow in circular pipes, from which
we can borrow Nikuradse’s law:

/ Y\ 2 Y4 2 a4
Z_014-0. (1—— —0. (1—— —0.14 — 0. (— —0. (— . 21
- = 0.14— 0.8 R) 0.06 R) 0.14 — 0.08 R) 0.06 R) (6.21)
Exo. 6.2 The final differential equation is then
1d hdw
1d awy _ 22
r dr <(M+”)rdr) g (6.22)

with pt = p0(r)?|dw/dr| and ((r) taken from .

Numerically solve this equation with appropriate boundary conditions by the finite volume method,
with a suitable treatment of the nonlinearity. Plot the resulting velocity profile.
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6.4

Wall laws

Nothing is simple in turbulence. Boundary conditions are no exception. The mean velocity field
computed in Exo. does not agree with experimental observation.

The unrealistic prediction can be traced back to the boundary condition @ = 0 at the wall. The
averaged model we have presented so far, being a so-called high-Reynolds-number (or high-Re) model,
is not physically realistic in the close vicinity of the wall, where viscous effects are comparable to (or
larger than) turbulent ones. Essentially, we are imposing the boundary condition at a location where
the differential equation is not valid.

The idea is to replace the “natural” condition @(R) = 0 by some condition at R < R, a point within
the turbulent-dominated region where (/6.22)) is valid.

A popular and frequently accurate boundary condition in CFD is the logarithmic law of the wall.
Denoting by 7, the shear stress at the wall, it is customary to define shear velocity u* = \/7,/p and
then the wall variables (traditionally « is the longitudinal velocity)

+__Y
v/u*

(6.23)

(]
u =, Y
u*
It so happens that in many turbulent flows, between y* = 20 and y* = 100, the following relation
holds: ]
ut==1n (Fy"), (6.24)
K
where k ~ 0.4 and E ~ 9. How does this provide a boundary condition? A simple way is to choose

R as satisfying yt = (R— fx’)J’ = 30. Normally this is a very small correction of the pipe radius, in
the micrometer range. For the pipe we considered previously, for example,

D
= _S”f = —12.25Pa =  uf= 4/ =011m/s. (6.25)
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As a consequence,

(R-R)*=30 = R-R= 30% —272x 10" m . (6.26)

In the simplified treatment we are following here, we will take R = R and exploit the wall law at
yT = 30 which gives

W 1
—— = —In (Ey") = 14 (6.27)
Vitl/p F
so that I
t w P2
- _ 2
(4 0") dr 196 " (6.28)

which is the boundary condition imposed at r = R.

Notice that we impose a “drag law” and not simply (,u + ,ut> dw/dr = 1,, because it is only in very

symmetric situations that we know the value of 7, a priori.

Exo. 6.3 Compute numerically the velocity profile produced by the model described above. Predict
the flow in the pipe of the example, in particular the flow rate and the average velocity. Compute the
Reynolds number. Compare to the prediction of the “Moody chart” (google me).
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6.5

Reynolds-averaged Navier-Stokes equations

In the modeling of incompressible turbulent flows, as we have seen, it is in most cases necessary to
solve an averaged version of the Navier-Stokes equations.

In the pipe-flow example we adopted Nikuradse’s formula for the Prandtl’s mixing length ¢(y). Such
formulae are however only available for some selected flows, in general situations the computation of
ub requires the solution of additional equations.

There exist 1-equation models, 2-equation models, and so on. Some of the popular ones are known
as: Spalart-Allmaras model, & — e model, kK —w model, algebraic stress model, stress transport model,
etc. An excellent survey is provided by Wilcox (Turbulence modeling for CFD, 2006).

To provide some insight into RANS modeling, we describe here the k — ¢ model, which is the most
popular 2-equation model.

Reynolds averaging (substituting u = u + u’ in the Navier-Stokes equations and averaging) is the
basis of all RANS models:

Exo. 6.4 Deduce the RANS equations:

pou+V - [pl—p(Va+Vva)+paiu+pueu] = f (6.29)
Vi = 0 (6.30)

The k£ — € model

The mass and momentum equations are as in the non-averaged case, only that velocity and pres-
sure variables are now averages and turbulent viscosity must be added to physical vis-
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cosity. We drop here the bar to express averages for simplicity.

pou+pu-Viu—V - |(u+p") (Vut+vVul)| +Vp = f (6.31)
Veu = 0 (6.32)
e The turbulent viscosity is given by
t_ cupk’
o= . (6.33)

€

e The turbulent variable k is the turbulent kinetic energy per unit mass, the amount of kinetic
energy that is contained by the velocity fluctuations:

1—
k=3 TP (6.34)

e The turbulent dissipation € is the turbulent dissipation rate per unit mass, the rate at which
energy stored in the fluctuations is dissipated:

€= % (Vu + (V)T : Vo (6.35)
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The model for £ and € consists of the convection-diffusion-reaction equations

Ok +u-Vk—=V - (DVE)+vwk = Fy (6.36)
e+u-Ve—V - (DNVe)+ e

I
0
—~
o
w
-
~—

where the diffusion coefficients are

1 [t 1
Dk=—<“—+u>, D= -
P \ Ok p

the reaction coefficients are

€ €
- = e =Cy— | 6.39
Vi k 5 it C2 k ( )
and the source terms are
Mt T2 o1k T2
Fp = 2—||Vu+Vu |*, F. = 7||Vu+Vu I . (6.40)
p
The model constants have as standard values
¢, = 0.09 c; = 0.126 co =1.92, o, = 1.0, o.=13. (6.41)

e The closed system of equations of the k —e model are (6.31)), (6.32)), (6.36]) and (6.37]). One vector

equation and three scalar ones, for one vector unknown and three scalar unknown.
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e The boundary conditions for this model can vary. Most frequent is the logarithmic law of the wall as
described in Section [6.4] In the simplified treatment adopted there, they would read:

1. At inflows:
u = 4y , k= kin s € = €n - (6.42)
2. At planar walls:
u-n = 0, (6.43)
ou
t P 2
= - _ £ 6.44
(n+nt) 5 g Il (6.44)
*2
ko= — | (6.45)
NG
*4
pu
= ) 6.46
© T 1234 (6.46)

3. At outflows: Several possibilities, zero applied forces and zero normal derivatives of k and e
for example.
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e The equations for k and € can be written in conservation form

