Introduction to Computational Fluid Dynamics

Gustavo C. Buscaglia

Graduate course

ICMC-USP, Sao Carlos, Brasil
gustavo.buscaglia@gmail.com



1 Principles and equations of Fluid Mechanics

1.1 Continuous media

e The continuum hypothesis.

e What is a material point?

The Lagrangian frame.

The Fulerian frame.



1.2 Cartesian vectors and tensors

We assume {z1, zo, 23} to be Cartesian coordinates, with

e @ 5B (1.1)
the Cartesian basis of vectors.
Vector field:
) => ui(x,t)e? (1.2)
Gradient:
0 .
Vi = (;” e = ;e (1.3)
E = (80,17 ¥,2, SO,3>T (14)
Divergence:
ou;
V-u= Z Fo, = Ui (1.5)
Tensor product of two vectors:
uRv = Zulv] ) @ el (1.6)
(u®v)-W:(u®v)w:u(v-W) (1.7)



Double contraction:

(uv): (w®z) =(u-w)(v-z)= Zuivjwizj (1.8)
2%
2%
Gradient of a vector field:
Vu=>» u;e" e (1.10)
12
(Yu),. = ui (1.11)

Theorem 1.1 Volume integral of a gradient.

/go,i dV:/ pn; dS (1.12)
1% ov

Theorem 1.2 Gauss-Green, n is the outward normal.

/V-de:/ z-ndS (1.13)
v av




Outer product, cross product:

W X Z = &k Wj 2k é(l) (114)

Curl of a vector:

V xz= €ijk Zk,j é(i) (115)

Exo. 1.1 Show that the divergence of V X z s zero, for any differentiable vector field z. Show that the
curl of Vi is zero, for any differentiable scalar function .

Exo. 1.2 Let V be a connected volume in 3D, with boundary OV . Assume that the fluid inside V s at
constant pressure, exerting a force

F=pn (1.16)

per unit area on V. Prove that the total force exerted by the inner fluid on the boundary is zero.

Exo. 1.3 Let V be a volume in 3D, with boundary OV . Assume the volume is filled with a fluid of constant
density p. Prove that the total weight can be obtained from surface integrals:

/png:% x~f1dS:pg/ x3n3 dS (1.17)
v 3 Jov ov

Exo. 1.4 Prove Archimedes’ principle. A body immersed in a stagnant homogeneous liquid (which has

pressure proportional to its depth, p = pgh) experiences a net upward force equal to the weight of the
displaced liquid.



1.3 Material derivative and transport theorem

The trajectory of particles in a continuum can be described by a function F(x,s,t) which gives the
position at time t of the particle that ocupies position X at time s.

o F(x,t,t) =x for all t.

e Fixing s and ¢, considered just as function of x, the function ¢(x) = F(x,s,t) is the deformation
field of the medium between times s and ¢.

e The velocity field is related to F

oOF

E(Xﬂqat) :ll(]:(X7S,t)7t) (118)
Here the pair (x,s) are a label for the particle. Another usual label is X, defined as the position
occupied by the particle in some “reference configuration”, which needs not correspond to an instant

of time. This is the so-called Lagrangian frame.

e Trajectories are sometimes written as

x(t) = (X, 1) (1.19)

Exo. 1.5 A continuum is rigidly rotating with angular velocity w around the azis a = M) + &) . Compute
its Eulerian velocity field u(x,t) and its kinematic history function F(x,s,t).



The material or total derivative of a quantity ¢ at time ¢ for the particle that at that time is located

at x is defined as the “derivative following the particle”, or, more precisely,

D1/1 w(F(Xatat—i_é)at—i_(s)_w(Xat)

Dt i ; (1.20)
Exo. 1.6 Prove that
Dd]—f)zﬁ—}—u Vi (1.21)
Dt ' '
The acceleration of a fluid is the material derivative of the velocity
Du
a:Ft:atu—i—(u-V)u:atujL(Vu)-u (1.22)

Exo. 1.7 Compute the acceleration field of the rigid rotation described in Exo. |1.5,




Let Q be a region in space, and let f(x,t) be a scalar field defined in Q. To fix ideas, let f be a temperature
field.

Let us select, at time ¢, a region V of €. This defines a material volume, consisting of the set of material
particles that are inside V' at time ¢.

If one follows the particles that are in V' at ¢, they will occupy another region of space V(t') at time t'.
Obviously V(t) = V.

For any ¢/, let I(t') be the integral of f, at time ¢, over the volume occupied V(t') by the particles
I(t") = f(x,t") dv . (1.23)
V(')

Clearly I(t') is the integral of the temperature over the material volume, a volume that changes position
in time but has fixed material identity.

Reynolds transport theorem.

DI

Ft(t):/v[atijV-(uf)] dV:/V&gf av+ [ fu-nds (1.24)

ov

Exo. 1.8 Use the previous formula to prove that a flow in which the volume of each material part is
preserved must be solenoidal (V -u=0), also called incompressible.



1.4 Conservation of mass

Let M be the mass contained at time ¢ in volume V,

M = / pdV . (1.25)
1%
Since the mass is conserved,
DM
— =0 1.26
Dt Y ( )
which implies that (integral form)
/@p dV:—/ pu-ndS (1.27)
1% oV
and also that (differential form)
Op+V-(pu)=0 (1.28)
This last equation can be written as
Dp
—_ ‘u = 1.2
D +pV-u=0, (1.29)

which shows that an incompressible flow (V - u = 0) in which the density of the material particles does
not change with time automatically satisfies mass conservation.



The mass flux is given by
j=pu. (1.30)

The conservation of mass can be written as a conservation law:
op+V-j=g (1.31)

where ¢ represents the sources (in the case of mass equal to zero).

d
— / pdV =— / j-n dS + / g dV variation = inflow - outflow + internal sources
1% v~~~ 1%

J
(1.32)

Exo. 1.9 Let v be the mass density, or mass fraction, of some species A dispersed in the medium. The
mass of this species in some volume V' is

MA:/pw dv . (1.33)
v
Derive conservation laws in differential and integral form for 1. Also prove that
Dy
—=0. 1.34
Dt (1.34)
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1.5 Conservation of momentum

The total momentum contained by a region V' of a continuum is
P= / pudV . (1.35)
1%

The principle of conservation of momentum states that changes in the momentum are equal to the applied

(volumetric and surface) forces, i.e.
DP
—:/de—i—/FdS. (1.36)

Using the transport theorem one arrives at the integral form

d 3
%/Vpudv :/Vde + [)V[F—p(u®u)n] s . (1.37)
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The Cauchy stress tensor

The action-reaction principle requires that, if at a point x of OV the region is subject to a surface force
density F(x), the continuum inside reacts with an equal and opposite force.
It can be proved that there exists a symmetric tensor, the Cauchy stress tensor, such that for all x and ¢

F(x,t) = o(x,t)-n(x,t) , (1.38)

in the sense that the surface forces that a medium exerts on another body through a surface with normal n
(pointing outwards) is equal to —o - 1.

Inserting the stress tensor in ([1.37)) one arrives at

d

— [ pudV :/de + / (0 —pu®u)-nds. (1.39)
dat Jy v ov

The momentum flux through a surface is, thus,

(=—-0c+pu®u (1.40)
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Exo. 1.10 From deduce the following differential forms of momentum conservation:

Conservative form:

O(pu)+V-¢ = f or
O(pu) +V-(pu®u) = V-o+f

Non-conservative form:

pou+p(u-Viu=V-o+f

Also, write the equations above in Cartesian components.
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1.6 Conservation of energy

Exo. 1.11 Read 1.6 and 1.7 from Wesseling.

The energy of a part of a continuum which occupies volume V' is

1
E:/p (—|u|2+e) dv
voo\2

(1.44)

where e is the internal energy per unit mass, which expresses the capability of a medium storing energy

and is a function of its local state. The principle of conservation of energy reads

DE
E—Q—FW,

where the right-hand side is the sum of the heat and work received from the surroundings.

