
2

Direct numerical simulations of finite Reynolds
number flows

In this chapter and the following three, we discuss numerical methods that
have been used for direct numerical simulations of multiphase flow. Al-
though direct numerical simulations, or DNS, mean slightly different things
to different people, we shall use the term to refer to computations of com-
plex unsteady flows where all continuum length and time scales are fully
resolved. Thus, there are no modeling issues beyond the continuum hy-
pothesis. The flow within each phase and the interactions between different
phases at the interface between them are found by solving the governing
conservation equations, using grids that are finer and time steps that are
shorter than any physical length and time scale in the problem.

The detailed flow field produced by direct numerical simulations allows
us to explore the mechanisms governing multiphase flows and to extract
information not available in any other way. For a single bubble, drop, or
particle, we can obtain integrated quantities such as lift and drag and ex-
plore how they are affected by free stream turbulence, the presence of walls,
and the unsteadiness of the flow. In these situations it is possible to take
advantage of the relatively simple geometry to obtain extremely accurate
solutions over a wide range of operating conditions. The interactions of a
few bubbles, drops, or particles is a more challenging computation, but can
be carried out using relatively modest computational resources. Such simu-
lations yield information about, for example, how bubbles collide or whether
a pair of buoyant particles, rising freely through a quiescent liquid, orient
themselves in a preferred way. Computations of one particle can be used
to obtain information pertinent to modeling of dilute multiphase flows, and
studies of a few particles allow us to assess the importance of rare collisions.
It is, however, the possibility of conducting DNS of thousands of freely in-
teracting particles that holds the greatest promise. Such simulations can
yield data for not only the collective lift and drag of dense systems, but

19

20

also about how the particles are distributed and what impact the formation
of structures and clusters has on the overall behavior of the flow. Most
industrial size systems, such as fluidized bed reactors or bubble columns,
will remain out of reach of direct numerical simulations for the foreseeable
future (and even if they were possible, DNS is unlikely to be used for routine
design). However, the size of systems that can be studied is growing rapidly.
It is realistic today to conduct DNS of fully three-dimensional systems re-
solved by several hundred grid points in each spatial direction. If we assume
that a single bubble can be adequately resolved by 25 grid points (sufficient
for clean bubbles at relatively modest Reynolds numbers), that the bubbles
are, on the average, one bubble diameter apart (a void fraction of slightly
over 6%), and that we have a uniform grid with 10003 grid points, then we
would be able to accommodate 8000 bubbles. High Reynolds numbers and
solid particles or drops generally require higher resolution. Furthermore, the
number of bubbles that we can simulate on a given grid obviously depends
strongly on the void fraction. It is clear, however, that DNS has opened
up completely new possibilities in the studies of multiphase flows which we
have only started to explore.

In addition to relying on explosive growth in available computer power,
progress in DNS of multiphase flows has also been made possible by the
development of numerical methods. Advecting the phase boundary poses
unique challenges and we will give a brief overview of such methods below,
followed by a more detailed description in the next few chapters. In most
cases, however, it is also necessary to solve the governing equations for the
fluid flow. For body-fitted and unstructured grids, these are exactly the
same as for flows without moving interfaces. For the “one-fluid” approach
introduced in Chapter 3, we need to deal with density and viscosity fields
that change abruptly across the interface and singular forces at the interface,
but otherwise the computations are the same as for single-phase flow. Meth-
ods developed for single-phase flows can therefore generally be used to solve
the fluid equations. After we briefly review the different ways of computing
multiphase flows, we will therefore outline in this chapter a relatively simple
method to compute single-phase flows using a regular structured grid.

2.1 Overview

Many methods have been developed for direct numerical simulations of mul-
tiphase flows. The oldest approach is to use one stationary, structured grid
for the whole computational domain and to identify the different fluids by
markers or a marker function. The equations expressing conservation of

DNS of Finite Re Flows 21

mass, momentum and energy hold, of course, for any fluid, even when
density and viscosity change abruptly and the main challenge in this ap-
proach is to accurately advect the phase boundary and to compute terms
concentrated at the interface, such as surface tension. In the marker-and-cell
(MAC) method of Harlow and collaborators at Los Alamos (Harlow and
Welch, 1965) each fluid is represented by marker points distributed over the
region that it occupies. Although the MAC method was used to produce
some spectacular results, the distributed marker particles were not partic-
ularly good at representing fluid interfaces. The Los Alamos group thus
replaced the markers by a marker function that is a constant in each fluid
and is advected by a scheme specifically written for a function that changes
abruptly from one cell to the next. In one dimension this is particularly
straightforward and one simply has to ensure that each cell fills completely
before the marker function is advected into the next cell. Extended to two
and three dimensions, this approach results in the volume-of-fluid (VOF)
method.