8tl<:—|—V(uk—Dka) = Fk—"}/kk,

Oe+V-(ue—D.Ve) = F.— e,

the expressions in parentheses being the fluxes.
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7 Conservation laws in fluid mechanics

7.1 Basic definitions and examples

A conservation law, in its differential formulation, is a partial differential equation that can be written in

the form

=0 to simplify
The physical principles introduced in previous chapters are indeed conservation laws:
1. Mass conservation equation:
Orp+ 0s(pu) =0 — { %:[p] (7.2)

= lpu] = lgu]

Assuming u to be known, this is a typical example of the linear scalar transport equation. If,
on the other hand, u is a known function of p, we have a nonlinear scalar transport equation, such

as the traffic flow equation.
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2. Momentum conservation equation: In 1D the stress is just a scalar 0. Remembering that the

momentum flux is ( = —o + pu® u,
q=lpul
O (pu) + 0u(pu® —0) = f — - ) 2 (7.3)
f=lput=o] = [£ o]
3. Energy conservation equation: From (4.3)),
OWE+V - (Fl—0)-u+q)=f-u+0Q, (7.4)

where q and () are the heat flux and the heat source, which is again a conservation law. In 1D,

OE+0,(E—o)u+q) =fu+@Q. (7.5)

Other well-known equations are also typical examples of conservation laws:

1. Heat equation: The previous equation is general. Assuming a solid body (u = 0), Fourier’s law of

heat conduction
q=—kVT (7.6)

and a linear dependence between e and T,
e=e(Ty) +c(T—1T1p) , (7.7)
we arrive at the heat equation:

=[]

q
a0 (7.8)

T —ad>T=s G {

where v = k/(pc).
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2. The convection-diffusion equation: With the same hypotheses as before, but keeping u arbitrary,

one gets

3. Wave equation:

T+ 0,(ul) —ad?T = s — { %
( . atu
1= O U
Oru—c20 u=0 —
—co,u
-
\ —oru

(7.9)

(7.10)

Exo. 7.1 Check that the q and | of indeed allow to rewrite the wave equation as a conservation
law in differential form.
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Exo. 7.2 Conservation laws can also be written in integral form. Show that any q that induces a flux f
(possibly function of q, 0, q, etc.) such that

d [*

pm q(z,t) dov = f(x_,t) — f(2q,1) + /x+§(x,t) dr | Vi, x_, zy, (7.11)

xT_ —

is also a solution, if differentiable, of (7.1)).

Another way of writing the integral form is

/:+2(~T=t+) dx:/:+ﬂ($vt—) dl‘+/tt+i(l“—at) dt—/tt+j(x+,t) dt + /ﬁ /:+§(a;,t) dr dt , (7.12)

which must hold V¢_, ¢, , x_, x, .
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Def. 7.1 Equation is called a hyperbolic conservation law iff

e f(x,t) is a function of q(x,t) only, i.e.,

fla,t)=f (g(z,0) (7.13)
but we will drop the hat from now on to simplify the notation.

e The jacobian matrix

8C,‘(lfl aq2fl .
Df=| 0ufe . |, (7.14)

which is in general a function of q, is diagonalizable in R for all relevant values of q.
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The quasilinear form of the hyperbolic conservation law is
Org+Df(g)0:qg=s . (7.15)

Any solution of ([7.15)) is also a solution of ([7.1)), but solutions of (|7.1)) need not be regular enough to
be solutions of ([7.15)).

Exo. 7.3 Verify that the scalar transport equation, with u assumed known, is a hyperbolic conservation
law. Similarly, notice that the heat equation is not.

Exo. 7.4 Verify that the wave equation has

Df = ( _01 _002 ) (7.16)

and compute the eigenvalues and eigenvectors of Df. Conclude that the wave equation is a hyperbolic
conservation law. o
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7.2

The advection equation

The scalar advection equation with constant velocity
0rq+ Norqg = 0 (7.17)
is a HCL.

The trajectories X (zo,to,t) = xo + A (t — to) are characteristic curves of (7.17)) because along them
the equation takes a much simplified form:

dX

at 1 dt

The variable ¢ is thus constant along the characteristics. Let z*(z,t) and t*(z,t) be the position and
time in which the characteristic enters the calculation domain. For example, if one is computing with
domain 2 = R and initial time ¢ = 0, then z*(z,t) = 2 — At and t*(z,t) = 0. The exact solution is

q(z,t) = q(z",t") . (7.19)

The initial and boundary conditions must be such that ¢ is imposed at the point of entry of the
characteristic curves.

The Riemann problem is defined as the solution of ((7.17) in 2 = R with initial condition

if x <
g(z, to) = { . TE=To (7.20)
qr if x> xg

Its solution is q(z,t) = qr, (resp. qr) if z —xo < A (t — o) (resp. >).
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7.3 Weak solutions

e The characteristic curves propagate the initial condition = Discontinuous solutions have a meaning,
as arising from discontinuous initial data.

e A different definition of solution is needed (here for 2 = R):

Def. 7.2 Let C! be the space of continuously differentiable functions with compact support. A
function ¢ € L'(R x R,) is said to be a weak solution of

Ohq+0uf(a) =0,  qz,t=0)=q(z), (7.21)

iof the identity
/ (40 + f(q) Dup) dodt + / ao(x) o, t = 0) dz = 0 (7.22)
RxR. R

holds for all test functions ¢ € CH(R x Ry).

Exo. 7.5 Show that if a weak solution q is differentiable (q € CL{(R x R,)), then q satisfies the
HCL pointwise and is thus a classical solution.

