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1 Principles and equations of Fluid Mechanics

1.1 Continuous media

• The continuum hypothesis.

• What is a material point?

• The velocity.
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1.2 Cartesian vectors and tensors

We assume {x1, x2, x3} to be Cartesian coordinates, with

ě(1), ě(2), ě(3) (1.1)

the Cartesian basis of vectors.

Vector field:

u(x, t) =
∑
i

ui(x, t) ě
(i) (1.2)

Gradient:

∇ϕ =
∑
i

∂ϕ

∂xi
ě(i) = ϕ,i ě

(i) (1.3)

∇ϕ = (ϕ,1, ϕ,2, ϕ,3)T (1.4)

Divergence:

∇ · u =
∑
i

∂ui
∂xi

= ui,i (1.5)

Tensor product of two vectors:

u⊗ v =
∑
i,j

uivj ě
(i) ⊗ ě(j) (1.6)

(u⊗ v) ·w = (u⊗ v)w = u (v ·w) (1.7)
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Double contraction:

(u⊗ v) : (w ⊗ z) = (u ·w)(v · z) =
∑
i,j

uivjwizj (1.8)

T : S =
∑
i,j

TijSij (1.9)

Gradient of a vector field:

∇u =
∑
i,j

ui,j ě
(i) ⊗ ě(j) (1.10)

(
∇u
)
ij

= ui,j (1.11)

Theorem 1.1 Volume integral of a gradient.∫
V

ϕ,i dV =

∫
∂V

ϕni dS (1.12)

Theorem 1.2 Gauss-Green, ň is the outward normal.∫
V

∇ · z dV =

∫
∂V

z · ň dS (1.13)
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Outer product, cross product:

w × z = εijk wj zk ě(i) (1.14)

Curl of a vector:
∇× z = εijk zk,j ě(i) (1.15)

Exo. 1.1 Show that the divergence of ∇ × z is zero, for any differentiable vector field z. Show that the
curl of ∇ϕ is zero, for any differentiable scalar function ϕ.

Exo. 1.2 Let V be a connected volume in 3D, with boundary ∂V . Assume that the fluid inside V is at
constant pressure, exerting a force

F = p ň (1.16)

per unit area on ∂V . Prove that the total force exerted by the inner fluid on the boundary is zero.

Exo. 1.3 Let V be a volume in 3D, with boundary ∂V . Assume the volume is filled with a fluid of constant
density ρ. Prove that the total weight can be obtained from surface integrals:∫

V

ρ g dV =
ρ g

3

∫
∂V

x · ň dS = ρ g

∫
∂V

x3 n3 dS (1.17)

Exo. 1.4 Prove Archimedes’ principle. A body immersed in a stagnant homogeneous liquid (which has
pressure proportional to its depth, p = ρ g h) experiences a net upward force equal to the weight of the
displaced liquid.
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1.3 Kinematics, material derivative and transport theorem

The trajectory of particles in a continuum can be described by a function F(x, s, t) which gives the
position at time t of the particle that ocupies position x at time s.

• F(x, t, t) = x for all t.

• Fixing s and t, considered just as function of x, the function φ(x) = F(x, s, t) is the deformation
field of the medium between times s and t.

• The velocity field is related to F

∂F
∂t

(x, s, t) = u(F(x, s, t), t) (1.18)

Here the pair (x, s) are a label for the particle. Another usual label is X, defined as the position
occupied by the particle in some “reference configuration”, which needs not correspond to an instant
of time. This is the so-called Lagrangian frame.

• Trajectories are sometimes written as
x(t) = φ(X, t) (1.19)

• Pathlines, streamlines and streaklines.

Exo. 1.5 A continuum is rigidly rotating with angular velocity ω around the axis a = ě(1) + ě(2). Compute
its Eulerian velocity field u(x, t) and its kinematic history function F(x, s, t).
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The material or total derivative of a quantity ψ at time t for the particle that at that time is located
at x is defined as the “derivative following the particle”, or, more precisely,

Dψ

Dt
= lim

δ→0

ψ(F(x, t, t+ δ), t+ δ)− ψ(x, t)

δ
(1.20)

Exo. 1.6 Prove that
Dψ

Dt
= ∂tψ + u · ∇ψ (1.21)

The acceleration of a fluid is the material derivative of the velocity

a =
Du

Dt
= ∂tu + (u · ∇) u = ∂tu + (∇u) · u (1.22)

Exo. 1.7 Compute the acceleration field of the rigid rotation described in Exo. 1.5.
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Let Ω be a region in space, and let f(x, t) be a scalar field defined in Ω. To fix ideas, let f be a temperature
field.

Let us select, at time t, a region V of Ω. This defines a material volume, consisting of the set of material
particles that are inside V at time t.

If one follows the particles that are in V at t, they will occupy another region of space V(t′) at time t′.
Obviously V(t) = V .

For any t′, let I(t′) be the integral of f , at time t′, over the volume occupied V(t′) by the particles

I(t′) =

∫
V(t′)

f(x, t′) dV . (1.23)

Clearly I(t′) is the integral of the temperature over the material volume, a volume that changes position
in time but has fixed material identity.

Reynolds transport theorem.

DI

Dt
(t) =

∫
V

[∂tf +∇ · (u f)] dV =

∫
V

∂tf dV +

∫
∂V

f u · ň dS (1.24)

Exo. 1.8 Use the previous formula to prove that a flow in which the volume of each material part is
preserved must be solenoidal (∇ · u = 0), also called incompressible.
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Computational exercise:

• Consider a structured mesh in space-time: {xi} × {yj} × {tk}. Consider that a velocity vector is
known on each node and time of the mesh: {ukij}.

• A velocity field u(x, t) is defined by trilinear interpolation of the instantaneous nodal velocity
vectors.

• Consider also that a set of points {Xm} is given.

Build an Octave code that calculates the trajectories of particles that, at time t0, are in the positions
{Xm}. Plot and animate in an interesting example.
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1.4 Conservation of mass

Let M be the mass contained at time t in volume V ,

M =

∫
V

ρ dV . (1.25)

Since the mass is conserved,
DM

Dt
= 0 , (1.26)

which implies that (integral form)∫
V

∂tρ dV = −
∫
∂V

ρu · ň dS (1.27)

and also that (differential form)
∂tρ+∇ · (ρu) = 0 (1.28)

This last equation can be written as
Dρ

Dt
+ ρ∇ · u = 0 , (1.29)

which shows that an incompressible flow (∇ · u = 0) in which the density of the material particles does
not change with time automatically satisfies mass conservation.
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The mass flux is given by
j = ρu . (1.30)

The conservation of mass can be written as a conservation law:

∂tρ+∇ · j = g (1.31)

where g represents the sources (in the case of mass equal to zero).

d

dt

∫
V

ρ dV = −
∫
∂V

j · ň︸︷︷︸
J

dS +

∫
V

g dV variation = inflow - outflow + internal sources

(1.32)

Exo. 1.9 Let ψ be the mass density, or mass fraction, of some species A dispersed in the medium. The
mass of this species in some volume V is

MA =

∫
V

ρψ dV . (1.33)

Derive conservation laws in differential and integral form for ψ. Also prove that

Dψ

Dt
= 0 . (1.34)
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1.5 Conservation of momentum

The total momentum contained by a region V of a continuum is

P =

∫
V

ρu dV . (1.35)

The principle of conservation of momentum states that changes in the momentum are equal to the applied
(volumetric and surface) forces, i.e.

DP

Dt
=

∫
V

f dV +

∫
S

F dS . (1.36)

Using the transport theorem one arrives at the integral form

d

dt

∫
V

ρu dV =

∫
V

f dV +

∫
∂V

[F− ρ (u⊗ u) ň] dS . (1.37)
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The Cauchy stress tensor

The action-reaction principle requires that, if at a point x of ∂V the region is subject to a surface force
density F(x), the continuum inside reacts with an equal and opposite force.
It can be proved that there exists a symmetric tensor, the Cauchy stress tensor, such that for all x and t

F(x, t) = σ(x, t) · ň(x, t) , (1.38)

in the sense that the surface forces that a medium exerts on another body through a surface with normal n
(pointing outwards) is equal to −σ · ň.

Inserting the stress tensor in (1.37) one arrives at

d

dt

∫
V

ρu dV =

∫
V

f dV +

∫
∂V

(σ − ρu⊗ u) · ň dS . (1.39)

The momentum flux through a surface is, thus,

ζ = −σ + ρu⊗ u (1.40)
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Exo. 1.10 From (1.39) deduce the following differential forms of momentum conservation:

Conservative form:

∂t(ρu) +∇ · ζ = f or (1.41)

∂t(ρu) +∇ · (ρu⊗ u) = ∇ · σ + f (1.42)

Non-conservative form:
ρ ∂tu + ρ (u · ∇)u = ∇ · σ + f (1.43)

Also, write the equations above in Cartesian components.
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1.6 Conservation of energy

Exo. 1.11 Read 1.6 and 1.7 from Wesseling.

The energy of a part of a continuum which occupies volume V is

E =

∫
V

ρ

(
1

2
|u|2 + e

)
dV (1.44)

where e is the internal energy per unit mass, which expresses the capability of a medium storing energy
and is a function of its local state. The principle of conservation of energy reads

DE

Dt
= Q+W , (1.45)

where the right-hand side is the sum of the heat and work received from the surroundings.
Defining q as the heat flux and Q as the heat source per unit volume one gets

DE

Dt
=

∫
V

(f · u +Q) dV +

∫
∂V

(u · σ − q) · ň dS (1.46)

Exo. 1.12 From the equation above, prove the following differential form

ρ
De

Dt
= −∇ · q + σ : ∇u +Q (1.47)
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1.7 Constitutive laws

If one counts the equations up to now we have

• Conservation of mass (1 equation).

• Conservation of momentum (3 equations).

• Conservation of energy (1 equation).

Total: 5 equations.

Counting the unknowns: ρ (1), u (3), σ (6), e (1), q (3). Total: 14 unknowns.

The 9 equations that are lacking come from the so-called constitutive laws, that describe the material
behavior (notice that the equations up to now hold for any continuum).

Essentially we need laws for e, σ and q. For the latter Fourier’s law is almost universally adopted,

q = −κ∇T , (1.48)

where T is the temperature and κ the thermal conductivity (in general a tensor).
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1.8 Newtonian and quasi-newtonian behavior

• The stress of a fluid at a point x and instant t can in principle depend on the whole deformation
history of the vicinity of x.

• However, not all constitutive laws correspond to fluids. The definition of fluid requires that “if the
vicinity of the point has not deformed at all, then the stress tensor must be spherical”. Spherical, in
this context, means that σ is a multiple of the identity.

• A most important class of fluid constitutive laws corresponds to the so-called quasi-Newtonian fluids:

σ = (−p+ λ∇ · u) 1 + µ
(
∇u +∇uT

)
(1.49)

in which λ and µ can depend on the instantaneous deformation rate tensor

ε(u) = D u =
1

2

(
∇u +∇uT

)
. (1.50)

• Since λ and µ are scalars, the model is objective only if they depend on ε(u) through is invariants:

I = trace ε(u) = 1 : ε(u) = ∇ · u (1.51)

II =
1

2

[
(trace ε(u))2 − ε(u) : ε(u)

]
(1.52)

III = det ε(u) (1.53)

Notice that, in particular, the deformation rate

‖ε(u)‖ =
√
ε(u) : ε(u) (1.54)

• If λ and µ are constants, eventually dependent on the temperature, the fluid is called Newtonian.
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• Shear thinning (resp. shear thickening) describe fluids in which µ is a decreasing (resp. increasing)
function of ‖ε(u)‖.

Exo. 1.13 Knowing that the velocity field of a rigid body motion is given by

u(x, t) = z(t) + r(t)× x , (1.55)

1. Prove that ε(u) is zero.

2. Compute the vorticity ω = ∇ × u and find its relation to r and to the antisymmetric part of
the velocity gradient, ∇Au = 1

2

(
∇u−∇uT

)
.

Exo. 1.14 For an incompressible fluid, the term Φ = σ : ∇u in the differential equation dissipation of
energy, i.e., the power transformed into heat. Write down Φ in Cartesian coordinates.

1.9 Boundary conditions

Exo. 1.15 Read 1.6 from Kirby.

