
A note on the numerical treatment of the k-epsilon turbulence model�

Adrián J. Lew�, Gustavo C. Buscaglia�and Pablo M. Carrica
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Abstract

Numerical solution of the equations arising from the� � � turbulence model has difficulties inherent to nonlinear
convection-reaction-diffusion equations with strong reaction terms, resulting in that numerical schemes easily become
unstable. We present a formulation that stresses on the robustness of the solution method, tackling common problems that
produce instability. The main contribution concerns the loss of positivity of� and�, which is addressed by acting on the
coefficients of the reaction and diffusion terms rather than on the turbulent variables themselves. In addition, a linearized
implicit, non-iterative, treatment of the wall law is proposed.
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1 Introduction

The numerical simulation of turbulent flows modeled by the� � � model has been the subject of much research in the last
years. This article is mainly focused on the stability of numerical approximations for this model. Though mathematical
results exist ensuring the well-posedness of the equations [7], the strong nonlinearities may interact with discretization errors
in such a way as to instabilize computations. This indeed happens if, as frequently occurs, no physically meaningful initial
condition is at hand.

A typical behavior of unstable computations involves the loss of positivity of� or �. This changes the sign of several terms in
the equations, with disastrous effects. To avoid such loss of positivity is not an easy task. One may limit� and� from below
(e.g., [5]) but the solution strongly depends on the limitation strategy and numerical results are frequently unacceptable.
The failure of this simple approach motivates the use of numerical techniques that preserve positivity [3, 7], but in most
unstructured meshes obtuse angles exist that preclude these algorithms from guaranteing positive results. Though elaborate
iterative techniques provide further improvement [3], the difficulty is not removed. Another alternative is to solve for the
logarithms of� and� [4], but one then deals with a modified set of equations involving exponentials of the unknowns.

The numerical trick we propose here is very simple and can be implemented in most� � � solvers. The idea is to look
at the linearized equations for� and� as convection-diffusion-reaction equations, and to notice that their coefficients are
always positive for the exact solution. Since a negative coefficient must be due to discretization errors, it can be put tozero
remorselessly. One never touches the values of� or �, just the coefficients of the linearized equations. This trick, together with
an improved treatment of the wall-law, results in a very robust scheme. It was combined with a recent equal-order method
introduced by Codina and Blasco [2], using linear interpolation for all the unknowns. The following sections describe the
proposed method, with numerical tests assessing both its stability and accuracy.

2 Problem Formulation

Let �� , �, � , � and�� be the Reynolds-averaged velocity, pressure, volumetric force, density and viscosity of the fluid,
respectively, and also let	� � ��
�. We start from the Reynolds Averaged Navier-Stokes (RANS) equations for
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incompressible flow
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Here
 is theReynolds Stress Tensorfor which the�� � turbulence model proposes
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where�� � ����, � is the turbulent kinetic energy and� is the dissipation of�. Replacing
 from (3) in the RANS equations
we obtain equations identical to the laminar case but with an effective viscosity	 ��� � 	� � 	� and an effective pressure
� � �� �

�
�.

The equations for� and� are of the convection-diffusion-reaction type, with non-linear coefficients, as given below in a form
suitable for later use [7]:
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where the diffusion coefficients are given by
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the reaction coefficients by
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and the source terms by
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with �� � ��	�
 , �� � 	��� , �� � 	�� and�� � 	��. Notice that the diffusion and reaction coefficients, and the source
terms, are non-negative for physically admissible solutions (non-negative� and�).

The previous equations are defined on a domain�, that we assume bounded by�� . The portion of�� corresponding to
solid walls is denoted by��, along which a layer of thicknessÆ has been removed and replaced by a wall law. This amounts
to the imposition of the no-penetration condition�� � � � � (� is the normal), of a tangential stress�� (opposite to local
velocity) obeying
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and of Dirichlet-type values for� and�
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In (9)-(10),� � � for smooth walls,� � ���	, �� �
���� �
�, and definingÆ� � ��Æ
	�, the inequalities�� � Æ� � 	��

must hold.

It is customary to specify the value forÆ over��, so that in order to find�� one must solve the nonlinear equation (9). A
second possibility has been successfully applied in this work: To specify the value ofÆ � over the boundary with wall law
condition. The main advantage of this choice is that givenÆ� we can calculate�� in a direct fashion (no iterations that could
fail to converge). As a balancing drawback, nowÆ depends on the solution, and can take different values at different points
on the boundary. This is however not an issue whenÆ is negligible compared to the dimensions of the domain.
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3 Numerical Scheme

The implemented numerical scheme consists of four fractional steps: (1) Calculate the projection of the pressure gradient,
(2) Solve continuity and momentum equations, (3) Solve equation for�, and (4) Solve equation for�. The first two will
not be discussed here (see [2]), except for the treatment of the wall law that is deferred to paragraph 3.2. Let� � and��

be the interpolation spaces for� and�, respectively, consisting of continuous, piecewise linear functions. The implemented
variational formulations are:

Fractional step 3: Let�� � �������
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where��� �� �
�
�
� � �� and spaces with a dot above indicate homogeneous Dirichlet data. The first two terms in Eq.