Exo. 7.6 Extend the definition of weak solution to the case of a hyperbolic system with source, i.e.,

9rq+ 0. flg) = s(x,t,q) . (7.23)
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7.4 The Rankine-Hugoniot condition

e [t is clear that, at a point of discontinuity, the conservation property cannot be checked by com-
puting 0yq + 0, f and comparing to the source s. Then, how can conservation be checked?

e Consider a solution that is piecewise C' in the x — ¢ plane, having a unique discontinuity along
the line z = o(t). Let wt = {(z,t) € Rx Ry, z > o(t)}, and similarly for w™. Letting ¢* =
qlo= € C*w®) and using integration by parts one arrives at the Rankine-Hugoniot condition, which
expresses conservation at a point of discontinuity:

For g to be a weak solution of the scalar HCL, it is necessary and sufficient that
(a) The equation dyq + 9, f = s is satisfied pointwise in w™ Uw™.
(b) The discontinuity speed s(t) = o’(t) satisfies

t) = fla(a(),1)) (7.24)
t

Exo. 7.7 Prove it.
e For a system, the Rankine-Hugoniot condition reads

fa"(o(t),1) = flg (0(t),1) = s(t) [q"(o(t),t) — g (o(t),1)] - (7.25)
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7.5 Hyperbolic linear systems

e A linear hyperbolic system is written as

The flux is obviously f(q) = Aq and A = Df is assumed diagonalizable.

e There exists a matrix § such that

where A = diag (A}, A\%)..).
e Substituting into 1) and multiplying by @’1 one gets
B O0q+ RTRAR 0,0 = B s,

“tgand z =R

so that, defining w =

=
s

S, we arrive at

atwl + )\1 8$’w1 = z21

()

P w + éamw =

|

, =

e These are uncoupled advection equations that we already know how to solve!

OWyy, + A OpWo, = Zpm

(7.26)

(7.27)

(7.28)

(7.29)

Exo. 7.8 Prove that for a linear system, with f(q) = Aq, the Rankine-Hugoniot condition indicates that

discontinuities can only propagate at the speeds {\'} given by the eigenvalues of A
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7.6 Linear acoustics

e The Euler equations: If one puts together the equations of conservation of mass, momentum
and energy for the particular case of an inviscid ideal fluid, without heat flux or sources, and
without external forces, one arrives at the Euler equations of gas dynamics, which read

op+V-(pu) = 0, (7.30)
O(pu)+V-(puu+pl) = 0, (7.31)
OE+V-(E+pu) = 0. (7.32)

where p=(y—1) (E—3$pu-u).

Exo. 7.9 Compute f, g and h corresponding to the Euler equations, knowing that ¢ = (p, pu, E).

Exo. 7.10 Prove that the Fuler equations are a hyperbolic conservation law.
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e The 1D Euler equations, consisting of mass, momentum and energy conservation equations of a
gas complemented by an equation of state, without external forces, are

O+ Ou(pu
O (pu) + 0, (pu® +p

)
)

OE+0, [(E+pu] =
p- G- (B o)

e Let us now consider a small perturbation of the still state

p:p0+ﬁ7 p:p0+ﬁa

Notice that py = (v — 1) Ep.

Exo. 7.11 Neglecting quadratic terms in the perturbations, show that @ and p satisfy

1

u =0+ u,

at&"i__ xﬁ = 07

Po

E=FE,+FE.

(7.37)

(7.38)
(7.39)

Show also that, once the previous two equations have been solved, the energy can be obtained from

E =p/(y —1) and the density from
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Let us now rewrite ((7.38)-(7.39)) as a linear hyperbolic system:

(3)a(t) v e

=(5) =) 2= (') o

The eigenvalues and eigenvectors are, defining ¢y = \/po/ po,

=

We thus have

—Cy Co

)\1 = —0, yl — ( pocg > , )\2 = o, 22 = ( pocg ) . (743)

Exo. 7.12 Now we will proceed intuitively instead of following the linear algebra procedure w = Eil q.
Verify that both are equivalent.

Since q = (a,p)T € R?, we can always write q as a linear combination of v' and v*. Let w; and w,
denote the coefficients. Then,

U —Cp Co
) = T . 7.44
(p) e <p003) b (poc%> (7.44)

Inverting this relationships we arrive at the characteristic variables:
1~ 1~ 1 1
o 2co u+ 2p()c% p . 2co 2/)00(2)
w= Lg4+-1 5 = IR
2¢o 2pgcg p 2¢o 2pocg

110

(7.45)

e
~_



Exo. 7.13 Show that the equations for w, and wy are, simply,
8tw1—coarw120, 8tw2+008ww220. (746)

Solve this equations to show that the exact solution in 0 = R with a “pure pressure” initial perturbation
(a(x,t =0) =0, p(x,t =0) = pjp(x) is

1 .
wl(x,t) = mpinz‘(JT—f—Cot) s (747)
1
t) = ——=Dii(x—cot) . 7.48
wo(,t) 2p06(2) pzm(x cot) ( )
Or, in primitive variables,
. 1 - -
a(w,t) = o [=Pini(e + cot) + Pinil — cot)] (7.49)
PoCo
. 1. .
plat) = 5 Pini(z + cot) + Pini(e = cot)] - (7.50)

Compute also p(x,t).
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Pressure at time t =0 Velocity at time t =0

Velocity at time ¢t = 0.1

L L L L L L L L
04 06 08 1 -1 08 -0.6 -0.4 -0.2 o oz 04 06 08 1

Pressure at time t = 0.5 Velocity at time t = 0.5
1 T T T T T T T T T 1 T T T T T T T T T
05 B 05 B
04;—/\/\_[—/\/\ .
ys 4 ys 4
_I—I —0{3 —0!6 —0!4 —0!2 ‘I] 0!2 0'.4 0'.6 0{3 1 _ll —0{3 —0!6 —0!4 —0!2 ‘I] 0!2 0'.4 0'.6 0{3 1
Pressure at time t = 1 Velocity at time t = 1
1 T T T T T T T T T 1 T T T T T T T T T
05 B 05 4
GM o
0.5+ B 0.5+ 4
_ll —013 —QTG —074 —072 ‘I] 072 0'.4 0'.6 0{3 1 _ll —013 —QTG —074 —072 ‘I] 072 0'.4 0'.6 0{3 1

Fig. 3.1. Evolution of an initial pressure perturbation, concentrated near the origin, into distinct
simple waves propagating with velocities —cy and c¢y. The left column shows the pressure pertur-
bation ¢! = p, and the right column shows the velocity g% = u. (Time increases going downwards.)
[claw/book/chap3/acousimple] 112



x =\ =\t

The Riemann problem: m
What is the solution of

B . qQ qr
() () (3) -
D Yoo 0O D

with initial condition g(z,t = 0) = g, if x <0 and q(r,t=0) = g, ifz>07 Or,Oequivalently,

S SR
B S ) T L
u, ifxz>0 pr ifz>0

This problem is very easy to solve in characteristic variables:
wy ifx+ct <0 wye if o — cot <0
w1($7 t) = . . ’ ) U)Q(I, t) = # . ’ : (751>
wy, ifx+cpt >0 Wy, if x—cot >0
From this one concludes that

gg if[E+Cot<0

g(z,t) =qq ifx—ct>0 (7.52)
q. if © —cot <0<+ cot
Exo. 7.14 Show that the new intermediate state q. that appears s

4, = Rw, , withw, = (wi, ws)" (7.53)

and compute t,, and p,,.
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r = M\t T = M2t x = M\t

X —\T X_x7T O X — AT

Fig. 3.3. Construction of the solution to the Riemann problem at (X, 7). We trace back along the pth
characteristic to determine the value of w” from the initial data. The value of ¢ is constant in each
wedge of the x—¢ plane: ¢, = w; r'+whri+wir’ ¢f =wlr'+wir*+wir® ¢ =w!r'+w?r*+wir?
g = w!r'+w?r*+w?r3. Note that the jump across each discontinuity in the solution is an eigenvector
of A.