Exo. 1.16 Read, fill in the details and reproduce (part of) the results of the articles by N. Morhell and
H. Pastoriza (Microfluidics and Nanofluidics, 2013, Sensors and Actuators B, 2016).
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2 Brief overview of numerical methods for CFD

For this chapter we follow basically the two references:

• Finite Volume Methods. R. Eymard, T. Gallouët and R. Herbin. 2003. Pages 4-26, and also
some small parts of Chapter 3.

• Principles of Computational Fluid Dynamics. P. Wesseling. 2001. Chapter 3.
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2.1 Differential, integral and variational formulations

Consider the general second-order differential equation

Lϕ = −(aijϕ,j),i + (biϕ),i + c ϕ = q . (2.1)

This equation is said to be uniformly elliptic if there exists C > 0 such that

v · (a(x) · v) = aij(x) vivj ≥ C ‖v‖2 ∀x ∀v . (2.2)

This condition, together with suitable boundary conditions, guarantees the existence of a unique ϕ in the
space H1(Ω). This solution is continuous (a.e.) across any surface.

Equation (2.1) can be seen as a steady conservation law in differential formulation,

∇ · j = g , (2.3)

by taking
j = J(ϕ,∇ϕ) = − a∇ϕ + bϕ (2.4)

and
g = q − c ϕ . (2.5)

There thus exists a unique ϕ ∈ H1(Ω) that satisfies the boundary conditions and also (2.3) for all x in
the domain Ω of the problem. This is the differential formulation, which is the start point of finite
difference approximation methods.
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The differential equation must be understood in a weak sense, i.e.,

−
∫

Ω

j · ∇ψ dV +

∫
∂Ω

ψ j · ň dS =

∫
Ω

g ψ dV (2.6)

for all ψ ∈ H1(Ω). Notice that this formula has no derivative of j and thus makes sense in cases in which
the strong form (2.3) does not.

Considering homogeneous Dirichlet boundary conditions, the variational formulation of the problem
reads: “Find ϕ ∈ H1

0 (Ω) such that

−
∫

Ω

J(ϕ,∇ϕ) · ∇ψ dV =

∫
Ω

g(ϕ)ψ dV (2.7)

for all ψ ∈ H1
0 (Ω).”

This formulation is adopted in primal finite element methods, in which ϕh belongs to some subspace
Vh and satisfies (2.7) only for functions ψ belonging to Vh.
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Let Γ be a surface that divides Ω into two parts, Ω1 and Ω2. Integrating by parts (2.7) in each Ωi one
obtains∫

Ω1

[∇·J(ϕ,∇ϕ)−g(ϕ)] ψ dV +

∫
Ω2

[∇·J(ϕ,∇ϕ)−g(ϕ)] ψ dV −
∫

Γ

〚J(ϕ,∇ϕ)·ň〛ψ dS = 0 ∀ψ ∈ H1
0 (Ω) .

(2.8)
This implies that

• The solution of (2.7) satisfied the differential equation a.e. in Ω1 and Ω2.

• The normal flux J · ň is continuous across Γ.

Exo. 2.1 Give arguments to support (or prove) both previous statements.
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Let K be an open polyhedral subset of Ω, with facets e ∈ E . Integrating (2.3) over K and using Gauss-
Green formula one gets ∑

e∈∂K

∫
e

J(ϕ,∇ϕ) · ň dS =

∫
K

g(ϕ) dK . (2.9)

Notice that J · ň is well defined on e. The integral formulation of the problem corresponds to “find the
unique ϕ ∈ H1(Ω) such that (2.9) holds for all polyhedra K contained in Ω”.

• The integral formulation is the basis of finite volume methods. The discretization methodology
consists of selecting a finite number of polyhedra as the finite volume mesh Th, and obtaining a finite
number of equations by only requiring that (2.9) holds for those polyhedra. This leads to∑

e∈∂K

FK,e =

∫
K

g dV ∀K ∈ Th . (2.10)

• The next step is the selection of degrees of freedom for the discrete solution. The most usual choice
is to have one unknown ϕK per finite volume K, i.e., NV unknowns for NV equations. In addition,
a node xK is defined for each K.

• Letting ϕ ∈ RNV be the column array of unknowns, a numerical flux function FK,e(ϕ) is intro-
duced satisfying a consistency condition

FK,e(ϕ
∗) ' FK,e(ϕ,∇ϕ) (2.11)

where ϕ∗ = (ϕ(x1, ϕ(x2, . . .)
T is the array of nodal values of any exact solution ϕ of the problem.

• The discrete system of equations reads∑
e∈∂K

FK,e(ϕ) =

∫
K

g(ϕ) dV ∀K ∈ Th . (2.12)
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• The finite volume method extends naturally to transient problems. If the equation considered is

∂tφ+ Lφ = q , (2.13)

then upon FV discretization in space one ends up with

VK
dϕK
dt

+
∑
e∈∂K

FK,e(ϕ) =

∫
K

g(ϕ) dV ∀K ∈ Th . (2.14)

Above, VK is the volume of cell K. The numerical problem thus reduces to a system of ODE that is
then discretized in time with a variety of methods.

• For the method to be strictly conservative, it must happen that if a given facet e separates cell K
from cell L then

FK,e(ϕ) = −FL,e(ϕ) . (2.15)

• An interesting alternative to our choice of degrees of freedom is to add an additional unknown per
facet. Let E be the “skeleton” of the mesh, consisting of all facets e, and let ϕ̂j, with j = 1, . . . , NE

be the facet unknowns. One now has NV equations and NV +NE unknowns. The required additional
equations are (2.15), closing the system.

• Other possibilities exist, such as overlapping finite volumes, but we will not discuss them here.
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2.2 A one-dimensional example

Let us take
Lϕ = −(aφ,1),1 = q (2.16)

in the domain (0, `), which has nodes 0 = x0, x1, . . . , xn = `. Let hi = xi−xi−1. Also, let xi+ 1
2

= 1
2
(xi+xi+1)

and hi+ 1
2

= 1
2
(hi + hi+1).

Finite differences

(aϕ′)′(xj) '
a(xj+ 1

2
)ϕ′(xj+ 1

2
)− a(xj− 1

2
)ϕ′(xj− 1

2
)

hj+ 1
2

'
aj+aj+1

2

ϕ(xj+1)−ϕ(xj)

hj+1
− aj−1+aj

2

ϕ(xj)−ϕ(xj−1)

hj

hj+ 1
2

. (2.17)

For equispaced nodes this leads to the discrete scheme (3.9) of Wesseling.

Exo. 2.2 Build a small code for this problem and solve the interface problem of page 84 of Wesseling.
Compare to the results shown in the book.
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Finite volumes

Notice that J(ϕ, ϕ′) = −aϕ′. Letting the finite volumes be given by Vj = (xj− 1
2
, xj+ 1

2
) a reasonable

numerical flux (for continuous a) is

Fj+ 1
2

= −aj + aj+1

2

ϕj+1 − ϕj
hj+1

. (2.18)

Exo. 2.3 Build the corresponding finite volume method in terms of nodal quantities. Compare to the
finite-difference scheme.

Improved finite volumes

Let us introduce as additional degrees of freedom the values ϕj+ 1
2

and

Fj,j+ 1
2

= − aj
ϕj+ 1

2
− ϕj

hj+1/2
. (2.19)

Similarly, we have

Fj+1,j+ 1
2

= aj+1

ϕj+1 − ϕj+ 1
2

hj+1/2
. (2.20)

Conservation condition (2.15) then allows to eliminate the unknown ϕj+ 1
2
,

Fj+ 1
2

= Fj,j+ 1
2

= −Fj+1,j+ 1
2

⇒ ϕj+ 1
2

=
ajϕj + aj+1ϕj+1

aj + aj+1

. (2.21)

Exo. 2.4 Build the finite volume scheme corresponding to the flux above. Compare to (3.17) de Wesseling.
Modify the code of exercise 2.2 to implement it. Test it. Compute the convergence order in a smooth problem
with analytical solution.

26



Exo. 2.5 Study and discuss cell-centered finite volumes for the 1D problem, in which the nodes are xj+ 1
2

instead of xj and the finite volumes are of the form (xj, xj+1). Modify the code to deal with cell-centered
discretization and compare to previous results.

Exo. 2.6 Analyze the consistency (truncation error) of the fluxes and of the overall stencil of the vertex-
centered scheme of Exo. 2.3. Consider a ≡ 1, f = 1 and hi equal to h if i is even and equal to h/2 when i
is odd. Discuss the result together with a numerical experiment.

Exo. 2.7 Study Chapter 2 (and part of Chapter 3) of Eymard et al’s “Finite Volume Methods”:

1. What is the definition of an admissible one-dimensional mesh? Are cell-centered and vertex-centered
meshes admissible?

2. Do the calculations showing that a cell-centered scheme is not consistent in the usual finite-difference
sense (Example 2.1 and Remark 2.3).

3. Follow step by step the proof of Theorem 2.1.

4. Do the calculations that lead to equation 2.26 and to the harmonic mean formula of Example 2.2.

5. Follow step by step the proof of Theorem 2.3.

6. What is an admissible mesh in 2D? Give examples of admissible meshes and of inadmissible meshes.
What is a Voronöımesh? Are Voronöımeshes always admissible? Why?

7. Explain Equation 3.86: What is the equation corresponding to a cell that has its boundary at the
boundary of Ω?

8. Explain in simple words Definition 3.7 of Neumann restricted admissible meshes.
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Exo. 2.8 (Miniproject) Consider a microchannel with (electrically) non-conducting walls and a con-
ducting fluid. The geometry is given by a mask on a rectangular mesh, so that the mask takes different
values depending on the cell being fluid, wall, inlet, outlet. The electric potential satisfies

∆Φ = 0 (2.22)

in the fluid, with ∂Φ/∂n = 0 at the walls, and Φ given at inlets and outlets. Code a finite volume solver
for the electric potential and compute from it the electric field E = −∇Φ.
In electro-osmotic flows with homogeneous material properties the fluid velocity satisfies

u = −κE (2.23)

where κ is a material constant. With the computed electric field simulate the transport of inert particles
for a non-straight microchannel.
Also, take a look at the video

https://br.comsol.com/video/simulating-electrokinetic-phenomena-microfluidics#
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3 Numerical approximation of fully developed flow

3.1 The physical setting

• Incompressible flow along a long cylinder of cross section Ω ⊂ R2. The flow domain is B = Ω×(0, L).

• The flow is driven by a pressure gradient

G =
p(L)− p(0)

L
(3.1)

notice that when G > 0 we expect w = u3 < 0 and viceversa.

• If L is sufficiently large, the entry and exit effects can be neglected and all cross sections are essentially
identical, except for the pressure.

• Decomposing the stress tensor in pressure and non-pressure components, we assume

σ(x1, x2, x3, t) = −p(x3, t) I + σ∗(x1, x2, t) . (3.2)

• Let ω be an arbitrary region in Ω and let V be the corresponding cylinder, i.e.,

V = ω × (0, L) . (3.3)

We denote also ωz = ω × {z} (the cross section at x3 = z) and S = ∂ω × (0, L) (the lateral surface)
so that

∂V = ω0 ∪ S ∪ ωL . (3.4)
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3.2 Conservation principles

• Mass: Because of incompressibility, and assuming ρ is a constant, this principle reads

0 =

∫
∂V

u · ň dS = −
∫
ω0

w dS +

∫
ωL

w dS +

∫
S

u · ň dS . (3.5)

This condition is automatically satisfied in parallel flows which we consider hereafter, i.e., flows in
which the velocity is of the form

u(x1, x2, x3, t) = (0, 0, w(x1, x2, t)) . (3.6)

• Momentum: In parallel flows,

L
d

dt

∫
ω

ρw dω = −G L |ω| + L

∫
∂ω

τ · ν̌ d∂ω (3.7)

where
τ = (σ13, σ23)T and ν̌ = (n1, n2)T . (3.8)

In incompressible isothermal flows the mass and momentum conservation principles form a closed system.

In this case one equation, which is (3.7), in one unknown w.
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3.3 Boundary conditions

Exo. 3.1 Read Section 1.6 and Chapter 2 of Kirby.