The use of a single structured grid leads to relatively simple as well as
efficient methods, but early difficulties experienced with the volume-of-fluid
method have given rise to several other methods to advect a marker func-
tion. These include the level-set method, originally introduced by Osher and
Sethian (1988) but first used for multiphase flow simulations by Sussman,
Smereka, and Osher (1994), the CIP method of Yabe and collaborators
(Takewaki, Nishiguchi and Yabe, 1985; Takewaki and Yabe, 1987), and the
phase field method used by Jacqmin (1997). Instead of advecting a marker
function and inferring the location of the interface from its gradient, it is
also possible to mark the interface using points moving with the flow and
reconstruct a marker function from the interface location. Surface mark-
ers have been used extensively for boundary integral methods for potential
flows and Stokes flows, but their first use in Navier–Stokes computations
was by Daly (1969a,b) who used them to calculate surface tension effects
with the MAC method. The use of marker points was further advanced by
the introduction of the immersed boundary method by Peskin (1977), who
used connected marker points to follow the motion of elastic boundaries im-
mersed in homogeneous fluids, and by Unverdi and Tryggvason (1992) who
used connected marker points to advect the boundary between two different
fluids and to compute surface tension from the geometry of the interface.
Methods based on using a single structured grid, identifying the interface
either by a marker function or connected marker points, are discussed in
some detail in Chapter 3 of this book.

The attraction of methods based on the use the “one-fluid” formulation

22

on stationary grids is their simplicity and efficiency. Since the interface is,
however, represented on the grid as a rapid change in the material proper-
ties, their formal accuracy is generally limited to first order. Furthermore,
the difficulty that the early implementations of the “one-fluid” approach
experienced, inspired several attempts to develop methods where the grid
lines were aligned with the interface. These attempts fall, loosely, into three
categories. Body-fitted grids, where a structured grid is deformed in such a
way that the interface always coincides with a grid line; unstructured grids
where the fluid is resolved by elements or control volumes that move with it
in such a way that the interface coincides with the edge of an element; and
what has most recently become known as sharp interface methods, where a
regular structured grid is used but something special is done at the interface
to allow it to stay sharp.

Body-fitted grids that conform to the phase boundaries greatly simplify
the specification of the interaction of the phases across the interface. Fur-
thermore, numerical methods on curvilinear grids are well developed and a
high level of accuracy can be maintained both within the different phases and
along their interfaces. Such grids were introduced by Hirt, Cook, and Butler
(1970) for free surface flows, but their use by Ryskin and Leal (1983, 1984) to
find the steady state shape of axisymmetric buoyant bubbles brought their
utility to the attention of the wider fluid dynamics community. Although
body-fitted curvilinear grids hold enormous potential for obtaining accurate
solutions for relatively simple systems such as one or two spherical parti-
cles, generally their use is prohibitively complex as the number of particles
increases. These methods are briefly discussed in Chapter 4. Unstructured
grids, consisting usually of triangular (in two-dimensions) and tetrahedral
(in three-dimensions) shaped elements offer extreme flexibility, both because
it is possible to align grid lines to complex boundaries and also because it
is possible to use different resolution in different parts of the computational
domain. Early applications include simulations of the breakup of drops by
Fritts, Fyre, and Oran (1983) but more recently unstructured moving grids
have been used for simulations of multiphase particulate systems, as dis-
cussed in Chapter 5. Since body-fitted grids are usually limited to relatively
simple geometries and methods based on unstructured grids are complex
to implement and computationally expensive, several authors have sought
to combine the advantages of the single-fluid approach and methods based
on a more accurate representation of the interface. This approach was pio-
neered by Glimm and collaborators many years ago (Glimm, 1982; Glimm
and McBryan, 1985) but has recently re-emerged in methods that can be
referred to collectively as “sharp interface” methods. In these methods the

DNS of Finite Re Flows 23

fluid domain is resolved by a structured grid, but the interface treatment
is improved by, for example, introducing special difference formulas that
incorporate the jump across the interface (Lee and LeVeque, 2003), using
“ghost points” across the interface (Fedkiw et al., 1999), or restructuring the
control volumes next to the interface so that the face of the control volume
is aligned with the interface (Udaykumar et al., 1997). While promising,
for the most part these methods have yet to prove that they introduce fun-
damentally new capabilities and that the extra complication justifies the
increased accuracy. We will briefly discuss “sharp interface methods” for
simulations of the motion of fluid interfaces in Chapter 3 and in slightly
more detail for fluid–solid interactions in Chapter 4.

2.2 Integrating the Navier–Stokes equations in time

For a large class of multiphase flow problems, including most of the systems
discussed in this book, the flow speeds are relatively low and it is appropriate
to treat the flow as incompressible. The unique role played by the pressure
for incompressible flows, where it is not a thermodynamic variable, but
takes on whatever value is needed to enforce a divergence-free velocity field,
requires us to pay careful attention to the order in which the equations
are solved. There is, in particular, no explicit equation for the pressure
and therefore such an equation has to be found as a part of the solution
process. The standard way to integrate the Navier–Stokes equations is by
the so called “projection method,” introduced by Chorin (1968) and Yanenko
(1971). In this approach, the velocity is first advanced without accounting
for the pressure, resulting in a field that is in general not divergence-free.
The pressure necessary to make the velocity field divergence-free is then
found and the velocity field corrected by adding the pressure gradient.