114



7.7 The shallow water equations

In simulations of rivers, oceans, lakes, estuaries, and also of the atmosphere, a simplified version of the
incompressible Navier-Stokes equations is frequently adopted: The shallow water approximation. Let
us derive here the corresponding mathematical problem:

e Consider the flow of a layer of fluid over a solid bed. The fluid is assumed incompressible, of
constant density p, under the action of constant gravity g = —gé,. We are here neglecting
Coriolis effects, but they can easily be accounted for.

e The layer of fluid is assumed to occupy the domain
Qap(t) = {(x,y,2) € R* | (2,y) € Q, Hy(z,y) <z < Hy(x,y) + h(w,y. 1)}, (7.54)

in which the bottom is fixed, at height Hy(z,y), and the fluid layer is of variable thickness
h(z,y,t), which is an unknown of the model. Notice that the upper surface of the fluid is assumed
to be a graph at all times. Breaking waves are not allowed.

e Turning to 2D for simplicity, let now consider finite volumes defined as
V={(xz2) € R |z e (z7,2%), Hyx)<z< Hy(x)+h(z,t)}, (7.55)
where 27 and 2™ are arbitrary in Q2. The conservation of mass for this volume reads

d T pHy(z)+h(z,t) Hy(z7)+h(z™,t) Hy(zH)+h(zt 1)
E/ / @ pdzdr = / pu(z™,t) dz—/ pu(z™,t)dz (7.56)
T~ Hy

Hy(z™) Hy(x)

At this point it is customary to define the depth-averaged velocity

1 Hb(xvy)+h(xvy7t)
u ) = ——— t)d 7.57
u(z,y,t) e /Hb(z’y) pu(z,y,t)dz , ( )

so that (7.56) becomes
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Integral form of mass conservation in SW approximation

zt

d

] h(z,t)dz = h(z~,t)u(x,t)dz — h(zT,t)u(z™,t)dz . (7.58)

If h and w are differentiable, for the previous equation to hold for any % it must hold that

Differential form of mass conservation in SW approximation

Oth + 0.(hu) =0 . (7.59)

The Rankine-Hugoniot condition that expresses mass conservation is, thus,

Wt - hu = s (b - h7) (7.60)
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e Now consider the following finite volumes to analyze the conservation of vertical momentum:
V={(z,2) e R* |z € (a7,2%), Z<z< Hyz,t)+h(x,t)}. (7.61)
A crucial hypotheses in the SW approximation is that vertical inertial effects, together with

vertical viscous forces, are negligible. This reduces the the conservation of z-momentum to

zt

xt  pHy(z)+h(z,t)
/  (p(Z.0) — p(Hy() + (1)) di = / ) /Z pgds (7.62)

which, if we assume that p(z, Hy(z)+h(z,t)) is the pressure at the atmosphere above the fluid p,(z, t)
ends up implying
O:p=—pg (7.63)

or, equivalently

p(x, z,t) = po(z,t) + pg (Hy(x) + h(x,t) — 2) (hydrostatic hypothesis) . (7.64)
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e Finally, let us consider conservation of horizontal momentum. The finite volume is as in the
conservation of mass, i.e.,

V={(z,2) € R*|z € (z7,2%), Hy(z) <z < Hy(z)+ h(z,t)}.
We thus have, denoting H, = H, + h,

d zT H; Hz(%i,t) Hz($+,t)
— udzdr = w(x, 2, t) dz — w(xt, 2, t) dz +
i P P P

T Hb

Hy(z™) Hy(zt)
Hi(z—t) Hy(zTt)

+/ p(x™,2,t) dz —/ plat, z,t) dz —
Hy(z™) Hy(zT)

Hi(z~t) Hy(at,t)
—/ 2ud,u(x, 2, t) dz +/ 2u0u(xt, 2, t) dz +
Hy(z7) Hy(zt)
T

+/ [Tw(z,t) = 1(2,1)] do +

zt

+/ [p(z, Hy(x,t),t)0.Hy — p(x, Hy(x), )0, Hy| dx (7.65)

Above, 7, is the shear stress at the top of the fluid layer, referred to as wind stress. Similarly, 7,
is the shear stress at the bottom boundary, for which many times a drag-law is assumed

n=—pCluu. (7.66)
The last line corresponds to the horizontal component of the pressure force at the surface and bottom.

e The assumption is made that

Hpy(x)+h(z,t)
/ u?(z,2,t) dz = Bh(x,t)u*(x,t), (7.67)
Hy(2)
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where [ is a so-called “momentum correction factor”. In most cases S = 1 is adopted.

e The hydrostatic approximation leads to (omitting the dependence on ¢ for brevity of notation)

Hy(z)+h(z) Hy(z)
/ poz) dz = h@paa)+ [ pglHia) - 2)dz
Hb(w) Hb(il?)