Defining q as the heat flux and () as the heat source per unit volume one gets

DE
E:/‘/(f.u—i_Q) dV+/6V(u~0'—q)-f1dS

Exo. 1.12 From the equation above, prove the following differential form

De

pﬁz—v-qua:VquQ

14

(1.45)

(1.46)

(1.47)



1.7 Constitutive laws

If one counts the equations up to now we have
e Conservation of mass (1 equation).
e Conservation of momentum (3 equations).
e Conservation of energy (1 equation).
Total: 5 equations.

Counting the unknowns: p (1), u (3), o (6), e (1), q (3). Total: 14 unknowns.

The 9 equations that are lacking come from the so-called constitutive laws, that describe the material
behavior (notice that the equations up to now hold for any continuum).

Essentially we need laws for e, & and q. For the latter Fourier’s law is almost universally adopted,
q=—-kVT, (1.48)

where T is the temperature and & the thermal conductivity (in general a tensor).
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1.8

Newtonian and quasi-newtonian behavior

The stress of a fluid at a point x and instant ¢ can in principle depend on the whole deformation
history of the vicinity of x.

However, not all constitutive laws correspond to fluids. The definition of fluid requires that “if the
vicinity of the point has not deformed at all, then the stress tensor must be spherical”. Spherical, in
this context, means that o is a multiple of the identity.

A most important class of fluid constitutive laws corresponds to the so-called quasi-Newtonian fluids:
o= (—p+AV-u)l+u (Vu+ Vu') (1.49)

in which A and p can depend on the instantaneous deformation rate tensor
1
e(u) =Du= 5 (Vu+vu’) . (1.50)

Since A and p are scalars, the model is objective only if they depend on e(u) through is invariants:

I = tracee(u)=1:e(u)=V-u (1.51)
- % [(trace e(w))® — e(u) : e(w)] (1.52)
Il = dete(u) (1.53)

Notice that, in particular, the deformation rate

le(u)]| = Ve(u) : e(u) (1.54)
If A and p are constants, eventually dependent on the temperature, the fluid is called Newtonian.

16



e Shear thinning (resp. shear thickening) describe fluids in which p is a decreasing (resp. increasing)
function of |le(u)||.

Exo. 1.13 Knowing that the velocity field of a rigid body motion is given by
u(x,t) =z(t) +r(t) xx, (1.55)
prove that e(u) is zero.

e Incompressibility.

e Turbulence.
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2 Brief overview of numerical methods for CFD

2.1 Differential, integral and variational formulations

Consider the general second-order differential equation
Lo = —(aijp,;)i + (bip) i +co=q. (2.1)
This equation is said to be uniformly elliptic if there exists C' > 0 such that
v (a(x) - v) = a;(x) viv; > C ||v]]? Vx Vv. (2.2)

This condition, together with suitable boundary conditions, guarantees the existence of a unique ¢ in the
space H'(€). This solution is continuous (a.e.) across any surface.

Equation (2.1)) can be seen as a steady conservation law in differential formulation,

V=g, (2.3)
by taking
i=J(p,Vyp)=—aVyp + by (2.4)
and
g=q—cyp. (2.5)

There thus exists a unique ¢ € H'(Q) that satisfies the boundary conditions and also (2.3)) for all x in
the domain 2 of the problem. This is the differential formulation, which is the start point of finite
difference approximation methods.

18



The differential equation must be understood in a weak sense, i.e.,
—/j-V@/)dV—I— wj-fldS:/gz/}dV (2.6)
Q o0 Q

for all v € H'(Q). Notice that this formula has no derivative of j and thus makes sense in cases in which
the strong form (22.3) does not.

Considering homogeneous Dirichlet boundary conditions, the variational formulation of the problem
reads: “Find ¢ € Hj(€) such that

- / I, Vi) - Vi dV = / o(0) 0 AV 2.7)
Q

Q

for all v € HL(Q).”

This formulation is adopted in primal finite element methods, in which ¢ belongs to some subspace
V}, and satisfies (2.7]) only for functions 1 belonging to V,.
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Let ' be a surface that divides €2 into two parts, €2; and €2,. Integrating by parts (2.7)) in each €2; one
obtains

/Ql [V-J(p, Vo) —g(p)] ¥ dV+/

Q2

V-3(p, Vo) —g()] ¢ dV - / [Hp.Vo)n]wdS =0 Yo e H(Q).

(2.8)
This implies that

e The solution of (2.7)) satisfied the differential equation a.e. in €2; and .

e The normal flux J - nn is continuous across I'.

Exo. 2.1 Give arguments to support (or prove) both previous statements.
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Let K be an open polyhedral subset of €2, with facets e € £. Integrating (2.3) over K and using Gauss-

Green formula one gets
> [3eve)nas = [ o) ik (2.9
e K

ecOK

Notice that J - n is well defined on e. The integral formulation of the problem corresponds to “find the
unique ¢ € H'(Q) such that (2.9) holds for all polyhedra K contained in Q7.

e The integral formulation is the basis of finite volume methods. The discretization methodology
consists of selecting a finite number of polyhedra as the finite volume mesh 7}, and obtaining a finite
number of equations by only requiring that (2.9)) holds for those polyhedra. This leads to

> Fre :/ g dv VK € T, . (2.10)
K

ecOK

e The next step is the selection of degrees of freedom for the discrete solution. The most usual choice
is to have one unknown g per finite volume K, i.e., Ny unknowns for Ny equations. In addition,
a node xy is defined for each K.

e Letting ¢ € R™M be the column array of unknowns, a numerical flux function Fi o) is intro-
duced satisfying a consistency condition

Freo(9*) = Fre(p, Vo) (2.11)

where ¢* = (p(x1, ¢(x2,...)" is the array of nodal values of any exact solution ¢ of the problem.

e The discrete system of equations reads

D Frelp) = / g(p) dV VK € Ty . (2.12)

ecOK K

21



e For the method to be strictly conservative, it must happen that if a given facet e separates cell K
from cell L then

Fre(p) = —Frel(p) - (2.13)

e An interesting alternative to our choice of degrees of freedom is to add an additional unknown per
facet. Let £ be the “skeleton” of the mesh, consisting of all facets e, and let ¢;, with j =1,..., Ng
be the facet unknowns. One now has Ny equations and Ny + Ng unknowns. The required additional

equations are (2.13)), closing the system.

e Other possibilities exist, such as overlapping finite volumes, but we will not discuss them here.

22



2.2 A one-dimensional example

Let us take

Lo=—(ag1)1=¢
in the domain (0, £), which has nodes 0 = g, z1,...,x, = {. Let h; = x;—x;_1. Also, let x
and hy 1 = T(hi + hisa).

Finite differences

a(z 1)@ (w5,1) —alz;_1)¢'(z; 1)
(acp’)’(x-) ~ JT3 2 2 2
J hj+%
ajtajrr e@it1)—e(®i)  aj_1ta; e(@j)—e(@j—1)
N2 3 2 h;
hj+§

For equispaced nodes this leads to the discrete scheme (3.9) of Wesseling.

1
2

(2.14)

%($i+$i+1)

(2.15)

Exo. 2.2 Build a small code for this problem and solve the interface problem of page 84 of Wesseling.

Compare to the results shown in the book.
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Finite volumes

Notice that J(p,¢") = —a¢’. Letting the finite volumes be given by V; = ($j_%,$j+%) a reasonable
numerical flux (for continuous a) is

P i tajn Y
2 hjta

J+

(2.16)

N

Exo. 2.3 Build the corresponding finite volume method in terms of nodal quantitiecs. Compare to the
finite-difference scheme.