(11) (and analogously for Eq. (12)) come from the Galerkin formulation. The third one is a stabilization term, involving
an algorithmic parameter�� and a perturbation function
�, which introduces upwinding. Specific designs for this term are
provided by the SUPG or SGS methods [1].

3.1 Positivity of the coefficients

The numerical scheme as explained so far performs poorly due to its inability to guarantee that� and� remain positive.
Undershoots develop in boundary and internal layers, and negative values of either� or � result in the immediate
instabilization of the scheme. However, by inspection of the formulation it is realized thatit is not the negative values of
� and� that really matter, but instead the appearance of negative reaction or diffusion coefficients that cause the exponential
growth of the solution. We propose to limit	� , ��, �� and�� from belowwithout touching the nodal values of� or �. The
rationale for this is that we can accept local regions with negative values of these fields as long as these “problematic” regions
remain localized and do not lead to global instability. The modifications introduced in the numerical scheme are:

� 	� is limited from below to a small fraction of	�, and evaluated at the previous time step.

	� � ���
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� The rest of the coefficients are limited from below by zero,

�� � ���
���
�

	�
� �� (14)

�� � ���
 ���
�

����
� �� (15)

�� � ���
���
���

�

������ �����
���� � �� (16)

3.2 Implementation of the wall law

From (9),�� can be written as

�� � ��
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where the function� simply equals� �� � �� �
 
��� Æ����� when Æ� is specified, but is an implicit expression (iterations
needed) ifÆ is specified. All of the following can be done in either case, the latter requiring differentiation of implicit
functions.
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Evaluating�� at the previous time step leads to instability. We use instead a linearized implicit scheme, i.e.,
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where summation over repeated indices holds. Using (17) and some algebra we get
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This formulation turns out to be stable. Furthermore, the terms multiplying����� in (19) lead to a positive contribution to the
system matrix.

4 Numerical results for two test problems

4.1 Fully developed flow in a channel

This test consists of the flow between parallel plates due to a constant pressure gradient. The following flow conditions were
used:��
� � ������ 	� � 	���� ! � 	, resulting in a Reynolds number
"� � 	��� ���, based on! , the channel
height, and��, the maximum velocity. Wall-law boundary conditions were imposed, fixingÆ � ���		�
! .

Several numerical tests were performed, those chosen as representative are listed in Table 1. Initial condition A corresponds
to U,� and� set to zero at� � �. This initial condition is physically meaningfull. Conversely, initial condition B corresponds
to U=100,�=0, �=0, which is non-physical and generates a strong initial transient. Case 1 addresses the accuracy of the
method, while cases 2 to 4 were used to test its robustness.

In cases 1, 2 and 4 a steady state was reached, and case 3 oscillates. The solutions obtained for the steady state, not shown
here for brevity, agree with the experimental results by Laufer and the numerical results by Utnes [9]. Also, the solutions
obtained with different grids and time steps (cases 1, 2 and 4) practically coincide.

The usefulness of the proposed tricks is realized looking at Figs. 1 and 2, where the maxima and minima of� and� during
the transient are shown. Wild oscillations appear (locally!) in cases 2, 3 and 4. However, in cases 2 and 4 the steady state
is reached without problem. Moreover, persistant oscillations such as those in case 3 can be avoided byrefiningeither the
temporal or spatial discretizations (leading to cases 2 and 4, respectively).

4.2 Backward facing step (BFS)

The geometry of this problem (2D) is shown in Fig.3. The dimensions are! � 	,! � � �,#� � 	� and#� � ��. Wall laws
(imposingÆ� � ��) hold along top and bottom boundaries. Inflow conditions correspond to fully-developed flow. The case
discussed here corresponds to
" � ����� (based on step height! and maximum inlet velocity� �), with 	� � �����	���

and� � 	��, which lead to�� � 	���	. The initial condition is uniform over�, � � 	��, � � ���, � � ���	, � � ���	.
Notice that this does not respect mass conservation and is far away from the steady state solution. The grid consists of 6823
nodes and 13280 linear triangles (see Fig. 4). With a quite large time step (�� � ���	��) a quasi-steady state was obtained
without difficulty in ��� steps. Nevertheless, at a few nodes near cornera the turbulent dissipation� kept oscillating. This
local phenomenon did not pollute the solution away from this corner, and could be damped by further reduction of the time
step (	�� additional steps with�� � ����� proved sufficient).

Though not presented here, comparison of velocity and Reynolds stress profiles with previous experimental and numerical
results [10] is satisfactory (see [6] for details). The obtained reattachment length, frequently used for comparison, was
#� � 
���, in good agreement with both an experimental value# � � � and several works reporting that the� � � model
underestimates#� by 10% to 25% [8].

