A Minicourse on the Finite Element method

Gustavo C. Buscaglia
ICMC-USP, São Carlos, Brasil
gustavo.buscaglia@gmail.com

1 Motivation

What is the Finite Element Method?

- It is a family, or a collection, of numerical techniques used for the approximation of partial differential equations.
- Finite Element approximations are characterized in general by being based on variational formulations of the problem and discretized by a well defined subspace of the appropriate function spaces. They are usually defined by a so-called Discrete Variational Formulation.
- Finite Element spaces are also quite characteristic. They are based on a division of the domain of the problem into a finite number of pieces, or subdomains. Then polynomial functions are defined on each subdomain, building piecewise polynomial spaces. A transformation is used to define convergent approximations at curved boundaries
- Software used in industry for the simulation of elliptic and parabolic problems are usually finite element codes. Such problems include: thermal conduction, electrostatics, magnetostatics, solid mechanics, low-inertia flows, among others.

What are the strengths of the FEM?

- It is a general method, in the sense that it naturally deals with multi-dimensionality, with anisotropy, with geometrical complexity and with nonlinearity.
- Not all numerical methods accomplish that. Finite difference methods loose much of their appeal when the geometry is complex, or varying in time. Boundary integral methods, being based on Green's functions, cannot deal with even mild nonlinearities, at least not without major reformulation.

What can one actually do with Finite Elements?

That depends on your role:

- As a software user, you can explore all sorts of problems. The software has become so userfriendly that you hardly need to learn the theory at all... Perhaps out of curiosity? ©)
- As an analyst, you can program finite elements to have a quick approximate solution to some differential or optimality problem. Problems that can be formulated in terms of an energy are especially easy. This minicourse is mainly oriented towards this role.
- Finally, as a developer, you can work on open source projects of Finite Elements, implement new models as they are required by analysts of specific applications, develop algorithms for the many open problems in the field.

2 Finite element partitions

Let Ω be the domain of definition of a problem, for example the interval $(0, L)$ in 1 D , or an arbitrary polygon in 2D, etc.
The FEM partitions Ω into a collection of subdomains K, where each K is the image, by a suitable transformation F_{K}, of a unique subdomain \widehat{K}.

$$
\begin{equation*}
K=F_{K}(\widehat{K}) \tag{2.1}
\end{equation*}
$$

First example: $\Omega=(0, L)$

The master subdomain consists of:

- A compact set, the interval $\widehat{K}=[-1,1]$.
- A finite dimensional space \widehat{G}, which we take as \mathbb{P}_{1}, the polynomials of degree ≤ 1.
- A set of geometrical degrees of freedom $\widehat{\Theta}$, which we take as the values at the nodes $\{-1,1\}$.
- This defines two geometrical basis functions on \hat{K} :

$$
\begin{equation*}
G_{1}(\hat{x})=\frac{1}{2}(1-\hat{x}) ; \quad G_{2}(\hat{x})=\frac{1}{2}(1+\hat{x}) . \tag{2.2}
\end{equation*}
$$

- Any linear polynomial p in \widehat{K} can be written as

$$
\begin{equation*}
p(\hat{x})=c_{1} G_{1}(\hat{x})+c_{2} G_{2}(\hat{x}) \tag{2.3}
\end{equation*}
$$

- This is a Lagrange basis, i.e., the coefficients are nothing but the nodal values, $c_{1}=p(-1)$, $c_{2}=p(1)$, so that

$$
\begin{equation*}
p(\hat{x})=p(-1) G_{1}(\hat{x})+p(1) G_{2}(\hat{x}) \tag{2.4}
\end{equation*}
$$

The transformation

$$
\begin{equation*}
F_{K}(\hat{x})=a G_{1}(\hat{x})+b G_{2}(\hat{x}) . \tag{2.5}
\end{equation*}
$$

maps \widehat{K} onto any interval $K=[a, b]$. Check that $F_{K}(-1)=a$ and $F_{K}(1)=b$. Positions are linearly interpolated in between.

```
function [g dg d2g] = masterp1(id,x)
n=max(size(x));
for i=1:n
if (id == 1)
    g(1,i) = 0.5*(1-x(i));
    g(2,i) = 1-g(1,i);
    dg(1,i) = -0.5;
    dg(2,i) = 0.5;
    d2g(1,i) = 0;
    d2g(2,i) = 0;
end
end
end
```


A mesh is composed of:

- A connectivity matrix.
- An array of coordinates.

```
exa2.m
conec=[1 2;2 3;3 4;4 5;5 6];
coord=[-10 -5 -1 0 4 10];
nel=size(conec,1); npe=size(conec,2);
nod=size(coord,2);
xhat=-0.9:0.3:0.9; nhat=size(xhat,2);
zhat=zeros(nhat,1);
figure 1;
for k=1:nel
[g dg d2g] = masterp1(1,xhat);
a=coord(\operatorname{conec}(k,1));b=coord(\operatorname{conec}(k,2));
x=a*g(1,:)+b*g(2,:);
c=k;
scatter(zhat,x,20,c,"filled")
hold on;
```

end

$A|G| P|R| ?[0.7344,-10.47]$

The mesh concept generalizes easily to different geometries and topologies.