1. Prove Eq. 1.59.

2. What is the Navier slip boundary condition? Give a physical argument that determines the sign of b.

3. Solve the unidirectional flow between two parallel plates located at x3 = 0 and x3 = h, subject to
a pressure gradient ∇p = (∂1p, ∂2p) and with the upper plate moving at a velocity u = (U, 0) with

respect to the lower one. Compute the flux j =
∫ h

0
u dx3 as a function of ∇p, U and h (and of the

fluid viscosity µ).

4. Justify the claim ∇ · j = ∂1j1 + ∂2j2 = 0, and use this claim to arrive at the lubrication equation
(also known as Reynolds equation).
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• The no-slip boundary condition holds when a fluid is in contact with a solid surface, in this case
it translates to

w(x1, x2, t) = 0 ∀ (x1, x2) ∈ ∂Ω . (3.9)

• Under certain conditions, the fluid has been observed to slip at the solid boundary (e.g., in very
rarefied flows). In the parallel flows we are considering, the adopted (Navier) condition amounts to

τ · ν̌ = − b (w − wwall) . (3.10)

• If an electric field is applied along the channel, then a non-zero velocity “appears” at the wall (read
Chapter 6 of Kirby to understand why). This is an apparent wall velocity, which in fact only takes
place at a finite distance ∼ 5λD from it, where λD is the Debye-Hückel length. Its value is given
by the Helmholtz-Smoluchowski equation

w = meoEwall (3.11)

where meo is the electroosmotic mobility and is a property of the fluid and the surface material
(of the order of 10−8m2/(V s)).
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3.4 Viscous parallel flow

If the fluid is Newtonian-like (Boussinesq),

σ∗ = µ

 0 0 w,1
0 0 w,2
w,1 w,2 0

 ⇒ τ = µ∇w . (3.12)

We can, applying Gauss-Green theorem, rewrite (3.7) as∫
ω

[ρ ∂tw + G − ∇ · (µ∇w)] dω = 0 (3.13)

and arrive at the differential form (with no-slip conditions for example){
ρ ∂tw + G(t)− ∇ · (µ∇w) = 0 in Ω ,

w = 0 on ∂Ω .
(3.14)

Writing it as a conservation law

∂t(ρw) +∇ · j = g , j = −µ∇w , g = −G . (3.15)
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3.5 Discretization in Cartesian grids

3.5.1 Finite differences

Consider a rectangular pipe Ω = (0, L1)× (0, L2) with a uniform vertex-centered Cartesian grid with nodes
at positions

Xj1j2 = ((j1 − 1)h1, (j2 − 1)h2), jα = 1, . . . , nα + 1, α ∈ {1, 2} , (3.16)

where nα is the number of subdivisions in the α direction and nαhα = Lα.

Considering as unknowns the values at the nodes wj1,j2 , we have wj1,j2 = 0 if (j1, j2) is at the boundary.
For an internal node, on the other hand, a FD space discretization of (3.14) with constant density and
viscosity leads to

ρ
d

dt
wj1,j2 + G − µ wj1+1,j2 − 2wj1,j2 + wj1−1,j2

h2
1

− µ wj1,j2+1 − 2wj1,j2 + wj1,j2−1

h2
2

= 0 . (3.17)

Our first issue is the implementation of this method.
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Node-to-unknown mapping:

There are (n1 + 1)× (n2 + 1) unknowns, they can be numbered by row or by column (or else) to get the
mapping. Denoting N1 = n1 + 1, N2 = n2 + 1,

function ng = ij2n (i,j)

global N1 N2

ng = i + (j-1)*N1;

endfunction

Exo. 3.2 Build a function n2ij(n) that is the inverse of the previous one.
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Viscous matrix:

pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,j);

The following matrix row provides the viscous contribution (Lµw)P ' −µ∇2w(P ) to equation P (interior
node):

aux1 = mu/dx^2; aux2 = mu/dy^2;

A(pP,pP) = 2*(aux1+aux2);

A(pP,pN)=-aux2; A(pP,pS)=-aux2;

A(pP,pE)=-aux1; A(pP,pW)=-aux1;

so that

− µ wj1+1,j2 − 2wj1,j2 + wj1−1,j2

h2
1

− µ wj1,j2+1 − 2wj1,j2 + wj1,j2−1

h2
2

=
(
A W

)
P

. (3.18)

Considering just the interior nodes, we get the system

ρ
d

dt
W + A W = b(t) (3.19)

where bP (t) = −G(t). Discretizing now in time by the θ-method,( ρ

∆t
I + θ A

)
W n+1 =

( ρ

∆t
I− (1− θ)A

)
W n + bn+θ (3.20)

or
MW n+1 = RW n + bn+θ (3.21)
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#-- Assembly: loop over nodes

for i=1:N1

for j=1:N2

if (i==1 || i==N1 || j==1 || j==N2)

continue;

else

# viscous matrix

pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,j);

aux1 = mu/dx^2; aux2 = mu/dy^2;

Af(pP,pP) = 2*(aux1+aux2);

Af(pP,pN)=-aux2; Af(pP,pS)=-aux2; Af(pP,pE)=-aux1; Af(pP,pW)=-aux1;

# mass matrix

Am(pP,pP)=rho/dt; bm(pP)=dx*dy;

endif

endfor

endfor

#-- Timestepping Matrices: M, R

M = Am + theta*Af;

R = Am - (1-theta)*Af;

#-- Correct M for no-slip boundary conditions

for i=1:N1

for j=1:N2

if (i==1 || i==N1 || j==1 || j==N2)

pP=ij2n(i,j); M(pP,pP)=1;

endif

endfor

endfor
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Exo. 3.3 (Miniproject: electroosmotic pump) Consider a pipe of rectangular cross section
(0,W )× (0, H) and length L, such that the horizontal walls are made of glass and the vertical ones of
PDMS. Considering water as the fluid, the corresponding electroosmotic mobilities are meo = 3× 10−8

and 1.5× 10−8 m2/(V-s). The water has ρ = 1000 kg/m3 and µ = 10−3 Pa-s.
Take W = 20 microns, H = 10 microns and L = 3 mm.
Adapt the code pipe_fd_t.m and answer the following questions:

1. Considering that both ends of the pipe are at atmospheric pressure, what is the steady flow rate
and average velocity for a voltage difference of 1 Volt between the ends of the pipe? What is the
shape of the steady velocity profile? How long does it take to reach the steady flow rate?

2. If one end of the pipe is closed, what will be the pressure difference between its ends?
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3.6 Vertex-centered finite volumes

• The node-to-unknown mapping remains the same. To allow for variable spacing we assume that
arrays X(1 : N1) and Y (1 : N2) are given, containing the nodal coordinates.

• From (3.7), the equation for the (interior) finite volume P is

FPN + FPE + FPS + FPW =

∫
ωP

(−G − ρ ∂tw) dω ' m(ωP )

(
−G − ρ dWP

dt

)
(3.22)

where we have treated ∂tw as a source and the left-hand side approximates
∫
∂ωP

j · ν̌ ds (remember

that j = −µ∇w).

• Now we have to define the discrete fluxes∫
eN

j · ν̌ dx1 =

∫
eN

j2 dx1 =

∫
eN

(−µw,2) dx1 ' −µ
WP −WN

yP − yN
xE − xW

2
.
= FPN (3.23)

and analogously

FPE
.
= −µ WP −WE

xP − xE
yN − yS

2
(3.24)

FPS
.
= µ

WP −WS

yP − yS
xE − xW

2
(3.25)

FPW
.
= µ

WP −WW

xP − xW
yN − yS

2
(3.26)
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• If we consider the mesh uniform and divide everything by h1h2, we arrive at the discrete equation

ρ
dWP

dt
+ µ

WP −WN

h2
2

+ µ
WP −WS

h2
2

+ µ
WP −WE

h2
1

+ µ
WP −WW

h2
1

= −G , (3.27)

which shows that balancing fluxes over control volumes indeed leads to a discretization of the
Laplacian (equivalent to finite differences, in simple cases).
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• In the FV case the inertia matrix is diagonal but not proportional to the identity:

BPP = m(ωP ) ρ . (3.28)

• Similarly, the right-hand side is now
bP = −m(ωP )G . (3.29)

• The viscous matrix can be built by summing up the contributions of each face:

# viscous matrix

pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,j);

xP=X(i); xN=xP; xS=xP; xE=X(i+1); xW=X(i-1);

yP=Y(j); yE=yP; yW=yP; yN=Y(j+1); yS=Y(j-1);

# north face

aux=mu*(xE-xW)/(yN-yP)/2;

Af(pP,pP) = Af(pP,pP) + aux;

Af(pP,pN) = Af(pP,pN) - aux;

# east face

aux=mu*(yN-yS)/(xE-xP)/2;

Af(pP,pP) = Af(pP,pP) + aux;

Af(pP,pE) = Af(pP,pE) - aux;

etcetera
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• Variable viscosity: Let us assume that the viscosity is not uniform, but a given function µ(x, y). The
modification in the previous code is straightforward:

# viscous matrix

pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,j);

xP=X(i); xN=xP; xS=xP; xE=X(i+1); xW=X(i-1);

yP=Y(j); yE=yP; yW=yP; yN=Y(j+1); yS=Y(j-1);

# north face

xF=xP; yF=(yP+yN)/2;

aux=mu(xF,yF)*(xE-xW)/(yN-yP)/2;

Af(pP,pP) = Af(pP,pP) + aux;

Af(pP,pN) = Af(pP,pN) - aux;

# east face

xF=(xP+xE)/2; yF=yP;

aux=mu(xF,yF)*(yN-yS)/(xE-xP)/2;

Af(pP,pP) = Af(pP,pP) + aux;

Af(pP,pE) = Af(pP,pE) - aux;

etcetera
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With the FV formulation we arrive at the system

B
d

dt
W + A W = b(t) . (3.30)

Discretizing now in time by the θ-method,(
1

∆t
B + θ A

)
W n+1 =

(
1

∆t
B − (1− θ)A

)
W n + bn+θ (3.31)

or
MW n+1 = RW n + bn+θ . (3.32)

Quite similar to the FD, uniform spacing case, but now with more general properties and mesh.
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• Quasi-newtonian fluid: Viscosity may depend on the shear rate, for incompressible flows given by

γ̇
.
=
√
D u : D u (3.33)

44



Different models exist for blood
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3.7 Cell-centered finite volumes

The same problems as before can be solved by cell-centered finite volumes. It is interesting to see how the
imposition of boundary conditions is quite different.
We adopt a convention for the numeration of unknowns in structured quadrilateral finite volumes.

• We consider a “covering domain” (x−, x+) × (y−, y+). The mesh is provided by two arrays, X and
Y , such that

x− = X1 < X2 < . . . < Xn1+1 = x+ , y− = Y1 < Y2 < . . . < Yn2+1 = y+ . (3.34)

• The cell with numbering (i, j) will be

Vij = (Xi, Xi+1)× (Yj, Yj+1) . (3.35)

• The cell unknowns have the same numbering as the corresponding cell, and it is located at the
nodes given by the arrays X̂ and Ŷ :

Wij ' w(X̂i, Ŷj) (3.36)

X̂i =
1

2
(Xi +Xi+1) (3.37)

Ŷj =
1

2
(Yj + Yj+1) (3.38)

δxi = Xi+1 −Xi (3.39)

δyj = Yj+1 − Yj (3.40)

• The face and vertex unknowns will be numbered as follows:
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Xi Xi+1

Yj+1

Yj

Ŷj

X̂i

(i, j) (i + 1, j)

(i + 1, j + 1)

(i + 1, j)(i, j) (i, j)

(i, j)

(i, j + 1) (i, j + 1)

• All cells will have all unknowns, meaning that there will be:

– n1 × n2 cell unknowns.

– (n1 + 1)× (n2 + 1) vertex unknowns.

– n1 × (n2 + 1) horizontal face unknowns.

– (n1 + 1)× n2 vertical face unknowns.

• A mask will be a cell variable Mij, with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, such that if Mij = 0 we have a
fluid cell. Other values of the mask will correspond to walls, which can have different boundary
conditions depending on the value.
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Exo. 3.4 Miniproject (electroosmotic pump 2): Build a cell-centered code for the solution of the
transient parallel flow of a viscous fluid with the following characteristics:

• The pressure gradient G(t) can be arbitrary.

• Time integration is performed with the method of lines (θ-method).

• Mij = 11, 12 ⇒ Smoluchowski condition, with meo given and Ewall(t) programmable.