Improved finite volumes

Let us introduce as additional degrees of freedom the values ¢, 1 and

‘ 90]‘-1-5 —¥;

F.. 1 =— 2.17
M+% & hj+1/2 ( )
Similarly, we have
Pj+1 — Pl
F.i.1=a4——= (2.18)
J+1.j+35 7+ hj+1/2
Conservation condition 1} then allows to eliminate the unknown ¢; 1
ajpj + 119541
Fj+§ - Fj,j+% - _Fj+1,j+§ = Pj+l = e (2.19)

aj; + a1

Exo. 2.4 Build the finite volume scheme corresponding to the flux above. Compare to (3.17) de Wesseling.
Modify the code of exercise[2.4to implement it. Test it. Compute the convergence order in a smooth problem
with analytical solution.
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Exo. 2.5 Study and discuss cell-centered finite volumes for the 1D problem, in which the nodes are Tjyl

instead of x; and the finite volumes are of the form (xj,x;41). Modify the code to deal with cell-centered
discretization and compare to previous results.

Exo. 2.6 Analyze the consistency (truncation error) of the fluxes and of the overall stencil of the vertex-
centered scheme of Ezo. . Consider a =1, f =1 and h; equal to h if i is even and equal to h/2 when i

15 odd. Discuss the result together with a numerical experiment.

Exo. 2.7 Discuss and implement Dirichlet and Neumann boundary conditions for cell-centered and vertex-
centered discretizations.
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3.1

Numerical approximation of fully developed flow

The physical setting

Incompressible flow along a long cylinder of cross section  C R2. The flow domain is B = Qx (0, L).

The flow is driven by a pressure gradient

_ p(L) = p(0)

- (3.1)

notice that when G > 0 we expect w = ug < 0 and viceversa.

If L is sufficiently large, the entry and exit effects can be neglected and all cross sections are essentially
identical, except for the pressure.

Decomposing the stress tensor in pressure and non-pressure components, we assume
o(z1, 9, x3,1) = —p(3,t) [ + (1, 22,1) . (3.2)
Let w be an arbitrary region in ) and let V' be the corresponding cylinder, i.e.,
V=wx(0,L). (3.3)
We denote also w, = w x {z} (the cross section at x3 = z) and S = 0w x (0, L) (the lateral surface)

so that
OV =wyUS Uwp . (3.4)

26



3.2 Conservation principles

e Mass: Because of incompressibility, and assuming p is a constant, this principle reads

0:/ u~f1dS:—/wdS+/wdS—|- /u~f1dS. (3.5)
v wo wr, S

This condition is automatically satisfied in parallel flows which we consider hereafter, i.e., flows in
which the velocity is of the form

u(xy, xe, x3,t) = (0,0, w(wy, x2,1)) . (3.6)
e Momentum: In parallel flows,
d .
L%/pwdw:—gL|w|+L/‘r~l/d0w (3.7)
w Ow
where
T = (0'13, O'23)T and 2 = (Hl,ng)T . (38)

In incompressible isothermal flows the mass and momentum conservation principles form a closed system.
In this case one equation, which is (3.7)), in one unknown w.

The no-slip boundary condition holds when a fluid is in contact with a solid surface, in this case it

translates to
w(zy, x2,t) =0 V (21, x2) € 0N . (3.9)
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3.3 Viscous parallel flow

If the fluid is Newtonian-like (Boussinesq),

0 0 w1

ot =p 0 0 wy = T=pVuw.

w1 Wpe 0

We can, applying Gauss-Green theorem, rewrite (3.7)) as
/ pow+G— V- (uVw)] dw=0

and arrive at the differential form

pOrw+G(t)— V- (uVw)=0 in Q,
w=0 on 0f) .

Writing it as a conservation law

dh(pw)+V-j=g, j=-uVw, g=-G.

28
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3.4 Discretization in Cartesian grids
3.4.1 Finite differences

Consider a rectangular pipe = (0, L;) x (0, L) with a uniform vertex-centered Cartesian grid with nodes

at positions
Xj1j2 = ((]1 — 1)]7,1, (jQ — 1)h2), ja = 1, ey Ny T+ 1, o € {1, 2} , (314)

where n,, is the number of subdivisions in the « direction and n,h, = Lq.

Considering as unknowns the values at the nodes wj, ;,, we have wj, ;, = 0 if (j1,72) is at the boundary.
For an internal node, on the other hand, a FD space discretization of (3.12)) with constant density and
viscosity leads to

Wi 41,4o = 2Wjy g + Wji—155 Wizl = 2Wj, jy + Wiy jo—1

0. (3.15)
h h3

d
P gy Wing2 + G—u

Our first issue is the implementation of this method.
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Node-to-unknown mapping:

There are (ny + 1) x (ng + 1) unknowns, they can be numbered by row or by column (or else) to get the
mapping. Denoting Ny =n; + 1, No = ny + 1,

function ng = ij2n (i,j)
global N1 N2

if (N1 < N2)
ng = i + (j-1)=*N1;
else
ng = j + (i-1)=*N2;
endif
endfunction

Exo. 3.1 Build a function n2ij(n) that is the inverse of the previous one.
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Viscous matrix:

pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=1ij2n(i-1,j);

The following matrix row provides the viscous contribution (L,w)p ~ —pu V?w(P) to equation P (interior
node):

auxl = mu/dx"2; aux2 = mu/dy~2;
A(pP,pP) = 2*x(auxl+aux?2);

A(pP,pN)=-aux2; A(pP,pS)=-aux2;
A(pP,pE)=-auxl; A(pP,pW)=-auxi;

so that

Wy 41,5 — 2Wjy jo + Wji—1,5, Wjy jot1 — 2Wjy jo + Wiy jo—1 A
— = W . 3.16

Considering just the interior nodes, we get the system

pSW AW = b() (3.17)

where bp(t) = —G(t). Discretizing now in time by the #-method,

i n+l __ i _ . n n+0
(Ath 9é>w —(Atl (1 0)4)w + b (3.18)
or

gwn—l—l — ﬁwn_‘_ l_)n+9 (319)



#-- Assembly: loop over nodes
for i=1:N1
for j=1:N2
if (i==1 || i==N1 || j==1 || j==N2)
continue;
else
# viscous matrix
pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,3);
auxl = mu/dx"2; aux2 = mu/dy~2;
Af (pP,pP) = 2*x(auxl+aux2);
Af (pP,pN)=-aux2; Af(pP,pS)=-aux2; Af(pP,pE)=-auxl; Af(pP,pW)=-auxl;
# mass matrix
Am(pP,pP)=rho/dt; bm(pP)=dx*dy;
endif
endfor
endfor
#-— Timestepping Matrices: M, R
M = Am + thetaxAf;
R = Am - (1-theta)*Af;
#-- Correct M for no-slip boundary conditions
for i=1:N1
for j=1:N2
if (i==1 || i==N1 || j==1 || j==N2)
pP=ij2n(i,j); M(pP,pP)=1;
endif
endfor
endfor
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3.5 Vertex-centered finite volumes

e The node-to-unknown mapping remains the same.

e From (3.7), the equation for the (interior) finite volume P is

Fpn + Fpg + Fps + Fpw Z/

wp

(=G — pOw) dw =~ hy hy (—g —p

dt

de)

(3.20)

where we have treated 0;w as a source and the left-hand side approximates f S j - U ds (remember

that j = —uVw).

e Now we have to define the discrete fluxes

. : Wp —W 3
/.]'Vd%:/ J2d9€1=/(—Mw,z)dflﬁﬂuhlePN

EN EN

and analogously
Fpp

Fpgs

Fpw

e

N

Wp —Wg
/JL—
Wp —Ws
//L—

Wp — Wy
/’L—

ho

h
hy 2

h
Ry !

h
hy 2

e We divide everything by hihs to arrive at the discrete equation

Pma TR

aw, Wp—W, Wp—W,
P P N oL Ph2 s
2

33
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e The viscous matrix can now be decomposed into the contributions of each face:

# viscous matrix
pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,3);
auxl = mu/dx"2; aux2 = mu/dy~2;

# north face

Af (pP,pP) = Af(pP,pP) + aux2;

Af (pP,pN) = Af(pP,pN) - aux2;
# east face

Af (pP,pP) = Af(pP,pP) + auxl;

Af (pP,pE) = Af(pP,pE) - auxi;

etcetera

Exo. 3.2 (Optional) Extend the previous method and code to the variable-spacing case. Assume
that two arrays x and y are provided, such that node (i,j) is located at (x;,x;). Build the method
starting from for these vertex-centered finite volumes. Notice that in this case the first term,
after cancelling L, will read

d

Ilss
[=

. with E.s = p|Vy| 0ps (3.27)

.