exa3.m

```
conec1=[1 2;2 3;3 4;4 5;5 6];
coord1=[-10 -5 -1 0 0 0;
    0 0 0 0 4 10];
conec2=[1 2;2 3;3 4;4 5;5 6;6 7;7 8;8 1];
coord2=[-10 -5 -2 -2 -2 -5 -10 -10;
    3 3 3 6 9 9 9 6];
nel1=size(conec1,1);npe=size(conec1,2);
nod1=size(coord1,2);
nel2=size(conec2,1); npe=size(conec2,2);
nod2=size(coord2,2);
```

xhat=-0.9:0.3:0.9;nhat=size(xhat,2);
[g dg d2g] = masterp1(1,xhat);
figure 1;
for $k=1$:nel1
a=coord1(:, conec1(k,1)); b=coord1(:, conec1(k,2));
$\mathrm{x}(1,:)=\mathrm{a}(1) * \mathrm{~g}(1,:)+\mathrm{b}(1) * \mathrm{~g}(2,:)$;
$\mathrm{x}(2,:)=\mathrm{a}(2) * \mathrm{~g}(1,:)+\mathrm{b}(2) * \mathrm{~g}(2,:) ; \mathrm{c}=\mathrm{k}$;
scatter(x(1,:), x(2,:),20, c,"filled")
hold on;
end
end
for $k=1$:nel2
a=coord2(:, conec2(k,1));b=coord2(:, conec2(k,2));
$\mathrm{x}(1,:)=\mathrm{a}(1) * \mathrm{~g}(1,:)+\mathrm{b}(1) * \mathrm{~g}(2,:)$;
$x(2,:)=a(2) * g(1,:)+b(2) * g(2,:) ; \quad c=k ;$
scatter(x(1,:), x(2,:), 20, c,"filled")
hold on;

$A|G| P|R| ? \mid[-0.496,10.1]$

Disclaimer: Why Octave?

I am giving you examples in Octave. They should also work in Matlab. The reasons for this are:

- I want to show a complete implementation of the concepts. Show that it is simple and that it works.
- Octave is not the best-performing Language for most applications, but it can do amazing things!. With some FE concepts and Octave, one can easily solve quite sophisticated models in several applications.
- If you know what to do in Octave but your application exceeds Octave's capabilities, all you need to do is to look for more efficient software packages and replace the Octave functions by the appropriate counterparts.

So, try to understand the Octave coding, the codes are available at my site and the package is free software. It will already allow you to compute interesting things, and if you need more performance the remedies are not hard to find.

Second example: A two-dimensional polygon

- We take the master subdomain as the unit triangle $\widehat{K}=\left\{x \in \mathbb{R}^{2}, 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq\right.$ $\left.1-x_{1}\right\}$.

- The geometrical basis functions

$$
\begin{align*}
G_{1}(\hat{x}) & =1-\hat{x}_{1}-\hat{x}_{2} \tag{2.6}\\
G_{2}(\hat{x}) & =\hat{x}_{1} \tag{2.7}\\
G_{3}(\hat{x}) & =\hat{x}_{2} \tag{2.8}
\end{align*}
$$

```
function [g dg d2g] = masterp1(id,x)
n=size(x,2);
for i=1:n
if (id == 1)
    g(1,i) = 0.5*(1-x(1,i));
    g(2,i) = 1-g(1,i);
```

```
    dg(1,i) = -0.5;
    dg(2,i) = 0.5;
    d2g(1,i) = 0;
    d2g(2,i) = 0;
elseif (id == 2)
    g(1,i) = 1-x(1,i)-x(2,i);
    g(2,i) = x(1,i);
    g(3,i) = x(2,i);
    dg(1,1,i) = -1;
    dg(1,2,i) = -1;
    dg(2,1,i) = 1;
    dg(2,2,i) = 0;
    dg(3,1,i) = 0;
    dg(3,2,i) = 1;
    d2g(1:3,1:2,i)=zeros(3,2);
end
end
end
```

- The transformation

$$
\begin{equation*}
F_{K}(\hat{x})=\sum_{i=1}^{3} \mathbf{X}^{i} G_{i}(\hat{x}) \tag{2.9}
\end{equation*}
$$

which transforms \hat{K} into the arbitrary triangle with vertices $\mathbf{X}^{1}, \mathbf{X}^{2}$ and \mathbf{X}^{3}.

Mesh and transformation (exa4.m)

```
conec=[1 2 3;3 2 4;4 2 5];
coord=[4 8 4 8 12;
    2 2 6 8 4 ];
for k=1:nel
    XX(:,1)=coord(:, conec(k,1));
    XX(:,2)=coord(:,conec(k,2));
    XX(:,3)=coord(:,conec(k,3));
    x=zeros(2,nhat);
    for i=1:npe
        x(1,:)=x(1,:)+XX(1,i)*g(i,:);
        x(2,:)=x(2,:)+XX(2,i)*g(i,:);
    end
end
```


File Edit

Mesh generation: GMesh

Software package for mesh generation. Two steps: (1) Define the geometry. (2) Generate mesh.

```
function [mesh, GMSH_OUT]=CreateMesh(r,ip)
name=[tmpnam ".geo"];
fid=fopen (name, "w");
% POINTS
string=sprintf("Point(1)={4,2,0,%f};\n",r);
fputs (fid, string);
string=sprintf("Point(2)={8,2,0,%f};\n",r);
fputs (fid, string);
string=sprintf("Point(3)={4,6,0,%f};\n",r); end
fputs (fid, string);
string=sprintf("Point(4)={8,8,0,%f};\n",r);
fputs (fid, string);
string=sprintf("Point(5)={12,4,0,%f};\n",r);
fputs (fid, string);
% LINES joining the POINTS
fputs (fid, "Line(1) = {1, 2};\n");
fputs (fid, "Line(2) = {2, 5};\n");
fputs (fid, "Line(3) = {5, 4};\n");
fputs (fid, "Line(4) = {4, 3};\n");
fputs (fid, "Line(5) = {3, 1};\n");
```

\% SURFACEs grouping the LINES
fputs(fid,"Line Loop(6)=\{1,2,3,4,5\}; \n");
fputs (fid, "Plane Surface(7) = \{6\}; \n");
fclose (fid);
\% MESH and glue all SURFACES
[mesh GMSH_OUT] = msh2m_gmsh...
(canonicalize_file_name(name)(1:end-4),...
"clscale", "1.0");
if(ip == 1)
trimesh(mesh.t(1:3,:)', mesh.p(1,:)',...
mesh.p(2,:)');
end
\% Delete auxiliary files
unlink (canonicalize_file_name (name));