• Computes the flow rate Q =
∫

Ω
w dΩ as a function of time.

Then answer the same questions as in the previous miniproject.
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4 Incompressible Navier-Stokes equations

• In the previous sections we have applied the basic principles of fluid mechanics to parallel flows.

• In more general situations, one has to go back to the basic principles as introduced in section 1.
They can be equivalently written in integral or differential form, and the latter can equivalently be
conservative or non-conservative.

• In this section we particularize the basic principles for the case of an incompressible Newtonian fluid,
arriving at the Navier-Stokes equations.
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4.1 Equations and fluxes

• The basic conservation principles of Continuum Mechanics, as discussed in the first chapter, are
conservation of mass,

d

dt

∫
Ω

ρ dΩ +

∫
∂Ω

ρu · ň d∂Ω = 0 , (4.1)

conservation of momentum,

d

dt

∫
Ω

ρu dΩ +

∫
∂Ω

(ρu⊗ u− σ) · ň d∂Ω =

∫
Ω

f dΩ , (4.2)

conservation of energy,

d

dt

∫
Ω

E dΩ +

∫
∂Ω

(E u− σ · u + q) · ň d∂Ω =

∫
Ω

(f · u +Q) dΩ , (4.3)

where the fourth principle, conservation of angular momentum, is automatically satisfied
by requiring that the stress tensor σ be symmetric. Above, E is the total energy, i.e. E =
ρ (e+ u · u/2), and q is the heat flux.

• The fluxes of mass, momentum and energy are highlighted in red above.
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• A Newtonian fluid is defined by the linear constitutive relation

σ = − p I + µ
(
∇u +∇uT

)
+ λ∇ · u I . (4.4)

• Under some frequent conditions ρ is constant and µ can be assumed given, which leads to a closed
system of equations which only involves the mass and momentum conservation principles.

Exo. 4.1 Deduce the following equations and write them down explicitly in 2D Cartesian coordinates.

Incompressible Navier-Stokes equations (non-conservative form):

ρ ∂tu + ρ (u · ∇) u−∇ ·
[
µ (∇u +∇uT )

]
+∇p = f (4.5)

∇ · u = 0 (4.6)

The simplest form, when µ is constant, reads

ρ ∂tu + ρ (u · ∇) u− µ∇2u +∇p = f (4.7)

∇ · u = 0 (4.8)

Exo. 4.2 Prove that for an incompressible flow all the following expressions for the acceleration are
equivalent:

Du

Dt
= ∂tu+(u·∇)u = ∂tu+∇·(u⊗u) = ∂tu−u×(∇×u)+

1

2
∇(u·u) = ∂tu+

1

2
[(u · ∇)u +∇ · (u⊗ u)]

(4.9)
They are called convective, conservative, rotational and skew-symmetric forms, respectively.
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Exo. 4.3 Deduce that the differential equations in conservative form are the

Incompressible Navier-Stokes equations (conservative form):

ρ ∂tu +∇ ·
[
p I− µ (∇u +∇uT ) + ρu⊗ u

]
= f (4.10)

∇ · u = 0 (4.11)

Incompressible Navier-Stokes equations (integral form):∫
V

ρ ∂tu dV +

∫
S

ζ · ň dS =

∫
V

f dV (4.12)∫
S

u · ň dS = 0 (4.13)

where the momentum flux ζ is

ζ = p I− µ (∇u +∇uT ) + ρu⊗ u = −σ + ρu⊗ u . (4.14)

• The main difficulties for the numerical simulation of incompressible flows come from

1. The coupling of velocity and pressure.

2. The nonlinearity of the convective term.

3. If viscosity is small (Reh large), the convective term dominates the viscous term (singular
perturbation, boundary layers, etc.).
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4.2 Initial and boundary conditions

• The equations (4.5)-(4.6) are first order in time and second order in space for the velocity. The
well-posedness of the problem requires an initial velocity field, which has to be divergence-free,
i.e.,

u(x, t = 0) = u0(x) with∇ · u0 = 0 inΩ . (4.15)

Remark: In fact, it is also required that the imposed normal velocity at the boundary be compatible
with u0.

• There are several types of possible boundary conditions:

1. Imposed velocity: At rigid walls, if uw is the velocity of the wall, set u = uw.

2. Imposed force: Used when the force L applied on the fluid (per unit surface) at some boundary
is known. The condition reads

σ · ň = L . (4.16)

3. Drag law: This corresponds to
σ · ň = −D(u) . (4.17)

An impermeable wall with drag would have the following condition:

u · ň = 0 , (σ · ň)τ = −D(u) , (4.18)

where vτ refers to the tangential component of a vector v, i.e.,

vτ = v − (v · ň) ň . (4.19)

4. The drag law is an example of the decomposition between tangential and normal conditions
at boundaries. Typically, one specifies the tangential component of either velocity or force, and
the normal component of either velocity or force, with these two choices being independent of
one another.
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5. Free surface with surface tension:

σ · ň = − γ H ň + (∇ γ)τ (4.20)

where H is the mean curvature.

6. Outflow: Some combination of the above that tries to minimize the upstream effect of domain
truncation.

The incompressible Navier-Stokes equations are by themselves widely used in Physics and Engineer-
ing, thus justify the interest in their numerical approximation.

They are also a fundamental building block of more sophisticated models that can predict the
behavior of thermally buoyant flows, averaged turbulent flows, two-phase flows, among others.
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5 The MAC discretization method of the incompressible Navier-

Stokes equations

5.1 Conservation in a rectangle

Consider a finite volume V which is a rectangle of sides hx and hy, and denote its edges by E, W, N and
S, with exterior normals (1, 0), (−1, 0), (0, 1) and (0,−1), respectively. Our aim here is to obtain explicit
expressions for the mass and momentum conservation equations in this rectangle.
The mass flux vector ρu must satisfy ∫

∂V

ρu · ň dS = 0 . (5.1)

The momentum flux vector
ζ = p I− µ (∇u +∇uT ) + ρu⊗ u (5.2)

consists of three terms, which we denote by pressure, viscous and inertia terms.
The momentum equation contains the integral of ζ · ň over the boundary of V , which is the only nontrivial
part to calculate and is detailed below. In what follows we adopt the usual notation of (x, y) instead of
(x1, x2), and (u, v) instead of (u1, u2).
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5.2 Mass conservation

The exact mass conservation equation reads

(u∗E − u∗W )hy + (v∗N − v∗S)hx = 0 . (5.3)

where u∗E, u∗W , v∗N and v∗S are the face-averaged velocities over the East, West, North and South faces; i.e.,

u∗E =
1

hy

∫
E

u · ň ds =
1

hy

∫ y+

y−

u(xE, y) dy (5.4)

u∗W = − 1

hy

∫
W

u · ň ds =
1

hy

∫ y+

y−

u(xW , y) dy (5.5)

v∗N =
1

hx

∫
N

u · ň ds =
1

hx

∫ x+

x−

v(x, yN) dx (5.6)

v∗S = − 1

hx

∫
S

u · ň ds =
1

hx

∫ x+

x−

v(x, yS) dx (5.7)

vN

vS

uEuW

x− x+

y+

y−
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Basic methodology:

1. Define degrees of freedom for u: θ1(u), θ2(u), etc.

2. Approximate uE ' u∗E, uW ' u∗W , vN ' v∗N and vS ' v∗S by linear combinations of the degrees of
freedom (using interpolation).

3. Build a linear equation for the degrees of freedom

(uE(θ)− uW (θ))hy + (vN(θ)− vS(θ))hx = 0 . (5.8)

Caution: The basic methodology above can fail. In what sense? Depending on the choice of θ, the
equations corresponding to the different finite volumes may become linearly dependent! This
gives rise to spurious pressure modes, which polute the pressure field.(

Auu Aup

Apu 0

) (
θu
θp

)
=

(
f
0

)
momentum
incompressibility

(5.9)

Example: If the degrees of freedom of u are taken at the centers of the cells (collocated grid), then the
resulting matrix is rank-defficient.
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MAC discretization:

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi−1,j Pi+1,j

Vi,j+1

Vij

Ui+1,jUij

• θu → u at vertical faces.

• θv → v at horizontal faces.

• Darker pink is mass FV numbered as (i, j).

• The intervening unknowns are larger.

Discrete incompressibility equation for mass FV number (i, j):

(Ui+1,j − Uij) (Yj+1 − Yj) + (Vi,j+1 − Vi,j) (Xi+1 −Xi) = 0 (5.10)
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Discrete incompressibility equation for mass FV number (i, j):

(Ui+1,j − Uij) (Yj+1 − Yj) + (Vi,j+1 − Vi,j) (Xi+1 −Xi) = 0 (5.11)

• The finite volumes for this equation are centered at pressure nodes and have as unknowns uE, uW ,
vN and vS, exactly as needed (for second order) and thus requiring no interpolation.

• Dividing by hxhy . . .
Ui+1,j − Uij
Xi+1 −Xi

+
Vi,j+1 − Vi,j
Yj+1 − Yj

= 0 (5.12)

one puts in evidence the link with ∇ · u = 0.

• In matrix form (ignoring boundary conditions and with uniform mesh),

Dx u + Dy v = 0 . (5.13)
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5.3 Momentum along the x1 direction

The x-momentum equation reads∫
V

ρ ∂tu dV +

∫
∂V

(ρuu · ň + p nx − 2µ ∂xunx − µ ∂xv ny − µ ∂yuny) dS =

∫
V

fx dV

(5.14)

Now we particularize for a rectangle of sides hx and hy.

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi−1,j Pi+1,j

Vi,j+1

Vij

Ui+1,jUij
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For the pressure term, ∫
E

p nx dS = pE hy , (5.15)∫
W

p nx dS = −pW hy , (5.16)∫
N

p nx dS = 0 , (5.17)∫
S

p nx dS = 0 . (5.18)

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi−1,j Pi+1,j

Vi,j+1

Vij

Ui+1,jUij
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For the viscous term, integrating edge by edge,

−
(∫

E

µ (∇u +∇uT )ňdS

)
x

= −
∫
E

2µ ∂xu dy = −2µ ∂xu|E hy = (VE) , (5.19)

−
(∫

W

µ (∇u +∇uT )ňdS

)
x

= +

∫
W

2µ ∂xu dy = 2µ ∂xu|W hy = (VW) , (5.20)

−
(∫

N

µ (∇u +∇uT )ňdS

)
x

= −
∫
N

µ (∂yu+ ∂xv) dx = −µ (∂yu+ ∂xv)|N hx = (VN) , (5.21)

−
(∫

S

µ (∇u +∇uT )ňdS

)
x

= +

∫
S

µ (∂yu+ ∂xv) dx = µ (∂yu+ ∂xv)|N hx = (VS) . (5.22)

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi−1,j Pi+1,j

Vi,j+1

Vij

Ui+1,jUij

62



For the inertia term, the x component being
∫
∂V
ρ uu · ň dS,∫

E

ρ u u · ň dS = ρ u2
E hy , (5.23)∫

W

ρ u u · ň dS = −ρ u2
W hy , (5.24)∫

N

ρ u u · ň dS = ρ uN vN hx , (5.25)∫
S

ρ u u · ň dS = −ρ uS vS hx . (5.26)

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi−1,j Pi+1,j

Vi,j+1

Vij

Ui+1,jUij
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Now we consider the staggered arrangement of degrees of freedom, in which the unknowns are

• For pressure: pE = Pij, pW = Pi−1,j.

• For u: uP = Uij, uEE = Ui+1,j, uWW = Ui−1,j, uNN = Ui,j+1, uSS = Ui,j−1.