The viscous matrix is also different from the one shown earlier.

Exo. 3.3 Implement the computation of the flow rate QQ and the mean velocity W, having as input
the solution vector W.
Q

Qi/ﬂw d<2, W:@. (3.28)
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e Variable viscosity: Let us assume that p is taken as constant in each cell (z;, z;41) X (yj,y;41). We
thus have a matrix mu(1:N1-1,1:N2-1), so that the node (i,j) has mu(i,j) in the NE quadrant,
mu(i,j-1) in the SE quadrant, and so on. We then have

# viscous matrix

pP=ij2n(i,j); pN=ij2n(i,j+1); pE=ij2n(i+1,j); pS=ij2n(i,j-1); pW=ij2n(i-1,j);
# north face

muf = 0.5%(mu(i-1,j)+mu(i,j));

Af (pP,pP) = Af (pP,pP) + muf/dy"2;

Af (pP,pN) = Af(pP,pN) - muf/dy~2;
# east face

muf = 0.5%(mu(i,j)+mu(i,j-1));

Af (pP,pP) = Af(pP,pP) + muf/dx"2;

Af (pP,pE) = Af(pP,pE) - muf/dx"2;

etcetera
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e Quasi-newtonian fluid: Viscosity may depend on the shear rate, for incompressible flows given by

¥=+vDu:Du (3.29)

—
(=]

+r3 | —— Newtonian [7]
Plasma|[36]
---Power Law [8]
- Carreau 8]
==-=Walbum-Schneck [9]
e Casson(H=33%) [10.37]
1 |~ =Casson(H=40%) [10,37]
===Casson(H=45%) [10,37]
Generalised Power Law [7]
Viscometric data - mean of 100 male donors [25]
Viscometric data of healthy women [26]
O Huang et al. [27]
¢ Rand et al. [28]
* Chien et al. [29]
Merrill et al. [30]
Cokelet et al. (1963) [31]
1] Cokeletetal. (1972) [32]
3| © Skalaketal. [33]
2

.
[

—
(=

1| + walbum and Schneck [9]
 Cokelet (1987) [34]

M | L M | n M | n MR |

Apparent Blood Viscosity (Pa.s)

10" 10" 10'
Strain Rate (1/s)

Fig 2. Experimental measurements of blood viscosity and non-Newtonian blood rheological modeis.
doi:10.1371fournal.pone.0128178.g002

36



Different models exist for blood

Table 1. Blood rheological model equations.

Blood Model Effective Viscosity (Pa-s)
Newtonian [7] 1 =0.00345 Pa-s
Plasma [36] 1 =0.00122 Pas
Power Law (Modified) m(y)*, y <427
[8] = ,m=0.035,n,=06
0.00345Pa-s, y > 427
Walburn-Schneck (c (TPMA))
(Modkiec) [4] p={ CelCHe H: ) ()75 y < 414, G1 = 0.00797, C2 = 0.0608, C3 = 0.00499, C4 = 14.585, H = 40, TPMA = 25.9

Casson [10,37]

Carreau [8]

Generalised Power
Law [7]

0.00345Pa-s, y > 414

2
p=01 ( [,/ﬁ+ NE3 (1—1;"'“) ) 1, = (0.625H)3, n = n0(1-H)%%, 1o = 0.012, H = 40% (female normal), 33% (post-angioplasty)
or 45% (male normal)
=t + (= Moo [+ (A7) A = 3.313, ng = 0.3568, o = 0.056, and . = 0.00345

==, +A,uexp[—(1 +§l)exp(— %)] n=n_ —Anexp[—(l +|§)exp(— ﬁ)] Moo = 0.0035, N = 1.0, Ay =
0.025, An=045,a=50,b=3,c=50,andd=4

doi:10.1371/journal.pone.0128178.1001

PLOS ONE | DOI:10.1371/journal.pone.0128178 June 12,2015 6/19

Exo. 3.4 (Optional) Develop and implement a code for simulating blood flow through a rectangular
pipe of cross section 100umx50um using the Carreau model. Solve for several values of G, chosen
such as to have cases with low mean velocity (< 1um/s), high mean velocity (> 50um/s), and some
intermediate values. Build a curve QQ vs. G and compare with the same curve for the Newtonian case
U= oo = 3.45 X 1073 Pa-s. Compare the velocity profiles (newtonian vs. non-newtonian) at high

and low velocity.
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e Viscous dissipation, heat conduction:

Exo. 3.5 Ezplain how to compute, in fully developed flow, the viscous dissipation (in Watt/m?)

b=0:Du (3.30)

Exo. 3.6 (Optional) Develop a finite volume method to approximate the temperature distribution in
fully developed flow, solving the energy equation

pc, 0T — kV*T = ® (3.31)

with T'= 0 1mposed on the boundary.
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4 Flow in a long pipe: Turbulence

In this section we work out the following example: A long pipe conveys water between two reservoirs that
are far apart. The inclination of the pipe is s (in meters of descent per meter of length) and its diameter
D. Compute the velocity field in the pipe and the flow rate.

4.1 Why the flow cannot be laminar

Applying the general expression for conservation of momentum in fully developed flow (3.7) to the case in
which w is the circle of radius r and the flow steady we obtain

2
0=-Grri+r / 7(r,0) do (4.1)
0

where 7 is the radial shear stress along x3, given by 7 - €,. Because of the symmetry, 7 does not depend
on ¢, which gives
r(r)2rr =Gmr?. (4.2)

where o,., is the shear stress along z (the axial direction) on surfaces with normal & = ¥. The inclination
generates the pressure gradient

G=-spg, (4.3)
and from the Newtonian-like law p
w
- == . 4.4
() = p (14)

Notice first that
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L (i) g s

in agreement with (3.12)), since lhe left-hand side of (4.5)) is V - (u Vw) in cylindrical coordinates and we
have assumed steady flow. This is the equation that determines w, with boundary condition w(R) = 0.
The condition w'(0) = 0 is generally also imposed, but truly speaking r = 0 is not a boundary.

Anyway, the governing equation is

dw spg T
)= = 2P 4.6
5o (1) > W) (4.6)
which can be integrated with initial condition w(r = 0) = wWyax to yield
spg [T r'dr
W(r) = Wpax — —— . 4.7
") 2 Jy 1) D
The unknown wp,.x can be computed from w(R) = 0, namely
R 7./
d
Wmax = sl / d 7: . (48)
2 Jo wplr)

If the viscosity is constant one recovers the familiar parabolic Poiseuille profile

?,U(T') = Wmax — 54109 r? (49)
L
with spg
max — 5 . D2 . 4.10

40



Assuming D = 0.5 m and a gentle slope of s = 1072 (ten meters per kilometer), since u = 1073 Pa-s and
p = 1000 kg/m? one gets
Wiax = 1530 m/s = 5512 km/h !N (4.11)

Exo. 4.1 Compute the flow rate (in m3/s) of the laminar solution calculated above.

Exo. 4.2 Compute the velocity profile of the Carreau fluid of exercise[3.4)

4.2 Turbulence

Anybody understands that this huge value of the velocity does not occur in reality. The parallel flow is
indeed a solution of the conservation equations, but it is an unstable solution. Both mathematically and
physically one observes a flow that is neither steady nor parallel, that is called turbulent.

e Turbulent flows are stochastic. They are described with the tools of statistical theory. Though the
instantaneous values of velocity and pressure are randomic, the mean values of the variables are
quite deterministic.

e These mean values (of velocity, of pressure, of force on solid surfaces, etc.) are in fact what engineers
are most interested in. If the boundary conditions do not depend on time, the mean values also
do not depend on time, as would be the case, in our pipe example, some seconds after the valve
connecting the two reservoirs is opened.

e [t is customary to decompose all variables into mean and fluctuating components, e.g.,
u=1u-+u, p=p+p . (4.12)

Inserting this into the momentum balance equation and taking the mean, one arrives at

oz/fdv + / (=p+pu(Va+Vva') —pu@ua—pd@u)- -nds. (4.13)
14 ov
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Exo. 4.3 Verify the previous assertion.