[mm idum]=CreateMesh $(2,1)$

$A|G| P|R| ?$
mm.p coordinates

octave:> mm.p'	
ans $=$	
4.0000	2.0000
8.0000	2.0000
4.0000	6.0000
8.0000	8.0000
12.0000	4.0000
6.0000	2.0000
9.3333	2.6667
10.6667	3.3333
10.6667	5.3333
etcetera	

mm.t \longrightarrow connectivity

```
octave:> mm.t>
ans =
\begin{tabular}{rrrr}
1 & 19 & 13 & 7 \\
14 & 15 & 17 & 7 \\
7 & 8 & 15 & 7 \\
6 & 19 & 1 & 7 \\
8 & 9 & 15 & 7 \\
10 & 17 & 15 & 7 \\
etcetera
\end{tabular}
```

mm.e \longrightarrow boundary edges
octave: $>$
ans $=$

1	6	0	0	1	7	0
6	2	0	0	1	7	0
2	7	0	0	2	7	0
7	8	0	0	2	7	0
8	5	0	0	2	7	0
5	9	0	0	3	7	0
9	10	0	0	3	7	0
10	4	0	0	3	7	0
4	11	0	0	4	7	0
11	12	0	0	4	7	0
12	3	0	0	4	7	0
3	13	0	0	5	7	0
13	1	0	0	5	7	0

ans =

Meshes of arbitrary refinement can be generated on general geometries 1D/2D/3D.
[mmm idum] $=$ CreateMesh $(2,1)$

$A|G| P|R| \geqslant \sqrt{[11.04,4.551}$
[mmm idum]=CreateMesh $(1,1)$

$A|G| P|R| ? ~[11.04,4.65]$
[mmm idum] $=\operatorname{CreateMesh}(0.5,1)$

$A | G | P | R | ? \longdiv { [1 1 . 0 4 , 4 . 6 5 1 }$
[mmm idum] $=$ CreateMesh $(0.25,1)$

$A|\sigma| P|R| ? ~ \mid 0.339,2.374]$

An example using localized refinement and bsplines.

CreateMeshexa5 (0.4,1)

$\mathrm{A}|\mathrm{C}| \mathrm{P}|\mathrm{R}| ? \sqrt{[1.139,-0.246]}$

CreateMeshexa5 (0.2,1)

$|A| G|P| R \mid ? ~[1.164,0.4112]$
CreateMeshexa5 (0.1,1)

Takeaway

The three ingredients:

- Master subdomain
- Geometrical basis functions
- Mesh (connectivity + coordinates)
allow for the easy construction of transformations

$$
F_{K}(\hat{x})=\sum_{i} \mathbf{X}^{i} G_{i}(\hat{x})
$$

so that each point of Ω is the image of one point \hat{x} for the one subdomain K to which it belongs (except at subdomain edges).

3 Finite element spaces

3.1 The master element

The master element (simplified version) consists of

- A master subdomain, i.e., \widehat{K} equipped with its geometrical basis functions $\left\{G_{i}\right\}_{i=1}^{n_{g}}$.
- A set of shape functions (basis functions) $\left\{\widehat{N}_{j}\right\}_{j=1}^{n_{s}}$.

The linear combinations of the shape functions define a vector space of functions of \hat{x} :

$$
\begin{equation*}
\widehat{P}=\left\{p: \widehat{K} \rightarrow \mathbb{R} \mid p(\hat{x})=\sum_{i=1}^{n_{s}} \sigma_{i} \widehat{N}_{i}(\hat{x}), \text { where } \sigma_{i} \in \mathbb{R}, \forall i\right\} . \tag{3.1}
\end{equation*}
$$

The element is isoparametric if $G_{i}=\widehat{N}_{i}$.

Example 1: Lagrange P_{p} element in 1D

- Set $\widehat{K}=[-1,1]$.
- The geometrical basis functions are, as before:

$$
\begin{equation*}
G_{1}(\hat{x})=\frac{1}{2}(1-\hat{x}) ; \quad G_{2}(\hat{x})=\frac{1}{2}(1+\hat{x}) \tag{3.2}
\end{equation*}
$$

- Let $\left\{\hat{X}^{i}\right\}_{i=1}^{p+1}$ be evenly distributed points with $\hat{X}^{1}=-1$ and $\hat{X}^{p+1}=1$. These will be the nodes of \widehat{K}. The integer p is the degree of the element.
- The shape functions are the Lagrange polynomials of $\hat{X}^{1}, \ldots, \hat{X}^{p+1}$.

$$
\begin{equation*}
\widehat{N}_{i}(\hat{x})=\prod_{j \neq i=1}^{p+1} \frac{\hat{x}-\hat{X}^{j}}{\hat{X}^{i}-\hat{X}^{j}} \tag{3.3}
\end{equation*}
$$

- Notice that if $p=1$ then $\widehat{N}_{1}=G_{1}$ and $\widehat{N}_{2}=G_{2}$.

The following code computes the shape functions of the Lagrange P_{p} element for all the \hat{x}-values given in the vector xhat.

```
masterlag.m
function sf=masterlag(p,xhat)
#Lagrange basis
nh=max(size(xhat));
d=2; #master is [-1,1]
n=p+1; #number of nodes
dx=d/p; #distance between nodes
xno(1:n)=(-1:dx:1);
for ih=1:nh
    xh=xhat(ih);
    for i=1:n
        aux=1;
        for j=1:n
            if (j!=i)
            aux=aux*(xh.-xno(j))/(xno(i)-xno(j));
        end
        end
    sf(i,ih)=aux;
    end
end
```