• For v: vNE = Vi,j+1, vNW = Vi−1,j+1, vSE = Vij, vSW = Vi−1,j.

and interpolate to approximate each term.
Then, the pressure term becomes

(P) =

∫
∂V

p nx dS ' (pE − pW )hy = (Pij − Pi−1,j) (Yj+1 − Yj) . (5.27)

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi−1,j Pi+1,j

Vi,j+1

Vij

Ui+1,jUij

In matrix form (uniform mesh)
(P) = hx hy Gx p . (5.28)
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The viscous term becomes (notice that µ may vary from face to face)

• East face:

(VE) ' −2µE ∂xu|E hy ' − 2µE
uEE − uP
xEE − xP

hy = −2µE
Ui+1,j − Uij
Xi+1 −Xi

(Yj+1 − Yj) (5.29)

• West face:

(VW) ' 2µW ∂xu|W hy ' 2µW
uWW − uP
xWW − xP

hy = 2µW
Uij − Ui−1,j

Xi −Xi−1

(Yj+1 − Yj) (5.30)

• North face (beware of hat coordinates!):

(VN) ' −µN (∂yu+ ∂xv)|N hx ' − µN

(
Ui,j+1 − Uij
Ŷj+1 − Ŷj

+
Vi,j+1 − Vi−1,j+1

X̂i − X̂i−1

)
(X̂i − X̂i−1) (5.31)

• South face:

(VS) ' µS (∂yu+ ∂xv)|N hx ' µS

(
Ui,j − Ui,j−1

Ŷj − Ŷj−1

+
Vi,j − Vi−1,j

X̂i − X̂i−1

)
(X̂i − X̂i−1) (5.32)

Notice that all faces contribute positively to the diagonal.

65



The inertia term, integrated over the cell boundary, reads

(IX) = ρ
(
u2
Ehy − u2

Why + uNvNhx − uSvShx
)
, (5.33)

which we complement with a centered interpolation:

uE =
uEE + uP

2
=
Ui+1,j + Uij

2
, uW =

uWW + uP
2

=
Ui−1,j + Uij

2
, (5.34)

uN =
uNN + uP

2
=
Ui,j+1 + Uij

2
, uS =

uSS + uP
2

=
Ui,j−1 + Uij

2
, (5.35)

vN =
vNE + vNW

2
=
Vi,j+1 + Vi−1,j+1

2
, vS =

vSE + vSW
2

=
Vi,j + Vi−1,j

2
. (5.36)

Notice that the vector of values of uE at all east faces of finite volumes centered in nodes of u can be built
as uE = AExu u, where AExu is an interpolation matrix. Similar matrix operations can be devised for the

other necessary quantities.
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5.4 Momentum along the x2 direction

The y-momentum equation reads∫
V

ρ ∂tv dV +

∫
∂V

(ρv u · ň + p ny − 2µ ∂yv ny − µ ∂xv nx − µ ∂yunx) dS =

∫
V

fy dV

(5.37)

Exo. 5.1 Deduce the MAC discretization of the pressure and viscous terms of the x2-momentum equation,
with the finite volume depicted in the Figure.

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi−1,j Pi+1,j

Vi,j+1

Vij

Ui+1,jUij

Vij

Vi,j−1
Ui,j−1

Vi−1,j Vi+1,j

Pi,j−1
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5.5 Boundary conditions and a software for Stokes flow

In file codemac.m (which also uses ij2ng.m) you will find an Octave implementation of the MAC
method for Stokes flow (in which inertia terms have been neglected).
Some characteristics:

• The encompassing domain Ω0 = (0, Lx)×(0, Ly) is discretized with (Nx = N1 +2)×(Ny = N2 +2)
“pressure” cells. The first and last rows and columns are dummy cells that lie outside Ω0 and
are only used to specify the boundary conditions.

• The first dimU (= (Nx + 1)Ny) equations correspond to conservation of x1-momentum, and
correspondingly the first dimU unknowns are the u-values at vertical faces.

• The next dimV (= Nx(Ny + 1)) equations correspond to conservation of x2-momentum, and
correspondingly the next dimV unknowns are the v-values at horizontal faces.

• The last dimP (= NxNy) equations correspond to conservation of mass (incompressibility). The
last dimP unknowns are the p-values at cell centers.

• A mask, mask(1:Nx,1:Ny) defines whether a cell is fluid or boundary. This implies that all
boundaries coincide with pressure-cell boundaries.
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Imposition of Dirichlet boundary conditions

Consider the boundary shown in the picture. In brown is a wall where both components of the
velocity are imposed. How will the momentum and mass equations be affected?

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi+1,j

Vi,j+1

Vij

Ui+1,jUij

Vij

Vi,j−1
Ui,j−1

Vi+1,j

Pi,j−1

69



Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi+1,j

Vi,j+1

Vij

Ui+1,jUij

Vij

Vi,j−1
Ui,j−1

Vi+1,j

Pi,j−1

• The unknowns that lie entirely in the brown region become dummy variables. They must be assigned
some arbitrary value.

• The mass equations will not be affected at all.

• The x-momentum equations will be only slightly affected: Just specify the value of Uij to the
imposed value.

• The y-momentum equations need more consideration. Specifically, for FV number ij in the
Figure, ∫

W

µ ∂xv dy ' µW (Yj+1 − Yj)
Vij − VW

(Xi+1 −Xi)/2

where VW is the imposed value at the point (Xi, Yj).
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Imposition of normal forces

Xi Xi+1

X̂i

Xi−1

Yj

Pij

Yj+1

Pi+1,j

Vi,j+1

Vij

Ui+1,jUij

Vij

Vi,j−1
Ui,j−1

Vi+1,j

Pi,j−1

If the wall imposes tangential (vertical) velocity as before, but normal (horizontal) force instead, then
the x-momentum equation changes significantly:

• The x-momentum finite volume is reduced by half: (Xi, X̂i) × (Yj, Yj+1) instead of (X̂i−1, X̂i) ×
(Yj, Yj+1).

• The integral on the West face becomes −FW (Yj+1 − Yj), which moves to the right-hand side, where
FW is the normal force imposed.

• The North and South integrals of µ ∂xv require values of v at (Xi, Yj+1) and (Xi, Yj), which are taken
from the imposed tangential velocity.

Exo. 5.2 Write down the complete x-momentum discrete equation (Stokes flow) for volume number (i, j),
assuming vW and FW given.
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nguP=ij2ng(Nx+1,i,j); mskl=mask(i-1,j); mskr=mask(i,j); ## masks of left and right half cells

.......

elseif (mskl!=0) ## left-half of cell is boundary, imposes x force and y velocity

### W boundary (rhs+=integral of force)

rhs(nguP)=rhs(nguP)+dy(j)*vbcx(mskl);

### E boundary (integral of p-2*muE*du/dx)

muE=mu; nguEE=ij2ng(Nx+1,i+1,j); ngpE=ij2ng(Nx,i,j)+dimU+dimV;

Ag(nguP,nguP)=Ag(nguP,nguP)+2*muE*dy(j)/dx(i);

Ag(nguP,nguEE)=Ag(nguP,nguEE)-2*muE*dy(j)/dx(i);

Ag(nguP,ngpE)=dy(j);

### N boundary (integral of -mu(dv/dx), E half of upper cell bound.)

muN=mu; vN=0.5*(vbcy(mskl)+vbcy(mask(i-1,j+1)));

nguNN=ij2ng(Nx+1,i,j+1);ngvNE=ij2ng(Nx,i,j+1)+dimU;

Ag(nguP,ngvNE)=Ag(nguP,ngvNE)-muN*(dx(i)/2)/(dx(i)/2);

rhs(nguP)=rhs(nguP)-muN*(dx(i)/2)/(dx(i)/2)*vN;

### N boundary (integral of -mu(du/dy), E half)

Ag(nguP,nguP) =Ag(nguP,nguP) +muN*0.5*dx(i)/dyh(j);

Ag(nguP,nguNN)=Ag(nguP,nguNN)-muN*0.5*dx(i)/dyh(j);

### S boundary (integral of mu(dv/dx), E half)

muS=mu; vS=0.5*(vbcy(mskl)+vbcy(mask(i-1,j-1)));

nguSS=ij2ng(Nx+1,i,j-1);ngvSE=ij2ng(Nx,i,j)+dimU;

Ag(nguP,ngvSE)=Ag(nguP,ngvSE)+muS*(dx(i)/2)/(dx(i)/2);

rhs(nguP)=rhs(nguP)+muS*(dx(i)/2)/(dx(i)/2)*vS;

### S boundary (integral of mu(du/dy), E half)

Ag(nguP,nguP) =Ag(nguP,nguP) +muS*0.5*dx(i)/dyh(j-1);

Ag(nguP,nguSS)=Ag(nguP,nguSS)-muS*0.5*dx(i)/dyh(j-1);
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An example:

Fx = 10, v = 0

u = 0, Fy = −10

u = 0, Fy = −5

Fx = 0, v = 0
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Velocity field
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Pressure field
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5.6 Laplacian form of the viscous term

The general viscous term −∇ ·
[
µ (∇u +∇uT )

]
can, when the viscosity is constant, be replaced by the

simpler term −µ∇2u.

Proof: ∇ · ∇uT = uj,ijei = ∇ (∇ · u) = 0.

The MAC discretization allows for this simplification to be carried out at the discrete level. Consider for
simplicity the uniform-spacing case. Then

(Ui+1,j − Uij)hy + (Vi,j+1 − Vij)hx = 0 , and (Uij − Ui−1,j)hy + (Vi−1,j+1 − Vi−1,j)hx = 0 . (5.38)

Exo. 5.3 Prove that the viscous contribution ends up being simplified to

(VX) = − µ
(
Ui+1,j − Uij

hx
hy +

Ui−1,j − Uij
hx

hy +
Ui,j+1 − Uij

hy
hx +

Ui,j−1 − Uij
hy

hx

)
(5.39)

and verify that this corresponds to a finite volume approximation of −µ∇2u.

In matrix form, L being the Laplacian matrix,

(VX) = − µhx hy Lu . (5.40)
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5.7 Full set of equations in matrix form

To visualize the full set of equations, let us consider the uniform spacing case (after dividing by hxhy) with
the Laplacian form of the viscous term:

ρ
d

dt
u + Gx p − µLu+ IX(u, v) = fx (5.41)

ρ
d

dt
v + Gy p − µL v + IY(u, v) = fy (5.42)

Dx u + Dy v = 0 (5.43)

which can even be simplified to, with some additional quite natural notations,

ρ
d

dt
U + G p − µLU + I(U) = f (5.44)

D U = 0 (5.45)

This is a so-called differential-algebraic equation (DAE) system.
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5.8 Monolithic system

The monolithic approach solves for Un+1 and pn+θ in a straightforward manner:

ρ
Un+1 − Un

∆t
+ G pn+θ − µLUn+θ + I(Un+θ) = fn+θ (5.46)

D Un+1 = 0 (5.47)

• Matrices G, D and L are built only once.

• The term I(Un+θ) is nonlinear. Linearize by Newton, fixed-point, etc.

• This approach is efficient for Stokes flow mainly.

• It is considered expensive because all unknowns are solved at once (big matrices).
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5.9 Projection method

Chorin’s (1968) original projection method was defined as follows:

• Momentum predictor:

ρ
Û
n+1
− Un

∆t
− µLUn + I(Un) = fn (5.48)

The resulting Û
n+1

does not satisfy D Û
n+1

= 0, it has to be projected back on the discretely-
incompressible space.

• Pressure Poisson equation:

D G pn+1 =
ρ

∆t
D Û

n+1
(5.49)

The product D G is a matrix that, leaving aside boundary conditions, coincides with L (the discrete
Laplacian matrix). This is a salient property of the MAC discretization.

• Velocity correction:

Un+1 = Û
n+1
− ∆t

ρ
G pn+1 (5.50)
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• Eliminating Û
n+1

one gets

ρ
Un+1 − Un

∆t
+ G pn+1 − µL Un + I(Un) = fn (5.51)

D Un+1 = 0 (5.52)

which shows that the algorithm is consistent, but clearly of first order in ∆t because the viscous and
inertia term are evaluated at tn.

• Eliminating Un instead one gets

ρ
Û
n+1
− Û

n

∆t
+ G pn − µL Un + I(Un) = fn (5.53)

D Û
n+1
− ∆t

ρ
D G pn+1 = 0 (5.54)

which shows the appearance of a pressure Laplacian in the incompressibility equation, with coef-
ficient ∆t/ρ.

• In collocated grids, DG 6= L. However, if nevertheless the pressure is computed from

L pn+1 =
ρ

∆t
D Û

n+1
(5.55)

there is a stabilization effect on the incompressibility constraint, so that projection
schemes work well with collocated grids, if ∆t/ρ is not too small.
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5.10 ABCN time discretization

The following combination of Adams-Bashforth scheme for time discretization of the inertia terms, com-
bined with Crank-Nicolson scheme for the viscous term, is a popular method with formally second order
accuracy in time.