We observe that the averaged equation is the same as the original equation if the so-called Reynolds
stress tensor is added to the average stresses:

o +— o(Vu,p) + o with  of¢ = —pu' @u . (4.14)

Equation (4.2)) then becomes
(00 — puldl] 2rr =Gmr?. (4.15)

Though u,. and u/, are rapidly fluctuating functions with zero mean, they are correlated and the mean
of their product is not zero. Typically, velocity fluctuations that have u/ > 0 (outwards from the
center) also have ), > 0, because u, is larger near the centerline.

Remark 4.1 The Reynolds stress should not be thought as a “correction” or a “small perturba-
tion” to an underlying laminar flow. Quite to the contrary, it is the term po,w that is negligible
througout the flow, with the exception of a narrow layer near the walls.
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e If one could express o

4.3 Turbulence models

Re somehow in terms of @ and/or its derivatives, then one could substitute
into (4.15)) and solve for w(r). This is accomplished by the so-called Boussinesq turbulent viscosity
hypothesis. It states that

2
ofte ~ S TLER pt (va+ va?) (4.16)

where 1
k=P (4.17)

is the turbulent kinetic energy (per unit mass) and ub is the turbulent viscosity. This hypothesis
agrees with physical observations in many flows, especially if there are no large wakes and if the
boundary layer is attached to the wall. The agreement is not perfect in general, but it is sufficient
for engineering predictions.

Prandtl (1904) produced a model for ut inspired in molecular models of gases. His mizing length

theory leads to
ut = pl?||vu+ va' || (4.18)

where / is the so-called Prandtl’s mixing length. Again particularizing to the pipe example, it leads
to

dw) (4.19)

t 2
= g
p=r dr

If y is the distance to the wall, it is intuitive that the length scale of the turbulent vortices, and thus
of the mixing, is y itself. In fact, it is fairly accurate that

=Ky (4.20)
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where k, the von Karman constant, turns out to be quite universal (all flows, pipes or planes).
Beautiful theories have been built that explain this universality and other properties of turbulent
flows, we suggest the interest reader to look for the books by Tennekes & Lumley and by Pope.

We follow here the more pragmatic approach of Launder & Spalding (1972) in this first discussion
about turbulence. A vast experience exists on steady flow in circular pipes, from which we can borrow
Nikuradse’s law:

/ Y\ 2 Y4 2 a4
Z_014-0. (1—— —0. (1—— —0.14 — 0. (— —0. (— . 4.21
- = 0.14— 0.8 R) 0.06 R) 0.14 — 0.08 R) 0.06 R) (4.21)
Exo. 4.4 The final differential equation is then
1d hdw
-4 i) 4.22
r dr <(M+”)rdr) g ( )

with pt = p0(r)?|dw/dr| and ((r) taken from .

Numerically solve this equation with boundary condition w(r = 0) = Wpax. [teratively adjust Wpax
until w(R) = 0 is satisfied. Plot the resulting velocity profile.
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4.4

Wall laws

Nothing is simple in turbulence. Boundary conditions are no exception. The mean velocity field
computed in Exo. [£.4] does not agree with experimental observation.

The unrealistic prediction can be traced back to the boundary condition @ = 0 at the wall. The
averaged model we have presented so far, being a so-called high-Reynolds-number (or high-Re) model,
is not physically realistic in the close vicinity of the wall, where viscous effects are comparable to (or
larger than) turbulent ones. Essentially, we are imposing the boundary condition at a location where
the differential equation is not valid.

The idea is to replace the “natural” condition @(R) = 0 by some condition at R < R, a point within
the turbulent-dominated region where (4.22)) is valid.

A popular and frequently accurate boundary condition in CFD is the logarithmic law of the wall.
Denoting by 7, the shear stress at the wall, it is customary to define shear velocity u* = \/7,/p and
then the wall variables (traditionally « is the longitudinal velocity)

+__Y
v/u*

w
el 4.23
u o Y ( )

It so happens that in many turbulent flows, between y* = 20 and y* = 100, the following relation
holds: ]
ut=—1n (Ey"), (4.24)
K
where k ~ 0.4 and E ~ 9. How does this provide a boundary condition? A simple way is to choose

R as satisfying yt = (R— fx’)J’ = 30. Normally this is a very small correction of the pipe radius, in
the micrometer range. For the pipe we are considering, for example,

D
T = _S”f — —1225Pa =  u* =% =011m/s. (4.25)
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As a consequence,

(R-R)*=30 = R-R= 30% —272x 10" m . (4.26)

In the simplified treatment we are following here, we will take R = R and exploit the wall law at
yT = 30 which gives

w 1
—— = —In (Ey") = 14 (4.27)
Vitl/p F
so that I
t w P9
= __ 7 4.2
(4 0") dr 196 " (4.28)

which is the boundary condition imposed at r = R.

Notice that we impose a “drag law” and not simply (,u + ,ut> dw/dr = 1,, because it is only in very

symmetric situations that we know the value of 7, a priori.

Exo. 4.5 Compute numerically the velocity profile produced by the model described above. Predict
the flow in the pipe of the example, in particular the flow rate and the average velocity. Compute the
Reynolds number. Compare to the prediction of the “Moody chart” (google me).
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5

5.1

Incompressible Navier-Stokes equations

In the previous two sections we have applied the basic principles of fluid mechanics to parallel flows.
Turbulence was discussed, also, under conditions leading to a parallel mean flow.

In more general situations, one has to go back to the basic principles as introduced in section 1.
They can be equivalently written in integral or differential form, and the latter can equivalently be
conservative or non-conservative.

In this section we particularize the basic principles for the case of an incompressible Newtonian fluid,
arriving at the Navier-Stokes equations. We then discuss in general the treatment of turbulence for
these equations.

Equations and fluxes

When a Newtonian fluid flows with constant density and viscosity, a closed system of equations is
obtained from just the mass and momentum conservation principles.

Exo. 5.1 Deduce from Section 1 that the differential equations in non-conservative form are the

Incompressible Navier-Stokes equations (non-conservative form):

pdu+pu-V)yu—-V - [p(Va+Vu")|+Vp = f (5.1)
V-u =
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The simplest form, when p is constant, reads

pou+p(u-V)u—puViu+Vp
Vou =

Exo. 5.2 Deduce from Section 1 that the differential equations in conservative form are the

Incompressible Navier-Stokes equations (conservative form):

pou+V - [pl—p(Vu+Vu')+pueu] = f
V-ou =

Exo. 5.3 Deduce from Section 1 that the differential equations in conservative form are the

Incompressible Navier-Stokes equations (integral form):

/p@tudv+/c-f1d82/fdv
1% s v
/u~f1dS = 0
s

C=pl—p(Vu+Vu')+pu@u=—-0+pucu

where the momentum flux ¢ s

and the mass flux is pu.

(5.7)

(5.8)

(5.9)
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e In any of these forms, it is a closed system for the unknowns u and p.

e There are several types of possible boundary conditions:

1.
2.

Imposed velocity: At rigid walls, if u,, is the velocity of the wall, set u = u,,.

Imposed force: Used when the force L applied on the fluid (per unit surface) at some boundary
is known. The condition reads

=L. (5.10)

=

o' .

Drag law: This corresponds to
o-n=-D(u). (5.11)

An impermeable wall with drag would have the following condition:

u-n=0, (-n) = —D(u), (5.12)

v,=v — (v-n)n. (5.13)
Free surface with surface tension:
oc-n=—vHn+ (V~y), (5.14)

where H is the mean curvature.

Outflow: Some combination of the above that tries to minimize the upstream effect of domain
truncation.
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5.2 Some important variants

The incompressible Navier-Stokes equations as described above are an excellent model for several natural
and industrial flows. It is worthwhile however to consider a couple of frequent variants.