= () pala) + % () . (7.68)

and
CC+

/ [pla, Hy(w))0 Hy — pla, Hy(w))0: Hy] do =

= pa(a”) (Hp(2") + h(z™)) — pa(a™) (Hp(z™) + h(z7))—
— (Pa(@™) + pgh(a™)) Hy(2™) + (pal(a™) + pgh(z™)) Hy(z™)—

T
~ [ a4 )~ (5t o0 o
so that the sum of all contributions from the pressure is
T

% (h(z7)? = h(z")?) —/ (h Ozpa + pgh 0. Hy) dx

T

e Collecting the pieces and neglecting viscous terms and wind forces one arrives at
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Integral form of horizontal momentum conservation

T
% hde = hlz™,)u(z,t) — h(zT, t) @ (x™, 1) +

zt

+‘g h* (2™, t) — ghQ(x+,t) — /

xT

h
|:C |ﬂ| u+ ;@cpa +gh0.Hy| + d@?.ﬁg)

This equation can only hold for all x* if

Differential form of horizontal momentum conservation

h
B(hT) + 8, (h# + g h2) = ~Clul@ ~ 0o~ gh:Hy (7.70)

The associated Rankine-Hugoniot condition is (assuming p, differentiable)

Wt (@h)? + g (W) — b~ (@ )2 — g (h)?=s (Wtat—hu) . (7.71)

120




e The equations to be considered are, assuming p, and H, constants,

h hu 0
at(hu) +am<hu2+gh2> N (—C’|u\u> (7.72)

where we have dropped the overline of u and neglected gradients of atmospheric pressure.

e Defining ¢; = h, ¢o = hu,

q1 q2 0
0, Oy 2 = 2lgs 7.73
t<q2) + (%""%q%) (_C«qq%q) ( )
—_——

=/
One readily observes that the system is hyperbolic, with

D ! ! 0 ! 7.74
= 2 =
DJ ~Btgn 22 —u® 4 gh 2u (7.74)
so that the corresponding eigenvalues and eigenvectors are
1 1_ 1 2 _ 2 _ 1
AN =u—+/gh, y_(u—\/g_h , N =u++/gh, v°= wtVah ) (7.75)

Exo. 7.15 Consjdem’ng the source term to be zero in or , let 4, = (ho, houo)T be a constant
solution and let h(x,t), u(x,t) be perturbations. Show that they satisfy the linearized equation

h 0 1 h
at(im) * <—ug+gh0 2u0>8x(ﬁa) =0 (7.76)
Solve analytically the Riemann problem, discussing the differences between the subcritical case (|ug| <

Vv gho) and the supercritical case (|ug| > v/gho).
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8 Finite volume methods for hyperbolic conservation laws

8.1 Generalities

We follow closely Chapter 4 of Leveque, merely highlighting some specific points. The equation being
considered is

Oq + 0pf =0 (8.1)

for which we remember the integral form

/:+ q(x,ty) do = /:+ q(x,t-) do + /tt+i(x_,t) dt — /:+ f(zs,t) dt . (8.2)
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The finite volumes will be C; = (2;_1/2, Tit1/2), with node x;, and the idea is that the discrete variable QZ‘
approximates the mean in C; of the exact solution g(x,t =tn), e,

1 Tity1/2
Q" ~ / oz, t) d (8.3)
- Tit1/2 = Ti-1/2 Ja,_ 5
and that the discrete fluxes satisfy
. 1 tn41
Fl )y =~ Y / i(g(wi,l/g,t)) dt . (8.4)
tn

The general equation for the methods considered is

At(

Q?H =@ - Ar Eiryn — _?—1/2> : (8.5)
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e Convergence: Q” converges to q(z;,t,) as At and Ax tend to zero. Convergence usually requires
consistency and stablhty

e Consistency: Each method defines a discrete flux function F(...,Q" Q" ...) — F',, €
R™. Notice that F does not depend on 1.

We consider two-point fluxes,
—?—1/2 - £(Q:L_17Q?) y (86)

and thus the scheme becomes

A
Q=@ - o (F@Q) - F@,.Q)) - (5.7)

In this context, F is said to be consistent if

— For any admissible ¢ € R™,

Fg.q = f@)- (8.8)

B

— There exists L > 0 such that

I7@Q, @) — 1@ < L max{lQ, .1 ~al} (5.9)

124



e Stability:

— The numerical method must depend continuously on the initial conditions. Small errors must
not amplify unphysically.

— The CFL condition (Courant number < 1) is necessary for stability. The numerical domain
of dependence must contain the exact one.

— For a hyperbolic system, with f(q) = Ag, if \? is the p-th eigenvalue of A, the Courant
number v is
o a3} (8.10)
v = — max : :
Az p

Exo. 8.1 (Centered approximation) The following definition is certainly consistent:
mn 1 n n
Fip =5 (@) +1@0) - (8.11)
Show using von Neumann analysis that the resulting numerical method is unstable for all At (even

if v < 1). For this, consider the simplified situation m =1, f(q) = Aq, with X\ a constant (in other
words, consider the constant-coefficient advection equation).

Also, read Lemma 2.2 of Mishra € Jeltsch.

125



8.2 Lax-Friedrichs and Lax-Wendroff methods for linear systems

The unstable centered method we saw before, second-order consistent, leads to the numerical scheme

At
n+1 __ n __ n _ n
Qi o Qz 2 Ax (i(Qerl) i(gzq)) ) (8‘12)
The Lax-Friedrichs method is defined by
1 At N n
Q= 5@, Q) — 5 a, (L@ -1@L) - (813)
Exo. 8.2 Show that the associated numerical fluz is
Fn _ . 1 n n AZ‘ n n
Flp=F@ Q) =5 (J@L)+1@)) -5 5@ -QL) . (8.14)
new

and check that this corresponds to the addition, to the unstable centered fluzx, of a numerical diffusivity
anum = Az?/(2 At) to all components of Q.

This scheme is stable if the CFL condition is satisfied, but it is only first-order accurate.
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The Lax-Wendroff method is a second-order accurate centered method that is stable under the CFL
condition. It can be decomposed into two-substeps that are quite illuminating (to this decomposition
the name of Richtmyer is usually associated):

1. Compute a Lax-Friedrichs half step:

1 At
n+1/2 _ ~/n ny ny n
~i-1/2 2<Qi—l +Qz) 2Ax (1<Qz) ﬂgz—1)> ' (8.15)
2. Define the fluxes as
n _ n+1/2
Ei—l/? - i (—i—l//2> : (816)
3. Update the unknowns: A
n n t n n
Qi = QZ - _Ax (—i+1/2 - —i—1/2) : (8'17)

Exo. 8.3 Build a small code that implements the Laz-Friedrichs and Lax-Wendroff methods for the
acoustic equations. Test them defining as domain the interval (0,1), with initial condition

=1 if 04<xz<0.6,

. (8.18)
=0 otherwise.

u(z,t =0)=0 Vuz, p(x,t:O){
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8.3 Godunov’s method for systems

e [t is well-known that “upwinding” is a cure for advective instability of numerical methods.

e In the case of a scalar equation, 0;q + A 0,q = 0, it results in

Q' =Qr— &L A (Qr—Qry) if A>0,

(8.19)
Qi =Qr— LA (Qr, —Qr) if A<O.
e Notice that this corresponds to
0 AQF, if A>0, (8.20)
FIZTAQr if A<O. '
The upstream value is chosen, i.e.,
P?—l/2 = f( ﬁpstream) . (8'21)
e What is the correct extension for the system ;g + A9,q = 07
e The natural choice is
" B éQ?_l if >0 Vp, (8.22)
TEETAQY it <0 Vp, '

but what to choose when there are both negative and positive eigenvalues?
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e One further interpretation helps us generalize the upwind method. Define

Qj_ e = solution of the Riemann problem at x; 15 . (8.23)

We understand that the Riemann problem is solved between t, and t, + At with initial condition
q(z,t,) = QZI if 2 <x;_10 and q(z,t,) = QZ‘ otherwise.