• Momentum predictor:

ρ
Û
n+1
− Un

∆t
− µ

2
L (Û

n+1
+ Un) +

3

2
I(Un)− 1

2
I(Un−1) = fn+ 1

2 (5.56)

• Pressure Poisson equation:

L φn+1 =
ρ

∆t
D Û

n+1
(5.57)

• Velocity correction:

Un+1 = Û
n+1
− ∆t

ρ
G φn+1 (5.58)

Exo. 5.4 Read further details from Chapter 2 of Prosperetti & Tryggvasson.
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Exo. 5.5 Read Chapter 6 of Wesseling. Explain the necessity of pressure stabilization in the case of
collocated discretization (all variables located at cell centers). What is the key modification that stabilizes
the scheme?

Exo. 5.6 Read Sousa et al (2015) for more projection-like methods and a warning about the usage of
projection methods for low inertia flows.
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Code NSMAC

You will find in the site a vector implementation of the MAC-ABCN discretization, for the problem of flow
past a partial obstruction.

Development of the velocity field
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Home reading:

For next week, reed Lectures 8 and 10 of Bakker. Complement with Chapter 9 of Ferziger & Peric and
with the material available at the site.

Discuss the following topics:

1. What is turbulence?

2. What happens to flows as the Reynolds number is increased?

3. Transition to turbulence.

4. Objectives of turbulence modeling.

5. Direct Numerical Simulation.

6. Velocity decomposition. Averaging. Filtering.

7. Large Eddy Simulation.

8. Reynolds Averaged Navier-Stokes simulation.

9. Reynolds stresses.

10. Boussinesq hypothesis.

11. Turbulent viscosity.

12. The k − ε model.

84



6 A bit of turbulence

6.1 Flow in a long pipe

A long pipe conveys water between two reservoirs that are far apart. The inclination of the pipe is s (in
meters of descent per meter of length) and its diameter D. Compute the velocity field in the pipe and the
flow rate.
Applying the general expression for conservation of momentum in fully developed flow (3.7) to the case in
which ω is the circle of radius r and the flow steady we obtain

0 = −G π r2 + r

∫ 2π

0

τ(r, θ) dθ (6.1)

where τ is the radial shear stress along x3, given by τ · ěr. Because of the symmetry, τ does not depend
on θ, which gives

τ(r) 2π r = G π r2 . (6.2)

where σrz is the shear stress along z (the axial direction) on surfaces with normal ν̌ = ř. The inclination
generates the pressure gradient

G = −s ρ g , (6.3)

and from the Newtonian law

τ(r) = µ
dw

dr
. (6.4)
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Notice that
1

r

d

dr

(
µ r

dw

dr

)
= G (6.5)

in agreement with (3.14), since the left-hand side of (6.5) is ∇·(µ∇w) in cylindrical coordinates and we
have assumed steady flow. This is the equation that determines w, with boundary condition w(R) = 0.
The condition w′(0) = 0 is generally also imposed, but truly speaking r = 0 is not a boundary.

Anyway, the governing equation is
dw

dr
(r) = − s ρ g

2

r

µ(r)
(6.6)

which can be integrated with initial condition w(r = 0) = wmax to yield

w(r) = wmax −
s ρ g

2

∫ r

0

r′dr′

µ(r′)
. (6.7)

The unknown wmax can be computed from w(R) = 0, namely

wmax =
s ρ g

2

∫ R

0

r′dr′

µ(r′)
. (6.8)

If the viscosity is constant one recovers the familiar parabolic Poiseuille profile

w(r) = wmax −
s ρ g

4µ
r2 (6.9)

with
wmax =

s ρ g

16µ
D2 . (6.10)

Assuming D = 0.5 m and a gentle slope of s = 10−2 (ten meters per kilometer), since µ = 10−3 Pa-s and
ρ = 1000 kg/m3 one gets

wmax = 1530 m/s = 5512 km/h !!!!! (6.11)
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6.2 Turbulence

It is obvious that the huge velocity obtained above does not occur in reality. The parallel flow is indeed a
solution of the conservation equations, but it is an unstable solution. Both mathematically and physically
one observes a flow that is neither steady nor parallel, that is called turbulent.

• Turbulent flows are stochastic. They are described with the tools of statistical theory. Though the
instantaneous values of velocity and pressure are randomic, the mean values of the variables are
quite deterministic.

• These mean values (of velocity, of pressure, of force on solid surfaces, etc.) are in fact what engineers
are most interested in. If the boundary conditions do not depend on time, the mean values also
do not depend on time, as would be the case, in our pipe example, some seconds after the valve
connecting the two reservoirs is opened.

• It is customary to decompose all variables into mean and fluctuating components, e.g.,

u = ū + u′, p = p̄+ p′ . (6.12)

Inserting this into the momentum balance equation and taking the mean, one arrives at

0 =

∫
V

f̄ dV +

∫
∂V

(−p̄+ µ (∇ū +∇ūT )− ρ ū⊗ ū− ρu′ ⊗ u′) · ň dS . (6.13)

Exo. 6.1 Verify the previous assertion.

We observe that the averaged equation is the same as the original equation if the so-called Reynolds
stress tensor is added to the average stresses:

σ ←− σ(∇ū, p̄) + σRe , with σRe = −ρu′ ⊗ u′ . (6.14)
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• Equation (6.2) then becomes, for a long circular pipe,[
µ ∂rw̄ − ρ u′ru′z

]
2π r = G π r2 . (6.15)

Though u′r and u′z are rapidly fluctuating functions with zero mean, they are correlated and the mean
of their product is not zero. Typically, velocity fluctuations that have u′r > 0 (outwards from the
center) also have u′z > 0, because uz is larger near the centerline.

Remark 6.1 The Reynolds stress should not be thought as a “correction” or a “small perturba-
tion” to an underlying laminar flow. Quite to the contrary, it is the term µ∂rw̄ that is negligible
througout the flow, with the exception of a narrow layer near the walls.
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6.3 Turbulence models

• If one could express σRe somehow in terms of ū and/or its derivatives, then one could substitute
into (6.13) and solve for ū and p. This is accomplished by the so-called Boussinesq turbulent viscosity
hypothesis. It states that

σRe ' −2

3
ρ k 1 + µt (∇u +∇uT ) (6.16)

where

k =
1

2
‖u′‖2 (6.17)

is the turbulent kinetic energy (per unit mass) and µt is the turbulent viscosity. This hypothesis
agrees with physical observations in many flows, especially if there are no large wakes and if the
boundary layer is attached to the wall. The agreement is not perfect in general, but it is sufficient
for engineering predictions.

• Prandtl (1904) produced a model for µt inspired in molecular models of gases. His mixing length
theory leads to

µt = ρ `2 ‖∇u +∇uT‖ (6.18)

where ` is the so-called Prandtl’s mixing length. Again particularizing to the pipe example, it leads
to

µt = ρ `2

∣∣∣∣dw̄dr
∣∣∣∣ . (6.19)

• If y is the distance to the wall, it is intuitive that the length scale of the turbulent vortices, and thus
of the mixing, is y itself. In fact, it is fairly accurate that

` = κ y (6.20)
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where κ, the von Karman constant, turns out to be quite universal (all flows, pipes or planes).
Beautiful theories have been built that explain this universality and other properties of turbulent
flows, we suggest the interest reader to look for the books by Tennekes & Lumley and by Pope.

• For some flows one can follow the more pragmatic approach of Launder & Spalding (1972) and look
for empirical expression for `. A vast experience exists on steady flow in circular pipes, from which
we can borrow Nikuradse’s law:

`

R
= 0.14− 0.08

(
1− y

R

)2

− 0.06
(

1− y

R

)4

= 0.14− 0.08
( r
R

)2

− 0.06
( r
R

)4

. (6.21)

Exo. 6.2 The final differential equation is then

1

r

d

dr

(
(µ+ µt) r

dw̄

dr

)
= G (6.22)

with µt = ρ `(r)2|dw̄/dr| and `(r) taken from (6.21).

Numerically solve this equation with appropriate boundary conditions by the finite volume method,
with a suitable treatment of the nonlinearity. Plot the resulting velocity profile.
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6.4 Wall laws

• Nothing is simple in turbulence. Boundary conditions are no exception. The mean velocity field
computed in Exo. 6.2 does not agree with experimental observation.

• The unrealistic prediction can be traced back to the boundary condition ū = 0 at the wall. The
averaged model we have presented so far, being a so-called high-Reynolds-number (or high-Re) model,
is not physically realistic in the close vicinity of the wall, where viscous effects are comparable to (or
larger than) turbulent ones. Essentially, we are imposing the boundary condition at a location where
the differential equation is not valid.

• The idea is to replace the “natural” condition w̄(R) = 0 by some condition at R̃ < R, a point within
the turbulent-dominated region where (6.22) is valid.

• A popular and frequently accurate boundary condition in CFD is the logarithmic law of the wall.
Denoting by τw the shear stress at the wall, it is customary to define shear velocity u∗ =

√
τw/ρ and

then the wall variables (traditionally u is the longitudinal velocity)

u+ =
w̄

u∗
, y+ =

y

ν/u∗
. (6.23)

It so happens that in many turbulent flows, between y+ = 20 and y+ = 100, the following relation
holds:

u+ =
1

κ
ln (E y+) , (6.24)

where κ ' 0.4 and E ' 9. How does this provide a boundary condition? A simple way is to choose
R̃ as satisfying y+ = (R − R̃)+ = 30. Normally this is a very small correction of the pipe radius, in
the micrometer range. For the pipe we considered previously, for example,

τw = −s ρ g D
4

= −12.25Pa ⇒ u∗ =

√
|τw|
ρ

= 0.11 m/s . (6.25)
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As a consequence,

(R− R̃)+ = 30 ⇒ R− R̃ = 30
ν

u∗
= 2.72× 10−4 m . (6.26)

In the simplified treatment we are following here, we will take R̃ = R and exploit the wall law at
y+ = 30 which gives

w̄√
|τw|/ρ

=
1

κ
ln (E y+) = 14 (6.27)

so that (
µ+ µt

) dw̄

dr
= − ρ

196
w̄2 , (6.28)

which is the boundary condition imposed at r = R.

• Notice that we impose a “drag law” and not simply
(
µ+ µt

)
dw̄/dr = τw, because it is only in very

symmetric situations that we know the value of τw a priori.

Exo. 6.3 Compute numerically the velocity profile produced by the model described above. Predict
the flow in the pipe of the example, in particular the flow rate and the average velocity. Compute the
Reynolds number. Compare to the prediction of the “Moody chart” (google me).
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6.5 Reynolds-averaged Navier-Stokes equations

• In the modeling of incompressible turbulent flows, as we have seen, it is in most cases necessary to
solve an averaged version of the Navier-Stokes equations.

• In the pipe-flow example we adopted Nikuradse’s formula for the Prandtl’s mixing length `(y). Such
formulae are however only available for some selected flows, in general situations the computation of
µt requires the solution of additional equations.

• There exist 1-equation models, 2-equation models, and so on. Some of the popular ones are known
as: Spalart-Allmaras model, k−ε model, k−ω model, algebraic stress model, stress transport model,
etc. An excellent survey is provided by Wilcox (Turbulence modeling for CFD, 2006).

• To provide some insight into RANS modeling, we describe here the k − ε model, which is the most
popular 2-equation model.

• Reynolds averaging (substituting u = ū + u′ in the Navier-Stokes equations and averaging) is the
basis of all RANS models:

Exo. 6.4 Deduce the RANS equations:

ρ ∂tū +∇ ·
[
p̄ I− µ (∇ū +∇ūT ) + ρ ū⊗ ū + ρu′ ⊗ u′

]
= f (6.29)

∇ · ū = 0 (6.30)

The k − ε model

• The mass and momentum equations are as in the non-averaged case, only that velocity and pres-
sure variables are now averages and turbulent viscosity must be added to physical vis-
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cosity. We drop here the bar to express averages for simplicity.