Actually, we will need not just the value of $\widehat{N}_{i}(\hat{x})$ but also those of $\widehat{N}_{i}^{\prime}(\hat{x})$ and possibly of $\widehat{N}_{i}^{\prime \prime}(\hat{x})$. We can do the derivatives by hand or differentiate the code as follows:

```
masterlag.m
function [sf dsf]=masterlag(p,xhat)
#Lagrange basis
nh=max(size(xhat));
d=2; #master is [-1,1]
n=p+1; #number of nodes
dx=d/p; #distance between nodes
xno(1:n)=(-1:dx:1);
for ih=1:nh
    xh=xhat(ih);
    for i=1:n
        daux=0;#derivative of next line
    aux=1;
    for j=1:n
        if (j!=i)
            daux=aux/(xno(i)-xno(j))+daux*(xh-xno(j))/(xno(i)-xno(j));#deriv. of next line
            aux=aux*(xh.-xno(j))/(xno(i)-xno(j));
        end
    end
    dsf(i,ih)=daux;#deriv. of next line
    sf(i,ih)=aux;
    end
end
```

octave:> xh=-1:0.01:1;
octave:> pp=1;
octave:>[sf dsf]=masterlag(pp,xh); octave:> plot(xh,sf,"linewidth",2)

Elie Edit

$\mathrm{A}|\mathrm{G}| \mathrm{P}|\mathrm{R}| ?$
File Edit $[0.918,-\theta .1166]$
File Edit

$\mathrm{A}|\mathrm{G}| \mathrm{P}|\mathrm{R}| ? \quad[0.13,0.5568]$

```
octave:> xh=-1:0.01:1;
octave:> pp=2;
octave:>[sf dsf]=masterlag(pp,xh);
octave:> plot(xh,sf,"linewidth",2)
```

Elie Eadit

$A|G| P|R| ? \quad[1.153,0.01884]$ File Edit

$A|G| P|R| ? \quad[0.13,0.5568]$
octave:> xh=-1:0.01:1;
octave:> pp=3;
octave:>[sf dsf]=masterlag(pp,xh); octave:> plot(xh,sf,"linewidth",2)

File Edit

$A|G| P|R| ? \quad[0.8857,1.678]$
octave:> xh=-1:0.01:1;
octave:> pp=4;
octave:>[sf dsf]=masterlag(pp,xh);
octave:> plot(xh,sf,"linewidth",2)

File Edit

$A|G| P|R| \quad[0.3558,0.9821]$
octave:> xh=-1:0.01:1;
octave:> pp=5;
octave:>[sf dsf]=masterlag(pp,xh); octave:> plot(xh,sf,"linewidth",2)

$\mathrm{A}|\mathrm{G}| \mathrm{P}|\mathrm{R}| ? \quad[0.13, \theta .5568]$
octave:> xh=-1:0.01:1;
octave:> pp=6;
octave:>[sf dsf]=masterlag(pp,xh);
octave:> plot(xh,sf,"linewidth",2)

$A|G| P|R| ? \quad[0.7152,1.431]$

The use of the shape functions $\left\{\widehat{N}_{i}\right\}$ creates a reparameterization of the polynomials $\mathbb{P}_{p}(\widehat{K})$. Any quadratic

$$
q(\hat{x})=\alpha_{1}+\alpha_{2} \hat{x}+\alpha_{3} \hat{x}^{2}
$$

for example, can be written as

$$
\begin{aligned}
q(\hat{x}) & =\beta_{1} \widehat{N}_{1}^{(p=2)}(\hat{x})+\beta_{2} \widehat{N}_{2}^{(p=2)}(\hat{x})+\beta_{3} \widehat{N}_{3}^{(p=2)}(\hat{x}) \\
& =\gamma_{1} \widehat{N}_{1}^{(p=3)}(\hat{x})+\gamma_{2} \widehat{N}_{2}^{(p=3)}(\hat{x})+\beta_{3} \widehat{N}_{3}^{(p=3)}(\hat{x})+\beta_{4} \widehat{N}_{4}^{(p=3)}(\hat{x}) \\
& =\ldots
\end{aligned}
$$

The degrees of freedom are now $\beta_{1}-\beta_{3}$, if $p=2$, or $\gamma_{1}-\gamma_{4}$, if $p=3$, etc. They are nothing but the values of q at the nodes of \widehat{K}. Each set of DOFs uniquely defines a polynomial.

```
octave:> x=-1:0.1:1;
octave:> pp=3;
octave:> gamma=[lllll}
octave:> plot(x,gamma*sf,"linewidth",2)
```


$A|G| P|R| ? 1-0.4457,4.351]$
octave:> $x=-1: 0.01: 1$;
octave:> pp=9;
octave:> gamma=[llllllllll $\left.1 \begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 3 \\ 3 & 3 & 3 & 3\end{array}\right] ;$ octave:> plot(x,gamma*sf,"linewidth",2)

File Edit

$A|G| P|R| ?[-1.162,0.8743]$

Exo. 3.1 Compute by hand the derivative of the shape functions of the P_{3} element and compare with the functions coded in dsf.

Exo. 3.2 Extend the function masterlag to also calculate the second derivatives.
function [sf dsf ddsf]=masterlag(p,xhat)

Takeaway

- It is easy and automatic to compute the Lagrange basis of $\mathbb{P}_{p}(\hat{K})$, and its derivatives. Simply call masterlag(p,xhat)! (\cdot)
- Code differentiation is awesome! $\odot-()$

In fact, it can itself be automated. Automatic differentiation is considered one of the important algorithms of the 20th century (together with FFT, Monte Carlo, and others).

What do we have up to now?

- A mesh, this is, a partition of the domain Ω into a collection of subdomains $\{K\}$. This can be done by hand (in 1D), or automatically with available codes such as GMesh.
- A transformation F_{K} of a unique master subdomain \widehat{K} onto each K in the mesh.
- A set of shape functions which are a basis of $\widehat{P}=\mathbb{P}_{p}(\widehat{K})$, with a specific parameterization which defines suitable degrees of freedom.