Now notice that the upwind method for a scalar equation is given by

Fin—1/2 =f (Qi1/2) . (8.24)

Godunov’s method for system reads:

Flip=1(Q ) (8.25)
In the linear case this amounts to
Fi )= éQﬁ_l/Q ; (8.26)
which can equivalently be written as (Roe)
1 1
Flip=3 (AQ, +4Q)) - 5l4l (@ -Q,) 27
where [A| = R|A] ﬁ_l and [A] = diag (|A'], ..., |A™]).
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e Notice that this definition makes

n 1 tn+1
L 172 — E /t i(g(xz 1/25 )) dt

if we assume that, at time n, the solution g is piecewise constant.

e Remembering the diagonalized or characteristic (discrete) variables W = 2’1 @, notice from the
solution of the Riemann problem that

Q- =L wil/z =R Wi, +I- (W} -Wy,)], (8.28)

where I~ is a diagonal matrix that has 1 on entry number p if \? < 0, and 0 otherwise. We thus

have
Qr,,=Q  +RI R (Q-Q ), (8.29)
—_—

M-
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8.4 Boundary conditions

The matrix é satisfies é

Reading Chapter 7 of LeVeque is recommended at this point. We will concentrate on the linearized
shallow water equations for this discussion.

We recall the linearized equations, with ¢ = (iL, izﬂ)T and ¢ = g hy,

0 1
)1
=RAR', with
_ 1 up +cg  —1 Uy — C 0
1 0 0 0 0
= — A =
ﬁ 2co <_U0—|—C0 1 )’ = < 0 UO+CO)
(8.31)

1 1
R =
- ('LLO—CO 'U/0+C0>’

The columns of R are the eigenvectors of A.

Similarly,

q1
q2

The characteristic variables are, thus, w = §_1 q, i.e.,

Wy

Wa

_ 2%0 (o + o) B — Rl (8.32)
_ 2%0 (—uo+ o) b+ hl] (8.33)
il = W + Wy s (834)

(8.35)

hii= (ug — o) w1 + (up + o) wo .
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e We assume that ug—cy < 0 and ug+ co > 0, since the cases in which both eigenvalues have the same
sign are easier. Then,

- 1 0 - 1 U + Co —1
e The solution to the Riemann problem is
Qil/Q =@, +M" (Q? - _?71> (8.37)

which translates to

= > Ug + Co ,~ = 1 —~n —~n

hj—1/2 = b+ (hi —hi"y) — 2% (hu; — hu;_y) (8.38)
0 Co
~1 ~n ud—ct - - ug —Cy ,~n —~n
hui—1/2 = hu;_4 + 0200 2 (hi — hi_y) — 20 (hu; — hu,;_y) . (8.39)

where we have denoted the discrete unknowns as Q7' = (h?, E{LZL)T
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Exo. 8.4 Prove that, with the following notation,

n 1 In 7on
Wi, = 2c0 [(uo + co) hi — huy]
1 - —~n
W3, = —I[(—uo+co) b +huy,] ,
? 2 Co
we have
]3?71/2 = Wlnz + ng—l )

N\L n n
hu;_y 5 = (uo — co) Wi + (uo + co) Wa'i_y

or, equivalently,

. wr.
Qi = sz vl + ng—lyQ , i.e., Mfl/z - ( Wnl,z ) '
2,4—1

Xi-1/2
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8.4.1 Periodic boundary conditions

e Considering periodic conditions at = 0 and x = L, the flux must satisfy f(0,t) = f(L,t), Vt. In
the discrete case, the condition is, combined with the assumption of two-point fluxes,

_?/2 = E?\,H/Q = E(QX,,Q?) . (8-45)
Notice that the cell NV is to the left cell of the periodic boundary, and the first cell is to the right.
e Alternatively, this can be implemented in the following way (ghost cell):
1. Create a (ghost) cell with numbering N + 1.
2. Assuming Q? known for ¢ =1,..., N, set
Qv =41 -

3. Compute the fluxes F 5 = E(Q?,Q?H) fori=1,...,N.
4. Set Fly = Fjp, .

5. Update
QT =Q = [Flaye = Filape]
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8.4.2 Open boundary condition

An open boundary condition corresponds to (we consider here the right boundary):
1. Waves traveling to the right leave the domain without reflection,
2. No waves entering the domain from the right.

Let the node N be the rightmost node. We thus need

1
Wl,N+1/2 =0. (8.46)

The corresponding state va 12 is, from (8.44]), the solution of the Riemann problem with w; = 0 to the
I‘lght of ITN+1/2°

n 0 1 —ug + o) + huy
QX+1/2:W2NQ2:§( ) = ( (Fuo + co)hy N ) ) (8.47)

2N 2c0 \ (—u2+ )% + (ug + co)huy
because W3y = ﬁ [(—ug + co) WYy + %7\,] and v? = (1,ug + co)7.

Exo. 8.5 Study the code sw2016closed.m and modify it so that the boundary condition on the right bound-
ary corresponds to an open boundary (as if there existed an infinite body of water to the right, allowing
for right-going waves to exit without reflection, and not injecting any wave into the domain). To solve this
problem it 1s crucial to have previously solved exercise|7.1

Remark: This condition is easily implemented with a ghost cell. Let this cell’s number be N + 1. If one

sets QZJF L= Qﬁw 12 the computed result will be the same.
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8.4.3 Incoming waves

e A boundary can be exposed to incoming waves. A typical example is the mouth of a harbor, which is
exposed to the waves arriving from the ocean. This is quite similar to an open boundary condition,
which corresponds to zero incoming waves.

e But what is a wave? Let us consider left-going waves, which will be the ones entering through the
right boundary.