Coming back to the central topics of this article, there are regions of the flow in which� or � are negative, even at steady state.
It must be recalled that our method allows for the appearance of such regions, and that our speculation is that in physically
meaningfull transients or at the steady state they will be sharply localized and will not affect the overall solution. For the
present example at steady state (things are much worse during the initial transient) such regions are shown in Fig. 5. It is
clear that� or � are negative at just a few nodes. Furthermore, this happens where crossflow gradients are steep, and could be
avoided by refining the grid or by introducing a discontinuity-capturing operator in the formulation. The minimum values of
� and� (see Table 2) are indeed small (in modulus) as compared to the maximum values.
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5 Concluding remarks

A robust algorithm to solve the�� � equations has been presented. Its design is based on the manipulation of the different
terms so as to add as many positive terms as possible to the system matrix and to keep source terms also positive. Then,
as discretization errors may induce non-physical negative values of diffusion or reaction coefficients, these are limited from
below by zero. This approach works much better than the frequently used limiters on the turbulent variables. Along the same
design line is the proposed treatment of the wall boundary condition by semi-implicit linearization, an additional trick being
the imposition ofÆ� instead ofÆ, avoiding iterations in the wall-law algorithm that may fail to converge. Remarkably, the
proposed algorithm can easily be implemented in most flow solvers, not just finite element ones. Also worth mentioning is
the good behavior of the recent stabilized method of Codina and Blasco [2], for which few reported experiments (none of
them turbulent) exist.

ACKNOWLEDGMENTS: Financial support from Agencia Nacional de Promoci´on Cient´ıfica y Tecnológica through grant
PICT 12-982 is acknowledged. GCB also belongs to Consejo Nacional de Investigaciones Cient´ıficas y Técnicas.

References

[1] R. Codina, “Comparison of some finite element methods for solving the diffusion-convection-reaction equation”,Comp.
Meth. Appl. Mech. Eng., 156, 185-210 (1998).

[2] R. Codina and J. Blasco, “Stabilized finite element method for the transient Navier-Stokes equations based on a pressure
gradient projection”,Comp. Meth. Appl. Mech. Eng., 182, 277-300 (2000).

[3] R. Codina and O. Soto, “Finite element implementation of two-equation and algebraic stress turbulence models for
steady incompressible flows”,Int. J. Numer. Meth. in Fluids, 30, 309-334 (1999).

[4] F. Ilinca and D. Pelletier, “Positivity preservation and adaptive solution for the�� � model of turbulence”,AIAAPaper
No. 97-0205,35th Aerospace Sciences Meeting & Exhibit, January 1997, Reno, USA.

[5] F. Ilinca, D. Pelletier and F. Arnoux-Guisse, “An adaptive finite element scheme for turbulent free shear flows”,Int. J.
Comput. Fluid Dyn., 8, 171-188 (1997).

[6] A. Lew, The Finite Element Method in High Performance Computing Environments, Master’s Thesis in Nuclear
Engineering, Instituto Balseiro, Argentina. In Spanish.

[7] B. Mohammadi and O. Pironneau,Analysis of the�� � turbulence model, J. Wiley & Sons (1994).

[8] S. Tangham and C. Speziale, “Turbulent separated flow past a backward-facing step: A critical evaluation of two-
equation turbulence model”, Rep. 91-23, Inst. for Computer Appl. in Sci. and Eng., NASA Langley Res. Ctr. (1991).

[9] T. Utnes, “Two equations (�,�) turbulence computations by the use of a finite element model”,Int. J. Numer. Meth. in
Fluids, 8, 965-975 (1988).

[10] V. Yakhot, S. Tangham, T. Gatski, S. Orszag and C. Speziale, “Development of turbulence models for shear flows by a
double expansion technique”, Rep. 91-65, Inst. for Computer Appl. in Sci. and Eng., NASA Langley Res. Ctr. (1991).

5



Case Number of nodes (N) �� initial condition
1 260 0.01 A
2 31 0.01 B
3 31 0.1 B
4 260 0.1 B

Table 1: Details of the numerical tests for the channel flow problem. The grids are nonuniform, refined near the walls.

max� 6.5305
min � -0.0708
max� 922.924
min � -20.4855

Table 2: Maximum and minimum values of� and� at the steady state of the BFS test problem.
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Figure 1: Channel flow problem. Evolution of the maximum (a) and minimum (b) of� in the initial transient for each of the
cases.
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Figure 2: Channel flow problem. Evolution of the maximum (a) and minimum (b) of� in the initial transient for each of the
cases.

8



L1 L2

H1

H
H2

b c

de

f

Y

X

a

Figure 3: BFS problem. Geometry and dimensions of the computational domain.

Figure 4: BFS problem. Central portion of the grid
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Figure 5: BFS problem. Regions with negative values of� (a) and� (b).
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