We shall first work out the details for a simple first-order explicit time
integration scheme and then see how it can be modified to generate a higher
order scheme. To integrate equations (1.2) and (1.7) (or 1.8) in time, we
write

un+1 − un

∆t
+ Ah(un) = −1

ρ
∇hp + νDh(un) + fn

b (2.1)

∇h · un+1 = 0. (2.2)

The superscript n denotes the variable at the beginning of a time step of
length ∆t and n + 1 denotes the new value at the end of the step. Ah is a
numerical approximation to the advection term, Dh is a numerical approx-
imation to the diffusion term, and fb is a numerical approximation to any

24

other force acting on the fluid. ∇h means a numerical approximation to the
divergence or the gradient operator.

In the projection method the momentum equation is split into two parts
by introducing a temporary velocity u∗ such that un+1 −un = un+1 −u∗ +
u∗ − un. The first part is a predictor step, where the temporary velocity
field is found by ignoring the effect of the pressure:

u∗ − un

∆t
= −Ah(un) + νDh(un) + fn

b . (2.3)

In the second step – the projection step – the pressure gradient is added to
yield the final velocity at the new time step:

un+1 − u∗

∆t
= −1

ρ
∇hp

n+1. (2.4)

Adding the two equations yields exactly equation (2.1).
To find the pressure, we use equation (2.2) to eliminate un+1 from equa-

tion (2.4), resulting in Poisson’s equation:

1
ρ
∇2

hp
n+1 =

1
∆t

∇h · u∗ (2.5)

since the density ρ is constant. Once the pressure has been found, equa-
tion (2.4) is used to find the projected velocity at time step n + 1. We note
that we do not assume that ∇h · un = 0. Usually, the velocity field at time
step n is not exactly divergence-free but we strive to make the divergence
of the new velocity field, at n + 1, zero.

As the algorithm described above is completely explicit, it is subject to rel-
atively stringent time-step limitations. If we use standard centered second-
order approximations for the spatial derivatives, as done below, stability
analysis considering only the viscous terms requires the step size ∆t to be
bounded by

∆t < Cν
h2

ν
(2.6)

where Cν = 1/4 and 1/6 for two- and three-dimensional flows, respectively,
and h is the grid spacing. The advection scheme is unstable by itself, but it
is stabilized by viscosity if the step size is limited by

∆t <
2ν

q2 , (2.7)

where q2 = u · u. More sophisticated methods for the advection terms,
which are stable in the absence of viscosity and can therefore also be used to

DNS of Finite Re Flows 25

integrate the Euler equations in time, are generally subject to the Courant–
Friedrichs–Lewy (CFL) condition1. For one-dimensional flow,

∆t <
h

(|u|) . (2.8)

Many advection schemes are implemented by splitting, where the flow is
sequentially advected in each coordinate direction. In these cases the one-
dimensional CFL condition applies separately to each step. For fully mul-
tidimensional schemes, however, the stability analysis results in further re-
duction of the size of the time step. General discussions of the stability
of different schemes and the resulting maximum time step can be found in
standard textbooks, such as Hirsch (1988), Wesseling (2001), or Ferziger
and Perić (2002). In an unsteady flow, the CFL condition on the time
step is usually not very severe, since accuracy requires the time step to be
sufficiently small to resolve all relevant time scales. The limitation due to
the viscous diffusion, equation (2.6), can be more stringent, particularly for
slow flow, and the viscous terms are frequently treated implicitly, as dis-
cussed below. For problems where additional physics must be accounted
for, other stability restrictions may apply. When surface tension is impor-
tant, it is generally found, for example, that it is necessary to limit the time
step in such a way that a capillary wave travels less than a grid space in one
time step.

The simple explicit forward-in-time algorithm described above is only
first-order accurate. For most problems it is desirable to employ at least
a second-order accurate time integration method. In such methods the non-
linear advection terms can usually be treated explicitly, but the viscous
terms are often handled implicitly, for both accuracy and stability. If we
use a second-order Adams–Bashforth scheme for the advection terms and
a second-order Crank–Nicholson scheme for the viscous term, the predictor
step is (Wesseling, 2001)

u∗ − un

∆t
= −3

2
Ah(un) +

1
2
Ah(un−1) +

ν

2

(
Dh(un) + Dh(u∗)

)
, (2.9)

and the correction step is

un+1 − u∗

∆t
= −∇hφ

n+1. (2.10)