To build a vector space of functions over Ω it only remains to:

- Use the transformation F_{K} to define basis functions in $K=F_{K}(\widehat{K})$. This also defines a set of degrees of freedom on the space $P(K)$.
- The finite element functions in Ω are defined piecewise, for each K, as a linear combination of the basis.

3.2 The finite element

Let \widehat{K} and K be given, and let $F_{K}: \widehat{K} \rightarrow K$ be a one-to-one mapping. Then to every function $\widehat{\psi}: \widehat{K} \rightarrow \mathbb{R}$ corresponds a function $\psi: K \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\psi(x)=\widehat{\psi}\left(F_{K}^{-1}(x)\right) \tag{3.4}
\end{equation*}
$$

or, equivalently,

$$
\psi(x)=\psi\left(F_{K}(\hat{x})\right)=\widehat{\psi}(\hat{x}) .
$$

- If $\widehat{\psi}$ is a polynomial of degree k and F_{K} is affine (each component a polynomial of degree one), then ψ is a polynomial of degree k.
- $\widehat{\mathbb{P}}_{k}=\mathbb{P}_{k}$, if F_{K} is affine.
- This is not the only correspondence between functions in \widehat{K} and functions in K that is used. It is certainly the most frequent.

The finite element consists of

- A master element.
- A compact K, which is the image of a transformation F_{K} that maps \widehat{K} onto K.
- A set of basis functions which are the transformed images of the shape functions. In most finite elements,

$$
\begin{equation*}
N_{i}\left(F_{K}(\hat{x})\right)=\frac{1}{\alpha_{i}} \widehat{N}_{i}(\hat{x}) . \tag{3.5}
\end{equation*}
$$

In the case of Lagrange elements, among others, $\alpha_{i}=1$ for all i.
Denoting $x=F_{K}(\hat{x})$, we have

$$
\begin{equation*}
\sum_{k} \frac{\partial N_{i}}{\partial x_{k}}(x) B_{k j}(\hat{x})=\frac{1}{\alpha_{i}} \frac{\partial \widehat{N}_{i}}{\partial \hat{x}_{k}} \tag{3.6}
\end{equation*}
$$

where $B_{k j}=\partial\left(F_{K}\right)_{k} / \partial \hat{x}_{j}$ is the Jacobian matrix of the transformation $\hat{x} \mapsto x$. Another way of writing the previous equation is

$$
\begin{equation*}
B^{T} \nabla N_{i}(x)=\frac{1}{\alpha_{i}} \nabla \widehat{N}_{i}(\hat{x}) . \tag{3.7}
\end{equation*}
$$

```
Example 1: Lagrange }\mp@subsup{P}{p}{}\mathrm{ element in 1D
Notice below the mesh, the degree and the DOF
values
exapp.m
conecg=[1 2;2 3;3 4];
coordg=[[0 2 4 7}]
xh=-1:0.05:1;#drawing points
nhat=size(xh,2);
nel=size(conecg,1); npe=size(conecg,2);
nodg=size(coordg,2);
pp=3;
[g dg d2g] = masterp1(1,xh);
[sf dsf ddsf]=masterlag(pp,xh);
vdofs = [0 0 2 4;
    -1 0 2 3;
    3 1 2 1];
for k=1:nel
XX(:,1)=\operatorname{coordg}(:,\operatorname{conecg}(k,1));
XX(:,2)=\operatorname{coordg}(:,\operatorname{conecg}(k,2));
x=zeros(1,nhat);
for i=1:npe
x(1,:)=x (1,:)+XX(1,i)*g(i,:);
end
```

f=vdofs(k,:)*sf;
plot(x,f,"linewidth",2); hold on;
hold on;
end
hold off

$A|G| P|R| ? \mid[0.9435,-1.698]$

If the last DOF of an element does not coincide with the first DOF of the next one, the function is discontinuous.

The unknowns are renumbered, so that all continuity requirements of the possible functions are enforced (identification of unknowns). This is easily accomplished with a mesh,

and the DOF vector
vdof=[$\left.\begin{array}{lllllllll}0 & 0 & 2 & 0 & 2 & 3 & 1 & 2 & 1\end{array}\right] ;$

In this way, the following code draws the finite element function that corresponds to vdof.
exapp2.m
vdof=[0 $\left.002 \begin{array}{llllllll}0 & 2 & 3 & 1 & 2 & 1 & 1\end{array}\right]$;
conecg=[11 $2 ; 2$ 3;3 4];
coordg=[0 2447$]$;
conecdof=[1 2 3 4;4 56 7;7 8 9 10];
$\mathrm{pp}=3$;
xh=-1:0.05:1;\#drawing points
nhat=size (xh,2);
nel=size(conecg, 1); npe=size(conecg, 2);
nodg=size (coordg, 2);
[g dg d2g] = masterp1(1,xh);
[sf dsf ddsf]=masterlag(pp,xh);
for $\mathrm{k}=1$: nel
XX $(:, 1)=\operatorname{coordg}(:, \operatorname{conecg}(k, 1))$;
XX (: , 2) $=\operatorname{coordg}(:, \operatorname{conecg}(k, 2))$;
$\mathrm{x}=\mathrm{zeros}(1$, nhat $)$;
for $\mathrm{i}=1$:npe
$x(1,:)=x(1,:)+X X(1, i) * g(i,:)$;
end
$\mathrm{f}=\mathrm{vdof}(\operatorname{conecdof}(\mathrm{k},: \mathrm{s})) * \mathrm{sf}$;
plot(x,f,"linewidth",2); hold on;
hold on;
end
hold off

$A|G| P|R| ? \mid$

By changing the values in vdof we explore the finite element space W_{h}.
In this case the FE space is the set of piecewise polynomial functions, that are continuous at element boundaries.

$$
\begin{equation*}
W_{h} \in \mathcal{C}^{0}(\Omega), \text { but } \quad W_{h} \notin \mathcal{C}^{1}(\Omega) . \tag{3.8}
\end{equation*}
$$

```
vdof}=[\begin{array}{llllllllll}{0}&{0}&{1}&{0}&{0}&{0}&{0}&{0}&{0}&{0}\end{array}
```

vdof $=\left[\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
File Edit
File Edit

$A|G| P|R| ? \quad[-0.9695,1.575]$

$\mathrm{A}|\mathrm{G}| \mathrm{P}|\mathbb{R}| \sqrt[3]{[3.508, ~ 1.105]}$

There is a correspondence between the DOF vector U and the function $u_{h} \in W_{h}$. Setting $U_{j}=\delta_{i j}$ one obtains the global basis function ϕ_{i}. Above, $\phi_{3}(x)$ and $\phi_{7}(x)$.