5.2.1 Buoyancy-coupled flows

When thermal buoyancy effects are considered, the volume force f can be modeled by

f=[p(To) — p(To) (T =To) g =po[1 = B(T —To)] g

in which f is the thermal expansion coefficient

dp

5=—d—T(To) :

The closed set of equations is then approximated by
podu+py(u-V)u—V - [u(T)(Va+ Vu')] +Vp

V-u
ol +u-VT

poll = B(T —Ty)lg
0
a VT + q

(5.15)

(5.16)

(5.17)
(5.18)
(5.19)

where « is the thermal diffusivity (o = kr/(pc,), with kr the thermal conductivity and ¢, the specific

heat) and ¢ = Q/(pc,), with @ the volumetric heat source.

Notice that the left-hand side of (5.19)) is DT'/Dt. The model consists of a species that is source of buoyancy
(the temperature) which is transported and diffused by the velocity field. Salinity is another important

such species.
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5.3

Reynolds-averaged Navier-Stokes equations

In the modeling of incompressible turbulent flows, as we have seen, it is in most cases necessary to
solve an averaged version of the Navier-Stokes equations.

In the pipe-flow example we adopted Nikuradse’s formula for the Prandtl’s mixing length ¢(y). Such
formulae are however only available for some selected flows, in general situations the computation of
ub requires the solution of additional equations.

There exist 1-equation models, 2-equation models, and so on. Some of the popular ones are known
as: Spalart-Allmaras model, & — e model, kK —w model, algebraic stress model, stress transport model,
etc. An excellent survey is provided by Wilcox (Turbulence modeling for CFD, 2006).

To provide some insight into RANS modeling, we describe here the k — ¢ model, which is the most
popular 2-equation model.

Reynolds averaging (substituting u = u + u’ in the Navier-Stokes equations and averaging) is the
basis of all RANS models:

Exo. 5.4 Deduce the RANS equations:

pou+V - [pl—p(Va+Vva)+paiu+pueu] = f (5.20)
Vi = 0 (5.21)

o1



The k£ — € model

e The mass and momentum equations are as in the non-averaged case, only that velocity and pres-
sure variables are now averages and turbulent viscosity must be added to physical vis-
cosity. We drop here the bar to express averages for simplicity.

pou+pu-Viu—-V - [(p+pt) (Vut+vul)| +Vp = f (5.22)
Vou = 0 (5.23)

e The turbulent viscosity is given by
¢ cupk?
po=———" (5.24)
€
e The turbulent variable k£ is the turbulent kinetic energy per unit mass, the amount of kinetic
energy that is contained by the velocity fluctuations:

|| (5.25)

e The turbulent dissipation € is the turbulent dissipation rate per unit mass, the rate at which
energy stored in the fluctuations is dissipated:

€= '% (Vo' + (Vu)T) : V! (5.26)
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e The model for £ and € consists of the convection-diffusion-reaction equations

Ok +u-Vk—=V - (DVE)+vwk = Fy (5.27)
e+u-Ve—V - (DNVe)+ e

(g—t + u) ; (5.29)

I
0
—~
ot
[\]
oo

where the diffusion coefficients are

1 [t 1
Dk=—<“—+u>, D= -
P \ Ok p

the reaction coefficients are

€ €
- = e =Cy— | 5.30
Vi k 5 it C2 k ( )

and the source terms are
Mt T2 o1k T2
Fp = % [Vu+Vu' ||°  F. = > |Vu+ Vu || (5.31)
p
e The model constants have as standard values

c, = 0.09, c; = 0.126 co =1.92, o, = 1.0, o.=13. (5.32)

e The closed system of equations of the k —e model are ((5.22)), (5.23)), (5.27)) and ([5.28)). One vector

equation and three scalar ones, for one vector unknown and three scalar unknown.
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e The boundary conditions for this model can vary. Most frequent is the logarithmic law of the wall as
described in Section 4.4 In the simplified treatment adopted there, they would read:

1. At inflows:
u=uy,, k= kiy €= € - (5.33)
2. At planar walls:
u-n = 0, (5.34)
ou
t P 2
- = _ = 5.35
(n+nt) 5 g Il (5.35)
u*2
ko= , (5.36)
Ve
*4
pu
= . 5.37
© T 1234 (5:37)

3. At outflows: Several possibilities, zero applied forces and zero normal derivatives of k and e
for example.
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e The equations for k and € can be written in conservation form

Oe+V-(ue—D.Ve) = F.— e, (5.39)

the expressions in parentheses being the fluxes.

Exo. 5.5 Write down the ODFEs that arise from the k — e model in the case of decaying homogeneous
isotropic turbulence (google me).

Exo. 5.6 Write down the final differential system to compute w(r,t), k(r,t) and €(r,t) in a long
cylindrical pipe of circular cross section (transient fully developed flow).

Exo. 5.7 Read the supplementary material:

— A. Lew et al (2001), A note on the numerical treatment of the k — € turbulence model (Int. J.
of CFD).

— Chapters 1 and 2 of A. Prosperetti and G. Tryggvason (2007), Computational Methods for
Multiphase Flow (Cambridge Univ. Press).

Prepare a 7-minute summary of each.
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e One observes that thermal effects, salinity effects, turbulence, among others, lead to systems
which consist of two ingredients:
— the incompressible Navier-Stokes equations,

— one or several convection-diffusion-reaction equations.
These ingredients are coupled through the effective viscosity and/or the volumetric force.

e In turn, the incompressible Navier-Stokes equations can be regarded as the sum of two sub-
ingredients:

— a (nonlinear) convection-diffusion equation for the velocity, assuming the pressure known,
— the incompressibility constraint.
e The convection-diffusion-reaction equation is a classical topic of courses in numerical methods for
PDEs. Readers unfamiliar with concepts such as convective fluxes, diffusive fluxes, upwind dis-

cretizations, Péclet number, discrete maximum principles, etc., are encourage to revise Chapters
4 and 5 of Wesseling, or Chapter 4 of Ferziger & Peric.
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6 The MAC discretization method of the incompressible Navier-
Stokes equations

6.1 Conservation in a rectangle

Consider a finite volume V' which is a rectangle of sides h, and h,, and denote its edges by E, W, N and
S, with exterior normals (1,0), (—1,0), (0,1) and (0, —1), respectively. Our aim here is to obtain explicit
expressions for the mass and momentum conservation equations in this rectangle.

The mass flux vector pu must satisfy

/ pu-ndS=0. (6.1)
v
The momentum flux vector

C=pl—p(Vu+Vu')+pu®u (6.2)

consists of three terms, which we denote by pressure, viscous and inertia terms.

The momentum equation contains the integral of ¢ -1 over the boundary of V', which is the only nontrivial
part to calculate and is detailed below. In what follows we adopt the usual notation of (x,y) instead of
(x1,9), and (u,v) instead of (uq,us).
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6.1.1 Mass conservation

The discrete mass conservation equation reads
(ug —uw) hy + (uy —vs) hy =0 (6.3)

The finite volumes for this equation are centered at pressure nodes and have as unknowns ug, uy, vy and
vg, exactly as needed and thus requiring no interpolation.
In matrix form (ignoring for now boundary conditions),

Dyu+ Dyv =0 (6.4)
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6.1.2 Momentum along the z; direction

For the pressure term,

/pnxds = thy>
E

/pnz S = —pwhy .
%%

/anCdS = 0,
N
/pnzdS = 0.
s

For the viscous term, integrating edge by edge,

— (/ u(Vu+VuT)ﬁdS> = —/ 210 0,u dy = =2 poulph, = (VE) ,
E . B

— (/ /L(VU+VUT)ﬁdS) = +/ 21 0,u dy =2 pyulw by = (VW)
w e w

(/u (Vu+ vu’) ndS) :—/M(Gyu+8xv) de = — p (Oyu + 0v)|y hy = (VN),
N . N

(/,u (Vu+ Vu )ndS) :+/p(8yu+0xv) de = p(0yu+ 0v)|y hy = (VS) .
S x S

29
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(6.10)