1 Lewy is often spelled Levy. This is incorrect. Hans Lewy (1904–1988) was a well-known
mathematician.

26

Here, φ is not exactly equal to the pressure, since the viscous term is not
computed at the new time level but at the intermediate step. It is easily
seen that

−∇φn+1 = −∇pn+1 +
ν

2

(
Dh(un+1) − Dh(u∗)

)
. (2.11)

The intermediate velocity u∗ does not satisfy the divergence-free condition,
and a Poisson equation for the pseudo-pressure is obtained as before from
Eq. (2.10) as

∇2
hφ

n+1 =
∇h · u∗

∆t
. (2.12)

This multidimensional Poisson’s equation must be solved before the final
velocity, un+1, can be obtained. Since the viscous terms are treated implic-
itly, we must rearrange equation (2.9) to yield a Helmholtz equation for the
intermediate velocity u∗

Dh(u∗) − 2ν

∆t
u∗ =

3∆t

2
Ah(un) − ∆t

2
Ah(un−1) − Dh(un) − 2ν

∆t
un = RHS

(2.13)
which needs to be solved with the appropriate boundary conditions. Consid-
erable effort has been devoted to the solution of Poisson’s and Helmholtz’s
equations and several packages are available (see www.mgnet.org, for ex-
ample), particularly for rectangular grids. For curvilinear body-fitted grids
the solution of Helmholtz’s equation can sometimes be simplified by using
implicit time advancement of the viscous term selectively only along cer-
tain directions. The viscous term in the other directions can be treated
explicitly along with the nonlinear terms. Usually, the wall-normal viscous
term is treated implicitly, while the tangential viscous terms can be treated
explicitly (Mittal, 1999; Bagchi and Balachandar, 2003b). The resulting
viscous time-step limitation, arising only from the tangential contributions
to (2.13), is usually not very stringent.

The above two-step formulation of the time-splitting scheme is not unique;
another variant is presented in Chapter 9. We refer the reader to standard
textbooks, such as Ferziger and Perić (2002) and Wesseling (2001) for further
discussions.

2.3 Spatial discretization

Just as there are many possible time integration schemes, the spatial dis-
cretization of the Navier–Stokes equations – where continuous variables are
replaced by discrete representation of the fields and derivatives are ap-
proximated by relations between the discrete values – can be accomplished
in many ways. Here we use the finite-volume method and discretize the

http://www.mgnet.org

DNS of Finite Re Flows 27

governing equations by dividing the computational domain into small control
volumes of finite size. In the finite-volume method we work with the aver-
age velocity in each control volume, and approximate each term in equa-
tions (2.3) and (2.4) by its average value over the control volume. To derive
numerical approximations to the advection and the viscous terms, we first
find the averages over each control volume:

A(un) =
1

∆V

∫
V

∇ · (unun) dv =
1

∆V

∮
S
un(un · n) ds (2.14)

and

D(un) =
1

∆V

∫
V

∇2un dv. (2.15)

Here, ∆V is the volume of the control volume, S is the surface of the control
volume, and we have used the divergence theorem to convert the volume
integral of the advection term to a surface integral. It is also possible to
rewrite the viscous term as a surface integral, but for constant-viscosity
fluids it is generally simpler to work with the volume integral. Numerical
approximations to these terms, Ah and Dh, are found by evaluating the
integrals numerically.

Similarly, a numerical approximation to the continuity equation (2.2),
∇h ·un+1 = 0, is found by first integrating over the control volume and then
rewriting the integral as a surface integral:

1
∆V

∫
V

∇ · un+1 dv =
1

∆V

∮
S
un+1 · n ds. (2.16)

The surface integral is then evaluated numerically. While we started here
with the differential form of the governing equations, averaging over each
cell, the discrete approximations could just as well have been obtained by
starting with the conservation principles in integral form.

To carry out the actual computations, we must specify the control vol-
umes to be used, and how the surface and volume integrals are approxi-
mated. Here, we will take the simplest approach and use square or cubic
control volumes, defined by a regular array of grid points, separated by a
distance h. For simplicity, we assume a two-dimensional flow as the ex-
tension to three dimensions involves no new concepts. We start by picking
a control volume around a point where the pressure is stored and identify
it by the integer pair (i, j). The control volumes to the left and the right
are given by (i − 1, j) and (i + 1, j), respectively. Similarly, (i, j − 1) and
(i, j + 1) refer to the control volumes below and above. The locations of the
edges are identified by half-indices (i±1/2, j) and (i, j ±1/2). The pressure

28

pi-1,j+1 pi,j+1 pi+1,j+1

pi-1,j pi,j pi+1,j

pi-1,j-1 pi,j-1 pi+1,j-1

ui-1/2,j+1 ui+1/2,j+1

ui-1/2,j ui+1/2,j

ui-1/2,j-1 ui+1/2,j-1

vi-1,j+1/2

vi-1,j-1/2

vi,j+1/2

vi,j-1/2

vi+1,j+1/2

vi+1,j-1/2

Fig. 2.1. The notation used for a standard staggered MAC mesh. The pressure
control volume, centered at the (i, j) node, is outlined.