Example 2: Lagrange P_{p} element in 2D
A similar construction can be performed to build P_{p} elements in 2D and 3D.

Fig 1.9 The basis function φ_{j}.

Degrees of freedom $\mathrm{\Sigma}$ Geometry	Function space P_{K}	Degree of continuity of corresponding FEM-space V_{h}

	$Q_{3}(\mathrm{~K})$	C^{1}
$\longmapsto 2$	$\mathrm{P}_{1}(\mathrm{~K})$	C^{0}
$\longmapsto 3$	$\mathrm{P}_{2}(\mathrm{~K})$	C^{0}
$0 \longrightarrow 4$	$\mathrm{P}_{3}(\mathrm{~K})$	C^{1}
	$\mathrm{P}_{5}(\mathrm{~K})$	C^{1}
	$\begin{gathered} \mathrm{P}_{5^{\prime}(\mathrm{K})} \\ \text { (see Problem 3.7) } \end{gathered}$	C^{1}
4	$\mathrm{P}_{1}(\mathrm{~K})$	C^{0}
10	$\mathrm{P}_{2}(\mathrm{~K})$ (See Problem 3.4)	C^{0}

3.3 Finite element spaces and approximation

- The finite element space is the vector space obtained by assigning arbitrary values to the degrees of freedom of the finite element mesh.
- By suitably defining the DOFs, it is possible to ensure continuity of all the functions in the FE space. Notice that each finite element comes with its particular choice of DOF.
- There are many continuous FEs in $2 \mathrm{D} / 3 \mathrm{D}$, but \mathcal{C}^{1}-continuity is rare.
- The FE basis is sparse (for each i, there are few j 's such that $\operatorname{supp}\left(\phi_{i}\right) \cap \operatorname{supp}\left(\phi_{j}\right) \neq \emptyset$). This leads to sparse matrices.
- The DOF of the FE make it easy to impose boundary conditions.

Lemma: (Babuska, Suri, 1987) The space W_{h} has the capabilities of approximating functions quite accurately. If h is the size of the largest element, p the degree, then there exists C_{k} such that

$$
\begin{equation*}
\min _{v_{h} \in W_{h}}\left\|u-v_{h}\right\|_{L^{2}(\Omega)} \leq C_{k} \frac{h^{\min (p+1, k)}}{p^{k}}\left\|D^{k} u\right\|_{L^{2}(\Omega)} \tag{3.9}
\end{equation*}
$$

which tends to zero as $h \rightarrow 0$ (refining the mesh) or $p \rightarrow+\infty$ (increasing the order).
Below we see in red the function $\sin (x)$ (circles) and its interpolation u_{h} with the previously used mesh and $p=3$ (continuous line). In blue, the function $\cos (x)$ and the derivative $u_{h}^{\prime}(x)$.

A	G	P	R	$?$

Exo. 3.3 The previous figure was obtained with the code exapp5.m below. Explain why the line

```
df=vdof(conecdof(k,:))*dsf./dx;
```

computes f^{\prime}, the derivative of the function f defined by the DOFs given by vdof.

```
cdof=[[lllllllll}
vdof=sin(cdof);
conecg=[1 2;2 3;3 4];
coordg=[[0 12 4 7}]
conecdof=[11 2 3 4;4 5 6 7;7 8 9 10];
pp=3;
xh=-1:0.05:1;#drawing points
nhat=size(xh,2);
nel=size(conecg,1); npe=size(conecg,2);
nodg=size(coordg,2);
[g dg d2g] = masterp1(1,xh);
[sf dsf ddsf]=masterlag(pp,xh);
for k=1:nel
XX(:,1)=\operatorname{coordg}(:,\operatorname{conecg}(k,1));
XX (:, 2)=\operatorname{coordg}(:,\operatorname{conecg}(k,2));
```

```
x=zeros(1,nhat); dx=zeros(1,nhat);
for i=1:npe
    x (1,:)=x (1,:)+XX(1,i)*g(i,:);
    dx(1,:)=dx(1,:)+XX(1,i)*dg(i,:);
end
f=vdof(conecdof(k,:))*sf;
df=vdof(conecdof(k,:))*dsf./dx;
plot(x,sin(x),"or","linewidth",1); hold on;
plot(x,f,"r","linewidth",2); hold on;
plot(x,cos(x),"ob","linewidth",1); hold on;
plot(x,df,"b","linewidth",2); hold on;
hold on;
end
hold off
```


Takeaway

- Combining a mesh and a master element through

$$
\begin{equation*}
N_{i}\left(F_{K}(\hat{x})\right)=\frac{1}{\alpha_{i}} \widehat{N}_{i}(\hat{x}), \tag{3.10}
\end{equation*}
$$

we obtain a finite element space $W_{h} \subset \mathcal{C}^{0}(\Omega)$.

- The basis functions $N_{i}(x)$ are piecewise polynomials with compact support (sparse matrices).
- This space has good approximation properties, if h is small and/or p large.
- To solve a problem with exact solution $u(x)$, it remains to define a strategy to choose some $u_{h} \in W_{h}$ that approximates u.

4 Minimizing the energy

4.1 Minimization problems

Many problems can be formulated as minimizing some energy function, be it physical or not.