— A left-going wave, which will travel at speed ug — ¢y, must have ws = 0. This means that
hu(z,t) = (uo — co) h(z, 1) . (8.48)

— A left-going wave with elevation profile h(z, to) = f(x) at time ¢, will thus be given by

g(.t) = ( » _h(;;?(m) ) — ,t) ( (U;CO) ) = f (& — (ug — co)(t — to)) ( uOico ) -

vl

(8.49)
— It is easily checked that
dvq = —(uo — o) f'(x — (uo — o) (t — to)) vl (8.50)
and that
0:q = f'(x — (ug — co)(t — to))v' . (8.51)

As a consequence, 9;q + Ad,q = 0, so that the proposed wave is indeed an exact solution.
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e Let us consider a left-going wave with shape f(z) = sin(k(z —b)) for x > b (f(z) = 0 otherwise) that
arrives at © = b at time t = t,. What is wy(b,¢)? We consider an “ocean” with zero velocity, uy = 0.
Certainly, wy (b,t < tg) = 0. For t > ¢y, we have

W1 (b, t) = f(b + Co(t - to)) = sin[k‘co(t - to)] . (852)

e Again, this boundary condition is easily implemented with a ghost cell. It suffices to set
Q. =wibt)u' . (8.53)

Of course, any multiple of v? can be added to this, since it is inconsequential.

Exo. 8.6 Implement the incoming wave condition in the code of Exo. [8.5. What is the value of

Q}LV+1/2 i this case?
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8.4.4 Closed boundary condition

We consider a closed boundary at x5, the left boundary of the leftmost cell (and of the computation
domain).

If \' < 0 and \? < 0, which corresponds to ug < —cp, then this is an outflow in supercritical flow
and no boundary condition is needed.

If \' > 0 and A\? > 0, which corresponds to uy > ¢, then this is an inflow in supercritical flow and the
whole flux £/, can be specified. Equivalently, the whole vector Qg can be specified to the desired
value in the ghost cell (with number 0).

As before, the interesting case is when \' < 0 < A2, the case of subcritical flow, which is the one
considered from now on.

A closed boundary corresponds to u = 0, which imposes ug = 0 and © = 0. We consider here a
boundary that is closed to the waves, i.e., & = 0, but not necessarily to the mean flow (ug is thus
arbitrary). The water elevation of the wave, i.e., h, is unknown at closed boundaries.

Let us compute Q*, . We know that

1/2°
Qb = hui,=0 (8.54)
Xo1/2 T2 T Y :
We also know, because the wave w; travels to the left, that
Wi@/z =W . (8.55)
These two equations fully determine the vector Qi /2 In fact, from (8.35]) and (8.54)), we have
Uy — Co 4, Uy — €O 5rn
Wi ,=——" = — wr, . 8.56
2,1/2 o+ o | M2 o+ M ( )
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Then,

wi + u 2¢ 1
b O=RW,=—"L R (0T )y O . 8.57
Qip = EWy ug + o= \ Co— Uo Mg+ \ O (8:57)
Using the definition of w; = ﬁ [(uo + o) h — hii] we arrive at
n 1 n
b Ql,l -y C_Q2,1
Q= ( e ) . (8.58)

This condition has been used in all the codes already presented, at the left boundary.

Exo. 8.7 Prove that a ghost-cell state Qg that implements the closed condition is

QZZ( L ) : (8.59)

_ n
2,1

Then, provide another (different) ghost cell state that implements it.

Exo. 8.8 Consider a still liquid, ug = 0, hg = 1, with the left boundary closed and the right boundary
with oscillating velocity @ = a sin(wt) (this could be a “wave generator”). Determine and implement a
numerical method for this problem.

Notice that it takes a time T = 2L/cy for a wave to go from the right boundary to the left one, bounce
there, and arrive back at the right boundary. Consider values of w that are integer multiples of 27 /T ; e.q.,
w = 20m/T. Consider also w = 217/T and values in between. Run the simulation for long enough times
(20T or more).

If you still have energy, try to build a plot of the maximum value of/~1 in the domain as functions of time
for several frequencies.
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9.1

Nonlinear conservation laws

The scalar case: traffic low

Consider cars on a highway. Looked from far away, a density p (in cars/m) can be defined.

A density can also be defined in a statistical sense, taking an average over stochastic realizations of
the presence of cars in each meter of road.

A density can also be defined in a probabilistic sense, defining p(x,t) as the probability of finding a
car at point z at time ¢.

Letting pmax be the density corresponding to a bumper-to-bumper arrangement, we take our non-
dimensional variable as ¢ = p/pmax. Clearly, 0 < g < 1.

The flux of cars is f = u p, where u is the car velocity. This velocity is again a spatial or statistical
average. With the normalization, f = ugq.

For the problem to be hyperbolic, the flux must be a function of the local density alone, f = f(q).
Thus, v must be a function of ¢ alone. The equation is

Orq+0: flq(x)) = 0. (9.1)

Assume that
u(q) = Umax (1 — q), so that f(q) = tumaxq (1 —q) . (9.2)

Without loss of generality we take un.x = 1. This is a quite logical velocity function. The jacobian,
and thus the wave (information) speed, is

Mg) = fle)=1-2q. (9.3)
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e Now consider a discontinuous initial condition,

06 if <0
z,0) = - 9.4
a(z,0) {0.8 otherwise . (94)

Thus f(z,0) =0.24 if x <0, f(z,0) = 0.16 otherwise. The corresponding car speeds are 0.4 and 0.2,
and the wave speeds are —0.2 and —0.6. What happens for ¢ > 07

— Notice that 0,q = 0 for all = different from zero.

— Notice also that ¢(x,t) = ¢(x,0), i.e., the initial condition remaining frozen for all time, is not
a solution. For this, consider the integral form.

— Show that the function
0.6 if z<-0.4t¢t,
q(z,t) = { (9.5)

0.8 otherwise ,

is a solution to the problem. In fact, the unique one.
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e Let us now invert the initial condition,

0.8 if <0
x,0) = - 9.6
a(z,0) {0.6 otherwise . (9:6)

Thus f(z,0) =0.16 if <0, f(x,0) = 0.24 otherwise. The car speeds are 0.2 and 0.4, and the wave
speeds are —0.6 and —0.2. What happens for ¢ > 0?7

— Show that the function

0.8 if z<-0.4¢
1) = - ’ 9.7
a(, 1) {0.6 otherwise , (9.7)

is a weak solution to the problem.