control volume, centered at (i, j), is shown by a thick line in Fig. 2.1. To
derive a discrete approximation for the incompressibility condition, we eval-
uate equation (2.16) for the pressure control volume centered at (i, j). The
integrals along the edges of the control volume are approximated by the mid-
point rule, using the normal velocities at the edges. The normal velocities
on the right and the left boundaries are ui+1/2,j and ui−1/2,j , respectively.
Similarly, vi,j+1/2 and vi,j−1/2 are the normal velocities on the top and the
bottom boundary. The discrete approximation to the incompressibility con-
dition is therefore:

un+1
i+1/2,j − un+1

i−1/2,j + vn+1
i,j+1/2 − vn+1

i,j−1/2 = 0 (2.17)

since the grid spacing is the same in both directions.
The velocities needed in equation (2.17) are the normal velocities to the

boundary of the control volume. Although methods have been developed
to allow us to use co-located grids (discussed below and in Section 10.3.4),
where the velocities are stored at the same points as the pressures, here we
proceed in a slightly different way and to define new control volumes, one
for the u velocity, centered at (i + 1/2, j) and another one for the v velocity,
centered at (i, j+1/2). Such staggered grids result in a very robust numerical
method that is – in spite of the complex looking indexing – relatively easily
implemented. The control volume for ui+1/2,j is shown in the left frame of
Fig. 2.2 and the control volume for vi,j+1/2 in the right frame.

Continuing with the first-order method described above, the discrete forms
of equations (2.3) and (2.4) for the u velocity in a control volume centered at

DNS of Finite Re Flows 29

pi-1,j+1 pi,j+1 pi+1,j+1

pi-1,j pi,j pi+1,j

pi-1,j-1 pi,j-1 pi+1,j-1

ui-1/2,j+1 ui+1/2,j+1

ui-1/2,j ui+1/2,j

ui-1/2,j-1 ui+1/2,j-1

vi-1,j+1/2

vi-1,j-1/2

vi,j+1/2

vi,j-1/2

vi+1,j+1/2

vi+1,j-1/2

pi-1,j+1 pi,j+1 pi+1,j+1

pi-1,j pi,j pi+1,j

pi-1,j-1 pi,j-1 pi+1,j-1

ui-1/2,j+1 ui+1/2,j+1

ui-1/2,j ui+1/2,j

ui-1/2,j-1 ui+1/2,j-1

vi-1,j+1/2

vi-1,j-1/2

vi,j+1/2

vi,j-1/2

vi+1,j+1/2

vi+1,j-1/2

Fig. 2.2. The control volumes for the velocities on a staggered grid. The u-velocity
control volume, centered at (i + 1/2, j), is shown on the left and the v-velocity
control volume, centered at (i, j + 1/2), is shown on the right.

(i+1/2, j) and the v velocity in a control volume centered at (i, j +1/2) are:

u∗
i+1/2,j = un

i+1/2,j + ∆t
(
−(Ax)n

i+1/2,j + ν(Dx)n
i+1/2,j + (fx)i+1/2,j

)
v∗
i,j+1/2 = vn

i,j+1/2 + ∆t(−(Ay)n
i,j+1/2 + ν(Dy)n

i,j+1/2 + (fy)i,j+1/2

)
(2.18)

for the predictor step, and

un+1
i+1/2,j = u∗

i+1/2,j − 1
ρ

∆t

h
(pn+1

i+1,j − pn+1
i,j)

vn+1
i,j+1/2 = v∗

i,j+1/2 − 1
ρ

∆t

h
(pn+1

i,j+1 − pn+1
i,j) (2.19)

for the projection step.
To find an equation for the pressure, we substitute the expression for

the correction velocities at the edges of the pressure control volume, equa-
tions (2.19), into the continuity equation (2.17). When the density is con-
stant, we get:

pn+1
i+1,j + pn+1

i−1,j + pn+1
i,j+1 + pn+1

i,j−1 − 4pn+1
i,j

h2

=
ρ

∆t

(
u∗

i+1/2,j − u∗
i−1/2,j + v∗

i,j+1/2 − v∗
i,j−1/2

h

)
. (2.20)

The pressure Poisson equation, (2.20), can be solved by a wide variety
of methods. The simplest one is iteration, where we isolate pn+1

i,j on the
left-hand side and compute it by using already estimated values for the

30

surrounding pressures. Once a new pressure is obtained everywhere, we
repeat the process until the pressure does not change any more. This iter-
ation (Jacobi iteration) is very robust but converges very slowly. It can be
accelerated slightly by using the new values of the pressure as soon as they
become available (Gauss–Seidel iteration) and even more by extrapolating
toward the new value at every iteration. This is called successive over-
relaxation (SOR) and was widely used for a while although now its value
is mostly its simplicity during code development. For “production runs”,
much more efficient methods are available. For constant-density flows in
regular geometries, solvers based on fast Fourier transforms or cyclic reduc-
tion (Sweet, 1974) have been used extensively for over two decades, but for
more complex problems, such as variable-density or nonsimple domains or
boundary conditions, newer methods such as multigrid iterative methods
are needed (Wesseling, 2004). Solving the pressure equation is generally
the most time-consuming part of any simulation involving incompressible
flows.