Example: Filtering a noisy function

Given a function $w \in L^{2}(\Omega)$ that we assume noisy, we can remove some of the noise by minimizing the energy

$$
\begin{equation*}
E(v)=\frac{1}{2} \int_{\Omega}(w-v)^{2} d \Omega+\frac{\epsilon^{2}}{2} \int_{\Omega}\|\nabla v\|^{2} d \Omega . \tag{4.1}
\end{equation*}
$$

This results in a function u that is a smoothed version of the original function w, averaged over distances of order ϵ.

Example: Deformation of a chord

Let a chord be attached to $x=0$ and $x=L$. The tension of the chord is T and it is subject to a transverse force $f(x)$. The equilibrium vertical displacement $u(x)$ minimizes the energy

$$
\begin{equation*}
E(v)=\int_{0}^{L}\left(\frac{T}{2} v^{\prime}(x)^{2}-f(x) v(x)\right) d x \tag{4.2}
\end{equation*}
$$

over the space of continuous functions that are zero at $x=0$ and at $x=L$.

Example: Solving elliptic equations

Consider the differential problem in $\Omega=(a, b)$:

$$
\begin{align*}
-\frac{d}{d x}\left(\beta(x) \frac{d u}{d x}\right)+\gamma(x) u(x) & =f(x) & & \tag{4.3}\\
u(a) & =A & & \text { (Dirichlet) } \tag{4.4}\\
\beta(b) u^{\prime}(b) & =B & & \text { (Neumann) } \tag{4.5}
\end{align*}
$$

Its exact solution minimizes the energy

$$
\begin{equation*}
E(v)=\int_{a}^{b}\left[\frac{\beta}{2} v^{\prime}(x)^{2}+\frac{\gamma}{2} v(x)^{2}-f(x) v(x)\right] d x-B v(b) \tag{4.6}
\end{equation*}
$$

over the set of functions that take the value A at $x=a$.

Example: Thermal conduction problems

A solid with thermal conductivity $\beta(x)$ occupies the region $\Omega \subset \mathbb{R}^{3}$. Its boundary $\partial \Omega$ consists of two parts: (a) Γ_{1}, where the heat flux $Q(x)$ is known; (b) Γ_{2}, where the surface is in contact with the ambient (temperature T_{a}, convection coefficient H).
The differential problem for the temperature field $T(x)$ is

$$
\begin{align*}
-\nabla \cdot(\beta \nabla T) & =0 & & \text { in } \Omega \tag{4.7}\\
\beta \frac{\partial T}{\partial n} & =Q & & \text { on } \Gamma_{1} \tag{4.8}\\
\beta \frac{\partial T}{\partial n} & =H\left(T_{a}-T\right) & & \text { on } \Gamma_{2} \tag{4.9}
\end{align*}
$$

The solution minimizes the (mathematical) energy

$$
\begin{equation*}
E(v)=\frac{1}{2} \int_{\Omega} \beta\|\nabla v\|^{2} d \Omega+\frac{1}{2} \int_{\Gamma_{2}} H\left(T_{a}-v\right)^{2} d \Gamma-\int_{\Gamma_{1}} Q v d \Gamma \tag{4.11}
\end{equation*}
$$

4.2 The Galerkin method

- Let the exact solution u of a mathematical problem be defined as the (unique) minimizer of some energy functional E over some infinite-dimensional function space V.
- Let V_{h} be a finite-dimensional subspace of V.

Then, the Galerkin approximation u_{h} of u is defined as the (unique) minimizer of E over V_{h}.
Under realistic hypotheses it is possible to prove the optimal error bound

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V} \leq C \min _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V} \tag{4.12}
\end{equation*}
$$

with C independent of h (mesh size) and p (polynomial degree).

4.3 A first application and implementation

4.3.1 Numerical method

Problem: Solve the differential problem

$$
\begin{equation*}
-\left(\beta u^{\prime}\right)^{\prime}+\gamma u=f, \quad u(0)=A, \quad \beta(L) u^{\prime}(L)=B \tag{4.13}
\end{equation*}
$$

with

$$
\beta(x)=\left\{\begin{array}{ll}
1 & \text { se } x<2 L / 3 \tag{4.14}\\
9 & \text { se } x>2 L / 3
\end{array}, \quad \gamma=2, f=x^{2} \forall x .\right.
$$

The energy, to be minimized over $V=\{v:(0, L) \rightarrow \mathbb{R} \mid v(0)=A\}$ is

$$
\begin{equation*}
E(v)=\int_{0}^{L}\left(\frac{1}{2} \beta\left(u^{\prime}\right)^{2}+\frac{1}{2} \gamma u^{2}-f u\right) d x-B u(L) . \tag{4.15}
\end{equation*}
$$

Numerical method (Galerkin method): Given a finite element space V_{h}, compute the approximate solution $u_{h} \in V_{h}$ defined by

$$
\begin{equation*}
E\left(u_{h}\right) \leq E\left(v_{h}\right), \quad \forall v_{h} \in V_{h}, v_{h}(0)=A . \tag{4.16}
\end{equation*}
$$

This is a minimization problem in V_{h} subject to the constraint $v_{h}(0)=A$.
In terms of the basis functions $\phi_{1}, \phi_{2}, \ldots, \phi_{M}$ (which are fixed once the mesh has been chosen), and denoting the coefficients by U_{1}, \ldots, U_{M}, we have

$$
\begin{equation*}
u_{h}(x)=U_{1} \phi_{1}(x)+\ldots+U_{M} \phi_{M}(x) . \tag{4.17}
\end{equation*}
$$

This defines a mapping $\mathcal{U}_{h}: \mathbb{R}^{M} \rightarrow V_{h}$,

$$
\begin{equation*}
u_{h}=\mathcal{U}_{h}(\underline{U})=U_{1} \phi_{1}+\ldots+U_{M} \phi_{M} . \tag{4.18}
\end{equation*}
$$

We can thus rewrite 4.16 in terms of vectors in \mathbb{R}^{M} :

$$
\begin{equation*}
\mathcal{E}(\underline{U}) \stackrel{\text { def }}{=} E\left(\mathcal{U}_{h}(\underline{U})\right) \leq E\left(\mathcal{U}_{h}(\underline{V})\right)=\mathcal{E}(\underline{U}), \quad \forall \underline{V} \in \mathbb{R}^{M}, V_{1}=A \tag{4.19}
\end{equation*}
$$

where we have assumed that the node at $x=0$ has been assigned the number 1 . This shows that we have reduced the problem to a minimization problem in \mathbb{R}^{M}.