ρ ∂tu + ρ (u · ∇) u−∇ ·
[
(µ+ µt) (∇u +∇uT )

]
+∇p = f (6.31)

∇ · u = 0 (6.32)

• The turbulent viscosity is given by

µt =
cµ ρ k

2

ε
. (6.33)

• The turbulent variable k is the turbulent kinetic energy per unit mass, the amount of kinetic
energy that is contained by the velocity fluctuations:

k =
1

2
‖u′‖2 (6.34)

• The turbulent dissipation ε is the turbulent dissipation rate per unit mass, the rate at which
energy stored in the fluctuations is dissipated:

ε =
µ

ρ
(∇u′ + (∇u′)T ) : ∇u′ (6.35)
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• The model for k and ε consists of the convection-diffusion-reaction equations

∂tk + u · ∇k −∇ · (Dk∇k) + γk k = Fk (6.36)

∂tε+ u · ∇ε−∇ · (Dε∇ε) + γε ε = Fε (6.37)

where the diffusion coefficients are

Dk =
1

ρ

(
µt

σk
+ µ

)
, Dε =

1

ρ

(
µt

σε
+ µ

)
, (6.38)

the reaction coefficients are
γk =

ε

k
, γε = c2

ε

k
, (6.39)

and the source terms are

Fk =
µt

2ρ
‖∇u +∇uT‖2 , Fε =

c1k

2
‖∇u +∇uT‖2 . (6.40)

• The model constants have as standard values

cµ = 0.09 , c1 = 0.126 , c2 = 1.92 , σk = 1.0 , σε = 1.3 . (6.41)

• The closed system of equations of the k−ε model are (6.31), (6.32), (6.36) and (6.37). One vector
equation and three scalar ones, for one vector unknown and three scalar unknown.
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• The boundary conditions for this model can vary. Most frequent is the logarithmic law of the wall as
described in Section 6.4. In the simplified treatment adopted there, they would read:

1. At inflows:
u = uin , k = kin , ε = εin . (6.42)

2. At planar walls:

u · ň = 0 , (6.43)(
µ+ µt

) ∂u

∂n
= − ρ

196
‖u‖2 , (6.44)

k =
u∗2
√
cµ

, (6.45)

ε =
ρ u∗4

12.3µ
. (6.46)

3. At outflows: Several possibilities, zero applied forces and zero normal derivatives of k and ε
for example.
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• The equations for k and ε can be written in conservation form

∂tk +∇ · (u k −Dk∇k) = Fk − γk k , (6.47)

∂tε+∇ · (u ε−Dε∇ε) = Fε − γε ε , (6.48)

the expressions in parentheses being the fluxes.
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7 Conservation laws in fluid mechanics

7.1 Basic definitions and examples

A conservation law, in its differential formulation, is a partial differential equation that can be written in
the form

∂t q + ∂xf + ∂yg + ∂zh︸ ︷︷ ︸
=0 to simplify

= s (7.1)

The physical principles introduced in previous chapters are indeed conservation laws:

1. Mass conservation equation:

∂t ρ+ ∂x(ρ u) = 0 ←→

{
q = [ρ]

f = [ρ u] = [q u]
(7.2)

Assuming u to be known, this is a typical example of the linear scalar transport equation. If,
on the other hand, u is a known function of ρ, we have a nonlinear scalar transport equation, such
as the traffic flow equation.
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2. Momentum conservation equation: In 1D the stress is just a scalar σ. Remembering that the
momentum flux is ζ = −σ + ρu⊗ u,

∂t (ρ u) + ∂x(ρ u
2 − σ) = f ←→

{
q = [ρ u]

f = [ρ u2 − σ] =
[
q2

ρ
− σ

] (7.3)

3. Energy conservation equation: From (4.3)),

∂tE +∇ · ((E I− σ) · u + q) = f · u +Q, (7.4)

where q and Q are the heat flux and the heat source, which is again a conservation law. In 1D,

∂tE + ∂x ((E − σ)u+ q) = f u+Q . (7.5)

Other well-known equations are also typical examples of conservation laws:

1. Heat equation: The previous equation is general. Assuming a solid body (u = 0), Fourier’s law of
heat conduction

q = −k∇T (7.6)

and a linear dependence between e and T ,

e = e(T0) + c (T − T0) , (7.7)

we arrive at the heat equation:

∂t T − α ∂2
x T = s ←→

{
q = [T ]

f = [−α ∂xT ]
(7.8)

where α = k/(ρ c).
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2. The convection-diffusion equation: With the same hypotheses as before, but keeping u arbitrary,
one gets

∂t T + ∂x(uT )− α ∂2
x T = s ←→

{
q = [T ]

f = [uT − α ∂xT ]
(7.9)

3. Wave equation:

∂2
tt u− c2 ∂2

xx u = 0 ←→



q =

[
∂t u

∂x u

]

f =

[
−c2 ∂x u

−∂t u

]
=

[
−c2 q2

−q1

] (7.10)

Exo. 7.1 Check that the q and f of (7.10) indeed allow to rewrite the wave equation as a conservation
law in differential form.
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Exo. 7.2 Conservation laws can also be written in integral form. Show that any q that induces a flux f
(possibly function of q, ∂x q, etc.) such that

d

dt

∫ x+

x−

q(x, t) dx = f(x−, t)− f(x+, t) +

∫ x+

x−

s(x, t) dx , ∀ t, x− , x+ , (7.11)

is also a solution, if differentiable, of (7.1).

Another way of writing the integral form is∫ x+

x−

q(x, t+) dx =

∫ x+

x−

q(x, t−) dx+

∫ t+

t−

f(x−, t) dt−
∫ t+

t−

f(x+, t) dt +

∫ t+

t−

∫ x+

x−

s(x, t) dx dt , (7.12)

which must hold ∀ t− , t+ , x− , x+ .
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Def. 7.1 Equation (7.1) is called a hyperbolic conservation law iff

• f(x, t) is a function of q(x, t) only, i.e.,

f(x, t) = f̂
(
q(x, t)

)
, (7.13)

but we will drop the hat from now on to simplify the notation.

• The jacobian matrix

Df =

 ∂q1f1 ∂q2f1 . . .
∂q1f2 . . . . . .
. . . . . . . . .

 , (7.14)

which is in general a function of q, is diagonalizable in R for all relevant values of q.
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The quasilinear form of the hyperbolic conservation law is

∂t q +Df(q) ∂x q = s . (7.15)

Any solution of (7.15) is also a solution of (7.1), but solutions of (7.1) need not be regular enough to
be solutions of (7.15).

Exo. 7.3 Verify that the scalar transport equation, with u assumed known, is a hyperbolic conservation
law. Similarly, notice that the heat equation is not.

Exo. 7.4 Verify that the wave equation has

Df =

(
0 −c2

−1 0

)
(7.16)

and compute the eigenvalues and eigenvectors of Df . Conclude that the wave equation is a hyperbolic

conservation law.
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7.2 The advection equation

• The scalar advection equation with constant velocity

∂t q + λ ∂x q = 0 (7.17)

is a HCL.

• The trajectories X(x0, t0, t) = x0 + λ (t − t0) are characteristic curves of (7.17) because along them
the equation takes a much simplified form:

d

dt
q(X(x0, t0, t), t) = ∂tq + ∂xq

dX

dt
= ∂tq + λ ∂xq = 0 . (7.18)

• The variable q is thus constant along the characteristics. Let x∗(x, t) and t∗(x, t) be the position and
time in which the characteristic enters the calculation domain. For example, if one is computing with
domain Ω = R and initial time t = 0, then x∗(x, t) = x− λ t and t∗(x, t) = 0. The exact solution is

q(x, t) = q(x∗, t∗) . (7.19)

The initial and boundary conditions must be such that q is imposed at the point of entry of the
characteristic curves.

• The Riemann problem is defined as the solution of (7.17) in Ω = R with initial condition

q(x, t0) =

{
qL if x < x0

qR if x > x0

(7.20)

Its solution is q(x, t) = qL (resp. qR) if x− x0 < λ (t− t0) (resp. >).
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7.3 Weak solutions

• The characteristic curves propagate the initial condition⇒ Discontinuous solutions have a meaning,
as arising from discontinuous initial data.

• A different definition of solution is needed (here for Ω = R):

Def. 7.2 Let C1
c be the space of continuously differentiable functions with compact support. A

function q ∈ L1(R× R+) is said to be a weak solution of

∂tq + ∂xf(q) = 0 , q(x, t = 0) = q0(x) , (7.21)

if the identity ∫
R×R+

(q ∂tϕ+ f(q) ∂xϕ) dx dt +

∫
R
q0(x)ϕ(x, t = 0) dx = 0 (7.22)

holds for all test functions ϕ ∈ C1
c (R× R+).

Exo. 7.5 Show that if a weak solution q is differentiable (q ∈ C1
c (R × R+)), then q satisfies the

HCL pointwise and is thus a classical solution.

Exo. 7.6 Extend the definition of weak solution to the case of a hyperbolic system with source, i.e.,

∂t q + ∂x f(q) = s(x, t, q) . (7.23)
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7.4 The Rankine-Hugoniot condition

• It is clear that, at a point of discontinuity, the conservation property cannot be checked by com-
puting ∂tq + ∂xf and comparing to the source s. Then, how can conservation be checked?

• Consider a solution that is piecewise C1 in the x − t plane, having a unique discontinuity along
the line x = σ(t). Let ω+ = {(x, t) ∈ R × R+, x > σ(t)}, and similarly for ω−. Letting q± =
q|ω± ∈ C1(ω±) and using integration by parts one arrives at the Rankine-Hugoniot condition, which
expresses conservation at a point of discontinuity:

For q to be a weak solution of the scalar HCL, it is necessary and sufficient that

(a) The equation ∂tq + ∂xf = s is satisfied pointwise in ω+ ∪ ω−.

(b) The discontinuity speed s(t) = σ′(t) satisfies

s(t) =
f(q+(σ(t), t))− f(q−(σ(t), t))

q+(σ(t), t)− q−(σ(t), t)
. (7.24)

Exo. 7.7 Prove it.

• For a system, the Rankine-Hugoniot condition reads

f(q+(σ(t), t))− f(q−(σ(t), t)) = s(t)
[
q+(σ(t), t)− q−(σ(t), t)

]
. (7.25)
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7.5 Hyperbolic linear systems

• A linear hyperbolic system is written as

∂t q + A∂x q = s . (7.26)

The flux is obviously f(q) = Aq and A = Df is assumed diagonalizable.

• There exists a matrix R such that

A = R Λ R−1 , Λ = R−1 A R . (7.27)

where Λ = diag (λ1, λ2, . . .).

• Substituting into (7.26) and multiplying by R−1 one gets

R−1 ∂t q + R−1 R Λ R−1 ∂x q = R−1 s , (7.28)

so that, defining w = R−1 q and z = R−1 s, we arrive at

∂tw + Λ ∂xw = z , ⇔


∂tw1 + λ1 ∂xw1 = z1

. . .
∂twm + λm ∂xwm = zm

(7.29)

• These are uncoupled advection equations that we already know how to solve!

Exo. 7.8 Prove that for a linear system, with f(q) = Aq, the Rankine-Hugoniot condition indicates that
discontinuities can only propagate at the speeds {λi} given by the eigenvalues of A.
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7.6 Linear acoustics

• The Euler equations: If one puts together the equations of conservation of mass, momentum
and energy for the particular case of an inviscid ideal fluid, without heat flux or sources, and
without external forces, one arrives at the Euler equations of gas dynamics, which read

∂tρ+∇ · (ρu) = 0 , (7.30)

∂t(ρu) +∇ · (ρu⊗ u + p I) = 0 , (7.31)

∂tE +∇ · ((E + p) u) = 0 . (7.32)

where p = (γ − 1)
(
E − 1

2
ρu · u

)
.

Exo. 7.9 Compute f , g and h corresponding to the Euler equations, knowing that q = (ρ , ρu , E).

Exo. 7.10 Prove that the Euler equations are a hyperbolic conservation law.

108



• The 1D Euler equations, consisting of mass, momentum and energy conservation equations of a
gas complemented by an equation of state, without external forces, are

∂tρ+ ∂x(ρ u) = 0 , (7.33)

∂t (ρu) + ∂x (ρu2 + p) = 0 , (7.34)

∂tE + ∂x [(E + p)u] = 0 , (7.35)

p− (γ − 1)

(
E − 1

2
ρu2

)
= 0 . (7.36)

• Let us now consider a small perturbation of the still state

p = p0 + p̃, ρ = ρ0 + ρ̃, u = 0 + ũ, E = E0 + Ẽ . (7.37)

Notice that p0 = (γ − 1)E0.