Now that we have determined the layout of the control volumes, we can
write explicit formulas for the advection and diffusion terms. The simplest
approach is to use the midpoint rule to approximate the integral over each
edge in equation (2.14) and to use a linear interpolation for the velocities at
those points where they are not defined. This results in:

(Ax)n
i+1/2,j =

1
h

{(un
i+3/2,j + un

i+1/2,j

2

)2
−
(un

i+1/2,j + un
i−1/2,j

2

)2

+
(un

i+1/2,j+1 + un
i+1/2,j

2

)(vn
i+1,j+1/2 + vn

i,j+1/2

2

)
−
(un

i+1/2,j + un
i+1/2,j−1

2

)(vn
i+1,j−1/2 + vn

i,j−1/2

2

)}

(Ay)n
i,j+1/2 =

1
h

{(un
i+1/2,j + un

i+1/2,j+1

2

)(vn
i,j+1/2 + vn

i+1,j+1/2

2

)
−
(un

i−1/2,j+1 + un
i−1/2,j

2

)(vn
i,j+1/2 + vn

i−1,j+1/2

2

)
+
(vn

i,j+3/2 + vn
i,j+1/2

2

)2
−
(vn

i,j+1/2 + vn
i,j−1/2

2

)2}
.

The viscous term, equation (2.15), is approximated by the Laplacian at
the center of the control volume, found using centered differences and by

DNS of Finite Re Flows 31

assuming that the average velocities coincide with the velocity at the center
of the control volume:

(Dx)n
i+1/2,j =

un
i+3/2,j + un

i−1/2,j + un
i+1/2,j+1 + un

i+1/2,j−1 − 4un
i+1/2,j

h2

(Dy)n
i,j+1/2 =

vn
i+1,j+1/2 + vn

i−1,j+1/2 + vn
i,j+3/2 + vn

i,j−1/2 − 4vn
i,j+1/2

h2 . (2.21)

The staggered grid used above results in a very robust method, where
pressure and velocities are tightly coupled. The grid does, however, require
fairly elaborate bookkeeping of where each variable is and, for body-fitted
or unstructured grids, the staggered grid arrangement can be cumbersome.
Considerable effort has therefore been devoted to the development of meth-
ods using co-located grids, where all the variables are stored at the same
spatial locations. The simplest approach is probably the one due to Rhie
and Chow (1983), where we derive the pressure equation using the predicted
velocities interpolated to the edges of the basic control volume. Thus, after
we find the temporary velocities at the pressure points, u∗

i,j and v∗
i,j , we

interpolate to find

u∗
i+1/2,j =

1
2

(u∗
i+1,j + u∗

i,j)

v∗
i,j+1/2 =

1
2

(v∗
i,j+1 + v∗

i,j). (2.22)

We then “pretend” that we are working with staggered grids and that the
edge velocities at the new time step are given by

un+1
i+1/2,j = u∗

i+1/2,j − ∆t

ρh
(pn+1

i+1,j − pn+1
i,j)

vn+1
i,j+1/2 = v∗

i,j+1/2 − ∆t

ρh
(pn+1

i,j+1 − pn+1
i,j), (2.23)

which is identical to equation (2.19), except that the temporary edge velocities
are found by interpolation (equation 2.22).

The continuity equation for the pressure control volume is still given by
equation (2.17), and substitution of the velocities given by equation (2.23)
yields exactly equation (2.20), but with the velocities on the right-hand side
now given by equation (2.22), rather than equations (2.19). Although we
enforce incompressibility using the corrected edge velocities so that the pres-
sure gradient is estimated using pressure values next to each other, the new

32

cell-centered velocities are found using the average pressure at the edges.
Thus,

un+1
i,j = u∗

i,j − ∆t

ρh
(pn+1

i+1,j − pn+1
i−1,j)

vn+1
i,j = v∗

i,j − ∆t

ρh
(pn+1

i,j+1 − pn+1
i,j−1). (2.24)

The Rhie–Chow method has been successfully implemented by a number
of authors and applied to a range of problems. For regular structured grids
it offers no advantage over the staggered grid, but for more complex grid
layouts and for cut-cell methods (discussed in Chapter 4) it is easier to im-
plement. A different approach for the solution of the fluid equations on
co-located grids is described in Section 10.3.4.