(6.11)

(6.12)



For the inertia term, the z component being | sy puw-MdS,

/Epu u-ndS = puph,, (6.13)
/Wpu u-ndS = —puyh,, (6.14)
/Npu u-ndS = puyvyh,, (6.15)
/Spu u-ndS = —pugvsh, . (6.16)

Now we introduce the staggered arrangement of variables, in which the unknowns are:
e For pressure: pg, pw.
e For u: up, ugg, Uww, UNN, USS-

e For v: N, UNw, VsE, Usw .-

Then, the pressure term becomes

(P) = /vanz dS = (pe — pw) hy - (6.17)

or, in matrix form,

(P) = hohyGyp. (6.18)
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The viscous term becomes

e East face:
UpE — U
(VE) = —2 EEh 2 h, (6.19)
o West face:
u —u
(VW) = —2u th L h, (6.20)
e North face:
(VN) = — 4 (“NN —Up  UNE ”NW> he (6.21)
h,, h
e South face:
(VS) = — (“SS il USE) ha (6.22)
hy h
Now one observes that, from the geometry of the cell and mass conservation,
(UEE — UP) hy —+ (’UNE — USE) hw =0 y and (UP — UWW) hy + ('UNW — Usw) hw =0. (623)
This cancels some of the terms above, so that the viscous contribution ends up being
(VX) = —p (222, OWW 0Py, ONN AP, 2SS 0P, (6.24)
h, h, h,, h,,
or
(VX) = —phyhyLu . (6.25)




We will leave the inertia term in its original form

(IX) = p (U?g — uly + uyvN — USUS) , (6.26)

complemented by a centered interpolation:
up = w , uw = w , (6.27)
Uy = w 7 ug — —USS;uP : (6.28)

Notice that the vector of values of up at all east faces of finite volumes centered in nodes of © can be built
as ug = A% u, where A% is an interpolation matrix. Similar matrix operations can be devised for the

other necessary quantities.
Adding up the three contributions, one arrives at (after dividing by h,h,)

u+ Gyp — plu+ IX(w,v) = fo. (6.30)

Sl

p
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6.1.3 Momentum along the y direction

Exo. 6.1 Perform the analogous set of calculations that lead to the discrete momentum equation along the
y direction.

One arrives, eventually, to

v+ Gyp — pLly + IY(u,v) = f, (6.31)
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6.2 Semi-discrete system

d
Pt Gup — pLlu+ X(u,v) = fu (6.32)

d
pov+ Gyp —ple + W) = fy 6.33
&Q + Yy v = 0 (634)

which can even be simplified to, with some additional quite natural notations,

di L Gp - pLU+ U

IS

= =
[
SN
—~ —~
> =
w (V]
D ot
N~—

This is a so-called differential-algebraic equation (DAE) system.

6.3 Monolithic system

Un+1 UTL
p=——— + Gp"? — pLU+ (U = 7 (6.37)

At == = =
DU = 0 (6.38)
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6.4 Projection method

Chorin’s (1968) original projection method was defined as follows:
¢ Momentum predictor:

~n+1 n
Y U L rur+iwm = f (6.39)

P A 2= TAE) =L

A 1 ~ 1
The resulting Qn+ does not satisty D Qn+ = 0, it has to be projected back on the discretely-
incompressible space.

e Pressure Poisson equation:

DGyl = v (6.40)

IIU

P
At
The product D G is a matrix that, leaving aside boundary conditions, coincides with L (the discrete
Laplacian matrlx) This is a salient property of the MAC discretization.

e Velocity correction:

~n At
Ut ="t - =gt (6.41)
) ==
. . ~ntl
Eliminating U one gets
Un+1 o Un . . .
r——m  ° Gp™ — pLU+ (UM = [ 6.42
DU™ = 0 (6.43)

which shows that the algorithm is consistent, but clearly of first order in At.
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6.5 ABCN time discretization

The following combination of Adams-Bashforth scheme for time discretization of the inertia terms, com-
bined with Crank-Nicholson scheme for the viscous term, is a popular method with formally second order
accuracy in time.

e Momentum predictor:

~n+1
u -U" p_  »ntl 3 1 1 1
- =L M4+ = (U™ - = (U = e 44
P - AL @ ) S I - S 1) = 1 (6.44)
e Pressure Poisson equation:
DG¢ =L pytt 6.45
e Velocity correction:
~m At
Qn+1 — Q +1 = Q n+1 (646)
p ==

Exo. 6.2 Read Chapter 7 of Wesseling. Explain the necessity of pressure stabilization in the case of
collocated discretization (all variables located at cell centers). Hint: Show that in collocated discretization
the stencil corresponding to D G p is

Dit2,j — 2Dij +Pi—2j . Dij+2 — 2Dij + Dij—2
% + % (6.47)
x Yy

so that adjacent pressure unknowns are completely decoupled.

Exo. 6.3 Read Sousa et al (2015) for more projection-like methods and a warning about the usage of
projection methods for low inertia flows.
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7 Conservation laws in fluid mechanics

7.1 Basic definitions and examples

A conservation law, in its differential formulation, is a partial differential equation that can be written in

the form

=0 to simplify
Let us list below some examples:

1. Mass conservation equation:

Orp+ 0s(pu) =0 — a=1] (7.2)
[=1lpul = lqu]
2. Momentum conservation equation: The Cauchy stress is assumed to be ¢ = —p, remember that
the momentum flux is { = —o + pu ® u, so that in 1D it becomes
O(pu) +Oulpud+p) = [ o 1=led (7.3)
t ’ f=lpvw’+p] = ["7+p] '
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3. Heat equation:

T —ad’T =s — {

4. Wave equation:

Ou—c0 u=0 —

q

[~

|

|

q = [T]
f = —adT] (7.4)
O u
O U ]
(7.5)
—20,u B —c? ¢
SR

Exo. 7.1 Check that the q and f of indeed allow to rewrite the wave equation as a conservation law

in differential form.

Exo. 7.2 Conservation laws can also be written in integral form. It is a simple matter to check that any
q that induces a fluz f (possibly function of q, 0. q, etc.) such that

d [
a J, = =

q(z,t) dv = f(z_,t) — f(vy,t) + /93+ s(x,t) do | Vt,o_, zy, (7.6)

is also a solution, if differentiable, of (7.1).
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Another way of writing the integral form is

/fg(x,m dxz/:+g(x,t_) dx+/tt+i(a:_,t) dt—/tt+i(a:+,t) dt + /f /;+§(x,t) de dt | (77)

which must hold Vt_, ¢, , z_, x, .

Def. 7.1 Equation 1s called a hyperbolic conservation law iff
e f(z,t) is a function of q(x,t) only, i.c.,
[ t) = f(q(z,) (7.8)
but we will drop the hat from now on to simplify the notation.

e The jacobian matrix

aq1f1 aqul
Df=| Oufe - ], (7.9)

which is in general a function of q, is diagonalizable in R for all relevant values of q.
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The quasilinear form of the hyperbolic conservation law is
8tg+D:f(g)8xg:§. (7.10)

Any solution of :7.10) is also a solution of ([7.1]), but solutions of ([7.1)) need not be regular enough to be
solutions of 17.101 .

Exo. 7.3 Verify that the mass conservation equation, with u assumed known, is a hyperbolic conservation
law. Similarly, notice that the heat equation is not.

Exo. 7.4 Verify that the wave equation has

Df = ( _01 _002 ) (7.11)

and compute the eigenvalues and eigenvectors of Df. Conclude that the wave equation is a hyperbolic

conservation law.
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7.2

The advection equation

The scalar advection equation with constant velocity
0rq+ Norqg = 0 (7.12)
is a HCL.

The trajectories X (zo,to,t) = xo + A (t — to) are characteristic curves of (7.12]) because along them
the equation takes a much simplified form:

dX

at 1 dt

The variable ¢ is thus constant along the characteristics. Let z*(z,t) and t*(z,t) be the position and
time in which the characteristic enters the calculation domain. For example, if one is computing with
domain 2 = R and initial time ¢ = 0, then z*(z,t) = 2 — At and t*(z,t) = 0. The exact solution is

q(z,t) = q(z",t7) . (7.14)

The initial and boundary conditions must be such that ¢ is imposed at the point of entry of the
characteristic curves.