Exo. 7.11 Neglecting quadratic terms in the perturbations, show that ũ and p̃ satisfy

∂tũ+
1

ρ0

∂xp̃ = 0 , (7.38)

∂tp̃+ γ p0 ∂xũ = 0 . (7.39)

Show also that, once the previous two equations have been solved, the energy can be obtained from
Ẽ = p̃/(γ − 1) and the density from

∂tρ̃+ ρ0 ∂xũ = 0 . (7.40)
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• Let us now rewrite (7.38)-(7.39) as a linear hyperbolic system:

∂t

(
ũ
p̃

)
+

(
0 1/ρ0

γp0 0

)
∂x

(
ũ
p̃

)
= 0 . (7.41)

We thus have

q =

(
ũ
p̃

)
, f =

(
p̃/ρ0

γp0ũ

)
, A =

(
0 1/ρ0

γp0 0

)
. (7.42)

The eigenvalues and eigenvectors are, defining c0 =
√
γp0/ρ0,

λ1 = −c0, v1 =

(
−c0

ρ0c
2
0

)
, λ2 = +c0, v2 =

(
c0

ρ0c
2
0

)
. (7.43)

Exo. 7.12 Now we will proceed intuitively instead of following the linear algebra procedure w = R−1 q.
Verify that both are equivalent.

• Since q = (ũ, p̃)T ∈ R2, we can always write q as a linear combination of v1 and v2. Let w1 and w2

denote the coefficients. Then,(
ũ
p̃

)
= w1

(
−c0

ρ0c
2
0

)
+ w2

(
c0

ρ0c
2
0

)
. (7.44)

Inverting this relationships we arrive at the characteristic variables:

w =

(
− 1

2c0
ũ+ 1

2ρ0c20
p̃

1
2c0

ũ+ 1
2ρ0c20

p̃

)
=

(
− 1

2c0
1

2ρ0c20
1

2c0
1

2ρ0c20

) (
ũ
p̃

)
. (7.45)
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Exo. 7.13 Show that the equations for w1 and w2 are, simply,

∂tw1 − c0 ∂xw1 = 0 , ∂tw2 + c0 ∂xw2 = 0 . (7.46)

Solve this equations to show that the exact solution in Ω = R with a “pure pressure” initial perturbation
(ũ(x, t = 0) = 0, p̃(x, t = 0) = p̃ini(x) is

w1(x, t) =
1

2ρ0c2
0

p̃ini(x+ c0t) , (7.47)

w2(x, t) =
1

2ρ0c2
0

p̃ini(x− c0t) . (7.48)

Or, in primitive variables,

ũ(x, t) =
1

2ρ0c0

[−p̃ini(x+ c0t) + p̃ini(x− c0t)] , (7.49)

p̃(x, t) =
1

2
[p̃ini(x+ c0t) + p̃ini(x− c0t)] . (7.50)

Compute also ρ̃(x, t).
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The Riemann problem:

What is the solution of

∂t

(
ũ
p̃

)
+

(
0 1/ρ0

γp0 0

)
∂x

(
ũ
p̃

)
= 0

with initial condition q(x, t = 0) = q
`

if x < 0 and q(x, t = 0) = q
r

if x > 0? Or, equivalently,

ũ(x, t = 0) =

{
ũ` if x < 0

ũr if x > 0
, p̃(x, t = 0) =

{
p̃` if x < 0

p̃r if x > 0
?

This problem is very easy to solve in characteristic variables:

w1(x, t) =

{
w1` if x+ c0t < 0

w1r if x+ c0t > 0
, w2(x, t) =

{
w2` if x− c0t < 0

w2r if x− c0t > 0
. (7.51)

From this one concludes that

q(x, t) =


q
`

if x+ c0t < 0

q
r

if x− c0t > 0

q
m

if x− c0t < 0 < x+ c0t

(7.52)

Exo. 7.14 Show that the new intermediate state q
m

that appears is

q
m

= Rwm , with wm = (w1r, w2`)
T (7.53)

and compute ũm and p̃m.
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7.7 The shallow water equations

In simulations of rivers, oceans, lakes, estuaries, and also of the atmosphere, a simplified version of the
incompressible Navier-Stokes equations is frequently adopted: The shallow water approximation. Let
us derive here the corresponding mathematical problem:

• Consider the flow of a layer of fluid over a solid bed. The fluid is assumed incompressible, of
constant density ρ, under the action of constant gravity g = −g ěz. We are here neglecting
Coriolis effects, but they can easily be accounted for.

• The layer of fluid is assumed to occupy the domain

Ω3D(t) = {(x, y, z) ∈ R3 | (x, y) ∈ Ω, Hb(x, y) < z < Hb(x, y) + h(x, y, t)} , (7.54)

in which the bottom is fixed, at height Hb(x, y), and the fluid layer is of variable thickness
h(x, y, t), which is an unknown of the model. Notice that the upper surface of the fluid is assumed
to be a graph at all times. Breaking waves are not allowed.

• Turning to 2D for simplicity, let now consider finite volumes defined as

V = {(x, z) ∈ R2 | x ∈ (x−, x+) , Hb(x) < z < Hb(x) + h(x, t)} , (7.55)

where x− and x+ are arbitrary in Ω. The conservation of mass for this volume reads

d

dt

∫ x+

x−

∫ Hb(x)+h(x,t)

Hb(x)

ρ dz dx =

∫ Hb(x−)+h(x−,t)

Hb(x−)

ρ u(x−, t) dz −
∫ Hb(x+)+h(x+,t)

Hb(x+)

ρ u(x+, t) dz (7.56)

At this point it is customary to define the depth-averaged velocity

u(x, y, t) =
1

h(x, y, t)

∫ Hb(x,y)+h(x,y,t)

Hb(x,y)

ρ u(x, y, t) dz , (7.57)

so that (7.56) becomes
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Integral form of mass conservation in SW approximation

d

dt

∫ x+

x−
h(x, t) dx = h(x−, t)u(x−, t) dz − h(x+, t)u(x+, t) dz . (7.58)

If h and u are differentiable, for the previous equation to hold for any x± it must hold that

Differential form of mass conservation in SW approximation

∂th+ ∂x(hu) = 0 . (7.59)

The Rankine-Hugoniot condition that expresses mass conservation is, thus,

h+ u+ − h− u− = s
(
h+ − h−

)
. (7.60)
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• Now consider the following finite volumes to analyze the conservation of vertical momentum:

V = {(x, z) ∈ R2 | x ∈ (x−, x+) , Z < z < Hb(x, t) + h(x, t)} . (7.61)

A crucial hypotheses in the SW approximation is that vertical inertial effects, together with
vertical viscous forces, are negligible. This reduces the the conservation of z-momentum to∫ x+

x−
(p(Z, t)− p(Hb(x) + h(x, t))) dx =

∫ x+

x−

∫ Hb(x)+h(x,t)

Z

ρ g dx (7.62)

which, if we assume that p(x,Hb(x)+h(x, t)) is the pressure at the atmosphere above the fluid pa(x, t)
ends up implying

∂zp = −ρ g , (7.63)

or, equivalently

p(x, z, t) = pa(x, t) + ρ g (Hb(x) + h(x, t)− z) (hydrostatic hypothesis) . (7.64)
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• Finally, let us consider conservation of horizontal momentum. The finite volume is as in the
conservation of mass, i.e.,

V = {(x, z) ∈ R2 | x ∈ (x−, x+) , Hb(x) < z < Hb(x) + h(x, t)} .

We thus have, denoting Ht = Hb + h,

d

dt

∫ x+

x−

∫ Ht

Hb

ρ u dz dx =

∫ Ht(x−,t)

Hb(x−)

ρ u2(x−, z, t) dz −
∫ Ht(x+,t)

Hb(x+)

ρ u2(x+, z, t) dz +

+

∫ Ht(x−,t)

Hb(x−)

p(x−, z, t) dz −
∫ Ht(x+,t)

Hb(x+)

p(x+, z, t) dz −

−
∫ Ht(x−,t)

Hb(x−)

2µ ∂xu(x−, z, t) dz +

∫ Ht(x+,t)

Hb(x+)

2µ ∂xu(x+, z, t) dz +

+

∫ x+

x−
[τw(x, t)− τb(x, t)] dx +

+

∫ x+

x−
[p(x,Ht(x, t), t)∂xHt − p(x,Hb(x), t)∂xHb] dx (7.65)

Above, τw is the shear stress at the top of the fluid layer, referred to as wind stress. Similarly, τb
is the shear stress at the bottom boundary, for which many times a drag-law is assumed

τb = −ρC |u|u . (7.66)

The last line corresponds to the horizontal component of the pressure force at the surface and bottom.

• The assumption is made that∫ Hb(x)+h(x,t)

Hb(x)

u2(x, z, t) dz = β h(x, t)u2(x, t) , (7.67)
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where β is a so-called “momentum correction factor”. In most cases β = 1 is adopted.

• The hydrostatic approximation leads to (omitting the dependence on t for brevity of notation)∫ Hb(x)+h(x)

Hb(x)

p(x, z) dz = h(x) pa(x) +

∫ Ht(x)

Hb(x)

ρ g (Ht(x)− z) dz

= h(x) pa(x) +
ρ g

2
h2(x) . (7.68)

and ∫ x+

x−
[p(x,Ht(x))∂xHt − p(x,Hb(x))∂xHb] dx =

= pa(x
+) (Hb(x

+) + h(x+))− pa(x−) (Hb(x
−) + h(x−))−

− (pa(x
+) + ρgh(x+))Hb(x

+) + (pa(x
−) + ρgh(x−))Hb(x

−)−

−
∫ x+

x−
[pa∂x(Hb + h)− (pa + ρgh)∂xHb] dx

so that the sum of all contributions from the pressure is

ρg

2
(h(x−)2 − h(x+)2)−

∫ x+

x−
(h ∂xpa + ρgh ∂xHb) dx

• Collecting the pieces and neglecting viscous terms and wind forces one arrives at
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Integral form of horizontal momentum conservation

d

dt

∫ x+

x−
hu dx = h(x−, t)u2(x−, t)− h(x+, t)u2(x+, t) +

+
g

2
h2(x−, t)− g

2
h2(x+, t)−

∫ x+

x−

[
C |u|u+

h

ρ
∂xpa + g h ∂xHb

]
+ dx .(7.69)

This equation can only hold for all x± if

Differential form of horizontal momentum conservation

∂t(hu) + ∂x

(
hu2 +

g

2
h2
)

= −C |u|u − h

ρ
∂xpa − g h ∂xHb . (7.70)

The associated Rankine-Hugoniot condition is (assuming pa differentiable)

h+ (u+)2 +
g

2
(h+)2 − h− (u−)2 − g

2
(h−)2 = s

(
h+ u+ − h− u−

)
. (7.71)
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• The equations to be considered are, assuming pa and Hb constants,

∂t

(
h
hu

)
+ ∂x

(
hu

hu2 + g
2
h2

)
=

(
0

−C |u|u

)
(7.72)

where we have dropped the overline of u and neglected gradients of atmospheric pressure.

• Defining q1 = h, q2 = hu,

∂t

(
q1

q2

)
+ ∂x

(
q2

q22
q1

+ g
2
q2

1

)
︸ ︷︷ ︸

= f(q)

=

(
0

−C |q2|q2
q21

)
(7.73)

One readily observes that the system is hyperbolic, with

Df =

(
0 1

− q22
q21

+ gq1 2 q2
q1

)
=

(
0 1

−u2 + gh 2u

)
(7.74)

so that the corresponding eigenvalues and eigenvectors are

λ1 = u−
√
gh , v1 =

(
1

u−
√
gh

)
, λ2 = u+

√
gh , v2 =

(
1

u+
√
gh

)
. (7.75)

Exo. 7.15 Considering the source term to be zero in (7.72) or (7.73), let q
0

= (h0, h0u0)T be a constant

solution and let h̃(x, t), ũ(x, t) be perturbations. Show that they satisfy the linearized equation

∂t

(
h̃

h̃ ũ

)
+

(
0 1

−u2
0 + gh0 2u0

)
∂x

(
h̃

h̃ ũ

)
= 0 (7.76)

Solve analytically the Riemann problem, discussing the differences between the subcritical case (|u0| <√
gh0) and the supercritical case (|u0| >

√
gh0).
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