The method described above works well for moderate Reynolds number
flows and short enough computational times, but for serious computational
studies, particularly at high Reynolds numbers, it usually needs to be re-
fined in various ways. In early computations the centered difference scheme
for the advection terms was sometimes replaced by the upwind scheme. In
this approach, the momentum is advected through the left boundary of the
(i + 1/2, j) control volume in Fig. 2.2 using ui−1/2,j if the flow is from the
left to right and using ui+1/2,j if the flow is from the right to left. While this
resulted in much improved stability properties, the large numerical diffusion
of the scheme and the low accuracy has all but eliminated it from current

usage. By using more sophisticated time integration schemes, such as the
Adams–Bashforth method described above or Runge–Kutta schemes, it is
possible to produce stable schemes based on centered differences for the ad-
vection terms that are subject to the time-step limit given by (2.8), rather
than equation (2.7). However, for situations where the velocity changes
rapidly over a grid cell this approach can produce unphysical oscillations.
These oscillations do not always render the results unusable, and the prob-
lem only shows up in regions of high gradients. However, as the Reynolds
number becomes higher the problem becomes more serious. To overcome
these problems, many authors have resorted to the use of higher order up-
wind methods. These methods are almost as accurate as centered difference
schemes in regions of fully resolved smooth flows and much more robust in
regions where the solution changes rapidly and the resolution is marginal.
The best-known approach is the quadratic upstream interpolation for con-
vective kinematics (QUICK) method of Leonard (1979), where values at

DNS of Finite Re Flows 33

the cell edges are interpolated by upstream biased third-order polynomials.
Thus, for example, the u velocity at (i, j) in Fig. 2.2 is found from

ui,j =
{

(1/8)
(
3ui+1/2,j + 6ui−1/2,j − ui−3/2,j

)
, if ui,j > 0;

(1/8)
(
3ui−1/2,j + 6ui+1/2,j − ui+3/2,j

)
, if ui,j < 0.

(2.25)

While QUICK and its variants are not completely free of “wiggles” for steep
enough gradients, in practice they are much more robust than the centered
difference scheme and much more accurate than first-order upwind. Other
authors have used the second-order ENO (essentially nonoscillatory) scheme
described in Chapter 3 (for the advection of the level set function) to find
the edge velocities.

2.4 Boundary conditions

At solid walls the boundary conditions for the Navier–Stokes equations are
well defined. As we saw in Section 1.3, the velocity is simply equal to the wall
velocity. When staggered grids are used to resolve a rectangular geometry,
the grid is arranged in such a way that the boundaries coincide with the
location of the normal velocities. In the discrete version of the equations, the
relative normal velocity is then simply zero on the side of the control volume
that coincides with the wall. Since the location of the tangent velocity
component is, however, half a grid space away from the wall, imposing the
tangent wall velocity is slightly more complicated. Usually, this is done by
the introduction of “ghost points” on the other side of the wall, half a grid
space away from the wall. The tangent velocity at this point is specified in
such a way that linear interpolation gives the correct wall velocity. Thus, if
the wall velocity is ub and the velocity at the first point inside the domain
(half a cell from the wall) is u1/2, the velocity at the ghost point is u−1/2 =
2ub − u1/2. Figure 2.3 shows a ghost point near a solid boundary.

While the enforcement of the tangential velocity boundary conditions is
perhaps a little kludgy, it is in the implementation of the boundary condi-
tions for the pressure where the true elegance of the staggered grid manifests
itself best. As seen before, the pressure equation is derived by substituting
the discrete equations for the correction velocities into the discrete contin-
uum equation. For cells next to the boundary the normal velocity at the
wall is known and there is no need to substitute the correction velocity for
the boundary edge. The pressure equation for the cell will therefore only
contain pressures for nodes inside the domain. This has sometimes led to
declarations to the effect that on staggered grids no boundary conditions
are needed for the pressure. This is, of course, not correct. The discrete

34

pi,1 pi+1,1u1/2

u–1/2 u–1/2

 ub ub

u1/2

vi,1/2 vi+1,1/2

vi,w vi+1,w

Fig. 2.3. A cell next to a solid wall. To impose the tangent velocity uw, a “ghost”
point is introduced half a grid cell outside the boundary.