— Show that the function

0.8 if x <—-0.5¢,
q(z,t) =407 if —05t<z<-03¢t, (9.8)
0.6 otherwise ,

is a weak solution to the problem.

Exo. 9.1 Build a weak solution that takes four values instead of three, 0.8, 0.7333, 0.6666, 0.6.
Discuss the consequences of this plentiful of solutions in terms of stability with respect to initial
conditions.
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9.2 Shock waves, rarefaction waves

e [t is important to remind that hyperbolic conservation laws can develop discontinuities in
the solution spontaneously, in finite time, even if starting from smooth initial conditions.

e Read Chapter 3 of Mishra & Jeltsch.

Exo. 9.2 Show that in solving 0;q + 0, f(q) = 0 with smooth initial data q(x,0), the time at which
the solution “breaks” is given by

—1
~ min, [f"(q(x,0)) doq(,0)]

if this number is positive. If it is negative, then characteristics never cross. (Ezercise 11.1 of Le Veque)

(9.9)

e From the different weak solutions that may exist in nonlinear conservation laws, the Lax entropy
condition allows as valid those for which the characteristics flow into a discontinuity, and not out
of it.

e Lax entropy condition: A discontinuous weak solution of dyq + 0, f(q) = 0, with a strictly
convex differentiable flux function f, satisfies the Lax entropy condition if

Fla (1) > s(t) > f'(q" (1) - (9.10)

e Notice that this requires f'(¢7) > f’(¢"). Since f is assumed convex, f’ is monotonous increasing,
and thus ¢~ > ¢ is a necessary condition for a discontinuity to satisfy Lax entropy condition.
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e When the scalar Riemann problem produces unphysical shocks, the actual physical solution is a

rarefaction wave. It is a self-similar solution of the form

q(z,t) = ¢ (%) :

Assuming differentiability, we have
Oq(x,t) = ¢/ (z/t) (—2/t%) |
Ouf(qlx,t)) = f(q(z, 1) ' (x/t) (1/t) = f'(e(x /1) ¢ (x/t) (1/1) .
Thus, q satisfies 0,q + 0, f = 0 iff
Faft) (=54 flela/)) =o.
Calling £ = x/t, the non-constant solutions satisfy

fe(€) =¢.
Equivalently, using the fact that f’ is strictly increasing,

plz/t) = (1) (/1) .

The rarefaction wave for the Riemann problem with ¢, < ¢, is thus given by

qr if x < f'(qo)t
q(z,t) =S () (z/t) i flla)t <a < flg)t
o if 2 > f'(q,)t

Exo. 9.3 Completely solve the Riemann problem for the traffic flow equation
g+ 0. f(q) =0,  fl@=q(1-q).

Use the result to propose a Godunov method for the traffic flow equations.
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9.3 The shallow water equations

e Remember

h hu
@(h >+ x(hu2+;gh2> (9.15)
Also,
— h _ q1 . hu B Qo
Q—(hu)_(%)? i(g>—(hu2+%gh2>—<%+%gq%>, (9.16)
and
D 0 1 0 1 .
= 2 —
:f(g) —Z—§+gq1 Qﬁ (—u2+gh Zu) (9.17)
with A = u— Vg, A* = u+ /gh and
1 1 - 1
Z_(U—\/ﬁ>’ Z_(qu\/g_h>‘ (9.18)

e Study the solution to the dam break problem. Notice the complexity of the Riemann problem.

e Rarefaction waves for the shallow water equations have the form (see LeVeque, example 13.9, for

details)
q, ifx/t <&
a@.t) = pleft) if6 <o/t <& (9.19)
where the function ¢ = (1, 2) solves, for p =1 or p = 2, the ODE
P (p(£))
= =0l 9.20
€0 = 020
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Considering p = 1, we have, from ((9.18]),

1
_ 2_ ./
Al:U—vth%/fh—\/g(h = Vq)‘1:< qg/q11/2 g/q1>’
a1

so that

¢ = —gx/wl/g ( %02/%01i\/ﬂ) . (9.21)

Solving these equations with initial condition

& =X(g,) =uw—gh,  0&)=gq,
provides the function ¢(§), which in this case is
1 2
e1(§) = 9 <w+2\/9he—£) : (9.22)
22(6) = @il®) [w+2v/ghe —2/g01(0)] - (9.23)

The solution of the Riemann problem will consist of just this rarefaction wave iff

e() =p(M\(g) =g, ,

otherwise a combination of two waves (rarefaction/shock or rarefaction/rarefaction) will take place.

Exo. 9.4 Check that — 1s indeed an exact solution of the shallow water equations.

e The complexity of the solution of the Riemann problem makes the Godunov method expensive,
especially because one only needs Qj_ 12 to compute the flux F" 5 as f (Qj_ . /2).

e Approximate Riemann solvers are quite interesting as an alternative, we will see one next.
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9.4 Roe’s solver for the shallow water equations

e Linearized Riemann solver. Set .

where Q 1 is the value at x;_; /2 of the solution to the linear Riemann problem
. if x<ax;_
O+ DI@ g =0, qlata) = 21 2 (9.25)
_— - - Qz if x> Ti—1/2

q= ( EE@ ) ; (9.26)

where
SRR Ry K SR U+ SR
h — z—1+ 7 : i = i—1 Wi i Ui . (927>
2 T+

Exo. 9.5 Program the Lax-Friedrichs, Laz-Wendroff and Roe solvers for the nonlinear shallow water
equations, with periodic boundary conditions for simplicity. Compare them for Example 13.1 of
LeVeque (page 257).
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Sonic fix

e The linearized Riemann solver will, being linear, assume a solution with two discontinuities, which
may or may not satisfy the Lax entropy condition.

e This only creates numerical difficulties (unphysical numerical solutions) when there is a transonic
rarefaction wave, i.e., when the rarefaction wave at z/t = 0 is different from q, and q,.

e The conditions for this are, for a 1-wave,
1 1
A(g,) <0< A(q)

and, for a 2-wave,
2 2
A (gg)<0<)\ (gr).

e Under these conditions, a sonic fix is needed. For the shallow water equations, since we have
computed the rarefaction waves explicitly, the sonic fix can be implemented by assigning to Qj the
value ¢(0).
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