The Riemann problem is defined as the solution of ((7.12)) in 2 = R with initial condition

if x <
g(z, to) = { . TE=To (7.15)
qr if x> xg

Its solution is q(z,t) = qr, (resp. qr) if z —xo < A (t — o) (resp. >).
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7.3 Hyperbolic linear systems

e A linear hyperbolic system is written as

The flux is obviously f(q) = Aq and A = Df is assumed diagonalizable.

o There exists a matrix § such that

where A = diag (A}, A\%)..).
e Substituting into 1) and multiplying by @’1 one gets
B O0q+ RTRAR 0,0 = B s,

“tgand z =R

so that, defining w =

=
s

S, we arrive at

atwl + )\1 8$’w1 = z21

()

P w + éamw =

|

, = -
OWyy, + A OpWo, = Zpm

e These are uncoupled advection equations that we already know how to solve!
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7.4 Linear acoustics

The 1D Euler equations, consisting of mass, momentum and energy conservation equations of a gas

complemented by an equation of state are, without external forces,

Op+ 0p(pu) = 0,
O; (pu) + 0, (pu* +p
OWE+0, [(E+pul = 0,

p- -1 (B-gme) = 0.

Il
o

Let us now consider a small perturbation of the still state
p=po+p, p = po+p, u=0+a, E=E,+E .
Notice that py = (v — 1) Ep.

Exo. 7.5 Neglecting quadratic terms in the perturbations, show that u and p satisfy

1
ath—F— :(:25 = 07
Po

op+vypo0,i = 0.

(7.25)
(7.26)

Show also that, once the previous two equations have been solved, the energy can be obtained from E =

p/(v — 1) and the density from
P+ poOpti =0 .
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Let us now rewrite ((7.25))-([7.26]) as a linear hyperbolic system:
()« (o 1) o
p o 0

=(5)- =0m) e 2=( ') 2

The eigenvalues and eigenvectors are, defining ¢y = \/vpo/ po,

M= e y:(%2>, M= e, f:(£%>. (7.30)

Exo. 7.6 Now we will proceed intuitively instead of following the linear algebra procedure w = 2_1 q.
Verify that both are equivalent.

g}
g}

) ~ 0. (7.28)

=

We thus have

Since ¢ = (4,p)" € R?, we can always write ¢ as a linear combination of v' and v®. Let w; and w, denote

the coefficients. Then,
U —Co Co
- = w + w : 7.31
(p) 1<m%) 2(m%> (731

Inverting this relationships we arrive at the characteristic variables:

1 ~ 1 ~ 1 1
- 2¢o u+ 29003 p - 2¢o 2pocg

w = Lg4+ -1 5 = 1 1
2co 2poca p 2¢co 2poc3

=g

> . (7.32)

=
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Exo. 7.7 Show that the equations for wy and ws are, simply,
8tw1—coarw120, 8tw2+008ww220. (733)

Solve this equations to show that the exact solution in 0 = R with a “pure pressure” initial perturbation
(a(x,t =0) =0, p(x,t =0) = pjp(x) is

1 .
wl(x,t) = mpinz‘(JT—f—Cot) s (734)
1
t) = ——=Dii(x—cot) . 7.35
wo(,t) 2p06(2) pzm(x cot) ( )
Or, in primitive variables,
. 1 - -
a(w,t) = o [=Pini(e + cot) + Pinil — cot)] (7.36)
PoCo
. 1. .
plat) = 5 Pini(z + cot) + Pini(e = cot)] - (7.37)

Compute also p(x,t).
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Pressure at time t =0 Velocity at time t =0

Velocity at time ¢t = 0.1

L L L L L L L L
04 06 08 1 -1 08 -0.6 -0.4 -0.2 o oz 04 06 08 1

Pressure at time t = 0.5 Velocity at time t = 0.5
1 T T T T T T T T T 1 T T T T T T T T T
05 B 05 B
04;—/\/\_[—/\/\ .
ys 4 ys 4
_I—I —0{3 —0!6 —0!4 —0!2 ‘I] 0!2 0'.4 0'.6 0{3 1 _ll —0{3 —0!6 —0!4 —0!2 ‘I] 0!2 0'.4 0'.6 0{3 1
Pressure at time t = 1 Velocity at time t = 1
1 T T T T T T T T T 1 T T T T T T T T T
05 B 05 4
GM o
0.5+ B 0.5+ 4
_ll —013 —QTG —074 —072 ‘I] 072 0'.4 0'.6 0{3 1 _ll —013 —QTG —074 —072 ‘I] 072 0'.4 0'.6 0{3 1

Fig. 3.1. Evolution of an initial pressure perturbation, concentrated near the origin, into distinct
simple waves propagating with velocities —cy and c¢y. The left column shows the pressure pertur-
bation ¢! = p, and the right column shows the velocity g% = u. (Time increases going downwards.)
[claw/book/chap3/acousimple] 76



x =\ =\t

The Riemann problem: m
What is the solution of

B . qQ qr
() () (3) -
D Yoo 0O D

with initial condition g(z,t = 0) = g, if x <0 and q(r,t=0) = g, ifz>07 Or,Oequivalently,

S SR
B S ) T L
u, ifxz>0 pr ifz>0

This problem is very easy to solve in characteristic variables:
wy ifx+ct <0 wye if o — cot <0
wy (QZ, t) = . . ’ ) W2 (I, t) = # . ’ : (738>
wy, ifx+cpt >0 Wy, if x—cot >0
From this one concludes that

gg if[E+Cot<0

g(z,t) =qq ifx—ct>0 (7.39)
q. if v —cot <0< x4 cot

Exo. 7.8 Show that the new intermediate state q. that appears s

q =Ruw, , withw,, = (wi,, wy)" (7.40)

Im —m

and compute t,, and p,,.
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r = M\t T = M2t x = M\t

X —\T X_x7T O X — AT

Fig. 3.3. Construction of the solution to the Riemann problem at (X, 7). We trace back along the pth
characteristic to determine the value of w” from the initial data. The value of ¢ is constant in each
wedge of the x—¢ plane: ¢, = w; r'+whri+wir’ ¢f =wlr'+wir*+wir® ¢ =w!r'+w?r*+wir?
g = w!r'+w?r*+w?r3. Note that the jump across each discontinuity in the solution is an eigenvector
of A.
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7.5 The shallow water equations

] h@,t”“)m zjh(x,t") d .\:5‘
t 8

+

b j »L(x Yo szx ) el +J[j &Y

2
= Nx 1r—, +/l'tj

) + Tngran (o) + I MM(X s i
T (, h(x7t)

| Rty
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The equations to be considered are, thus,

h hu 0
at(hu) +ax<hu2+%h2> - (—%|u|u+gh0) (7.41)

so that, defining ¢; = h, ¢2 = hu,
q1 q2 0
0 + 0, | . — 7.42
t(Qz) (Z—f+%q%) (‘%%4‘99%) (7.42)

One readily observes that the system is hyperbolic, with

D ’ ! 0 L 7.43
Df = —%‘i_g(h 22 |\ —u’+gh 2u (7.43)
so that the corresponding eigenvalues and eigenvectors are
1 1_ 1 2 _ 2 _ 1
A =u—+/gh, Q_(u—\/g_h , N =u++\/gh, v°= wtgh ) (7.44)

Exo. 7.9 Consiflering the source term to be zero in or , let g, = (ho, houg)™ be a constant
solution and let h(x,t), u(x,t) be perturbations. Show that they satisfy the linearized equation

h 0 1 h
K . = A4
at(hﬂ) " (_“(2)+9h0 2u0>8x(hﬂ) 0 (7.45)
Solve analytically the Riemann problem, discussing the differences between the subcritical case (|ug| <

Vgho) and the supercritical case (Jug| > v/gho).
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