pressure equation for cells next to the boundary is different than for interior
nodes since the boundary conditions are incorporated during the derivation
of the equation. For the pressure cell in Fig. 2.4 the inflow on the left is
given (ub,j), so that we only substitute equations (2.19) for the right, top,
and bottom boundaries, yielding:

pn+1
i+1,j + pn+1

i,j+1 + pn+1
i,j−1 − 3pn+1

i,j

h2

=
ρ

∆t

{u∗
i+1/2,j − ub,j + v∗

i,j+1/2 − v∗
i,j−1/2

h

}
(2.26)

which does not include a pressure to the left of the control volume. Similar
equations are used for the other boundaries. At corner nodes, the veloc-
ity is known at two edges of the control volume. This expression can also
be derived by substituting equation (2.19), written for u∗

i−1/2,j , into equa-
tion (2.20) and using that un+1

i−1/2,j = ub,j .
For co-located grids, it is necessary to specify boundary conditions for

the intermediate velocity in terms of the desired boundary conditions to be
satisfied by the velocity at the end of the time step. For the simple case
where a Dirichlet boundary condition on velocity, un+1 = ub, is specified,
the boundary condition for the intermediate velocity can be expressed as

u∗ · n = ub · n and u∗ · t = ub · t + ∆t(2∇φn − ∇φn−1) · t , (2.27)

where n is the unit vector normal to the surface on which the boundary
condition is applied and t represents the unit vector(s) parallel to the surface.
From equation (2.10) the corresponding boundary condition for φn+1 is the
homogeneous Neumann condition: ∇φn+1 · n = 0.

DNS of Finite Re Flows 35

pi,j pi+1,j

vi,j+1/2

vi,j-1/2

vi+1,j+1/2

vi+1,j-1/2

ui+1/2,jub,j = ui-1/2,j

Fig. 2.4. A cell next to an inflow boundary. The normal velocity ub,j is given.

While the discrete boundary conditions for solid walls are easily obtained,
the situation is quite different for inflow and outflow boundaries. Generally
the challenges are to obtain as uniform (or at least well-defined) inflow as
possible and to design outflow boundary conditions that have as little effect
on the upstream flow as possible. Thus, the numerical problem is essentially
the same as the one faced by the experimentalist and just as the experimen-
talist installs screens and flow straighteners, the computationalist must use
ad hoc means to achieve the same effect.

The inclusion of a well-defined inflow, such as when a flow from a long
pipe enters a chamber, is relatively easy, particularly in computations us-
ing staggered grids. Usually the normal and the tangential velocities are
specified and once the normal velocity is given, the pressure equation can
be derived in the same way as for rigid walls. Although a given velocity is
easily implemented numerically, the inflow must be carefully selected and
placed sufficiently far away from the region of interest in order to avoid
imposing artificial constraints on the upstream propagation of flow distur-
bances. In many cases, however, such as for flow over a body, the upstream
boundary condition does not represent a well-defined inflow, but rather a
place in the flow where the modeler has decided that the influence of the
body is sufficiently small so that the disturbance can be ignored there. For
multiphase flow such situations arise frequently in studies of the flow over
a single particle and we shall defer the discussion of how these are handled
to Chapter 4. Although the specification of the inflow velocity conditions
is by far the most common approach to simulations of internal flow, many
practical situations call for the specification of the overall pressure drop. For
discussions of how to handle such problems we refer the reader to standard
references such as Wesseling (2001).

The outflow is a much more difficult problem. Ideally, we want the domain
to be sufficiently long so that the outflow boundary has essentially no effect

36

on the flow region of interest. Practical considerations, however, often force
us to use relatively short computational domains. In reality the flow contin-
ues beyond the boundary and we accommodate this fact by assuming that
the flow is relatively smooth. Thus, the trick is to do as little as possible to
disturb the flow. Below we list a few of the proposals that have been put
forward in the literature to allow the flow to exit the computational domain
as gently as possible:

Convective (e.g. Kim and Choi, 2002):

∂u∗

∂t
+ c

∂u∗

∂n
= 0 (2.28)

Parabolic (e.g. Magnaudet, Rivero, and Fabre, 1995):

∂2u∗
n

∂n2 = 0,
∂u∗

τ

∂n
= 0,

∂2p

∂n∂τ
= 0 (2.29)

Zero gradient (e.g. Kim, Elghobashi, & Sirignano, 1998):

∂u∗

∂n
= 0 (2.30)

Zero second gradient (e.g. Shirayama, 1992):

∂2u∗

∂n2 = 0 (2.31)

In the above, n and τ indicate directions normal and tangential to the outer
boundary and c is a properly selected advection velocity. Many other bound-
ary conditions have been proposed in the literature to account for outflows
in a physically plausible, yet computationally efficient way. The outflow
boundary conditions are generally imposed for the velocity and an equation
for the pressure is then derived in the same way as for solid boundaries.
While the straightforward treatment of pressure for solid walls on staggered
grids carries over to both in and outflow boundaries, co-located grids gener-
ally require us to come up with explicit approximations for the pressure at
in and outflow boundaries. A more extensive discussion of outflow boundary
conditions can be found in Section 6.5 in Wesseling (2001) and Johansson
(1993), for example. Spectral simulations, owing to their global nature,
place a more stringent nonreflection requirement at the outflow boundary.
A buffer domain or viscous sponge technique is often used to implement a
nonreflecting outflow boundary condition as discussed in Chapter 4.