Numerical strategy:

1. Build a function energy. m that computes $\mathcal{E}(\underline{V})$ for any $\underline{V} \in \mathbb{R}^{M}$.
2. Call the Octave function sqp and get the solution \underline{U}.

U0=zeros(ndof,1); U=sqp(U0, @energy);
3. End! ©

4.3.2 The energy code

Let us assume that $B=0$ for now. Then, defining

$$
\begin{equation*}
Z\left(v_{h}(x), v_{h}^{\prime}(x)\right)=\frac{1}{2}\left(\beta(x) v_{h}^{\prime}(x)^{2}+\gamma(x) v_{h}(x)^{2}\right)-f(x) v(x) \tag{4.20}
\end{equation*}
$$

and using that $\Omega \simeq \cup_{K=1}^{N_{e l}} F_{K}(\widehat{K})$, we can decompose the energy integral as

$$
\begin{equation*}
E=\int_{0}^{L} Z\left(v_{h}(x), v_{h}^{\prime}(x)\right) d x=\sum_{K} \int_{F_{K}(\widehat{K})} Z\left(v_{h}(x), v_{h}^{\prime}(x)\right) d x \tag{4.21}
\end{equation*}
$$

and now change variables to \widehat{K}, to give

$$
\begin{equation*}
E=\sum_{K} \int_{\widehat{K}} Z\left(v_{h}\left(F_{K}(\hat{x})\right), v_{h}^{\prime}\left(F_{K}(\hat{x})\right)\right) \frac{\partial F_{K}}{\partial \hat{x}}(\hat{x}) d \hat{x} \tag{4.22}
\end{equation*}
$$

The last ingredient is numerical integration in \widehat{K}.

Parenthesis: Numerical integration (quadrature)

1. One defines a set of m points in \widehat{K},

$$
\hat{q}_{1}, \hat{q}_{2}, \ldots, \hat{q}_{m}
$$

2. and a set of m weights,

$$
W_{1}, W_{2}, \ldots, W_{m}
$$

3. One approximates any integral in \widehat{K} as

$$
\begin{equation*}
\int_{\widehat{K}} g(\hat{x}) d \hat{x} \simeq g\left(\hat{q}_{1}\right) W_{1}+g\left(\hat{q}_{2}\right) W_{2}+\ldots+g\left(\hat{q}_{m}\right) W_{m}=\sum_{j=1}^{m} g\left(\hat{q}_{j}\right) W_{j} . \tag{4.23}
\end{equation*}
$$

Now we go back to the computation of the energy...

So,

$$
\begin{aligned}
E & =\int_{0}^{L} Z\left(v_{h}(x), v_{h}^{\prime}(x)\right) d x=\sum_{K} \int_{F_{K}(\widehat{K})} Z\left(v_{h}(x), v_{h}^{\prime}(x)\right) d x \\
& =\sum_{K} \int_{\widehat{K}} Z\left(v_{h}\left(F_{K}(\hat{x})\right), v_{h}^{\prime}\left(F_{K}(\hat{x})\right)\right) \frac{\partial F_{K}}{\partial \hat{x}}(\hat{x}) d \hat{x} \\
& =\sum_{K}\left[\sum_{j=1}^{m} Z\left(v_{h}\left(F_{K}\left(\hat{q}_{j}\right)\right), v_{h}^{\prime}\left(F_{K}\left(\hat{q}_{j}\right)\right) J_{K}\left(\hat{q}_{j}\right) W_{j}\right]\right.
\end{aligned}
$$

where we have set $J_{K}=\partial F_{K} / \partial \hat{x}$.
For easy programming, one first computes $q_{j}=F_{K}\left(\hat{q}_{j}\right)$ and then calculates

$$
\begin{equation*}
E=\sum_{K}\left[\sum_{j=1}^{m} Z\left(v_{h}\left(q_{j}\right), v_{h}^{\prime}\left(q_{j}\right)\right) J_{K}\left(\hat{q}_{j}\right) W_{j}\right] \tag{4.24}
\end{equation*}
$$

Remember, $Z(x)=\frac{1}{2}\left(\beta(x) v_{h}^{\prime}(x)^{2}+\gamma(x) v_{h}(x)^{2}\right)-f(x) v_{h}(x)$, so that if we can compute v_{h} and v_{h}^{\prime} at the images of the quadrature points, we are done. We now show how to do that.

Exo. 4.1 Let xh be a point in $\hat{K}=[-1,1]$, and let $\mathrm{XX}(1)$ and $\mathrm{XX}(2)$ be the extreme points of K, which is an element of type P_{p}. Let also $\operatorname{vdof}(1: \mathrm{pp}+1)$ be the values of \underline{U} corresponding to the degrees of freedom of element K.
Show that the following code computes:

- The variable x , which is the image of xh by F_{K}.
- The variable dx , which is the value of F_{K}^{\prime} at xh .
- The variable uh , which is the value of u_{h} at x .
- The variable duh, which is the value of u_{h}^{\prime} at x .
[g dg d2g]=masterlag(1,xh);
[sf dsf ddsf]=masterlag(pp,xh);
$\mathrm{x}=\mathrm{XX}(1) * \mathrm{~g}(1)+\mathrm{XX}(2) * \mathrm{~g}(2)$;
$\mathrm{d}=\mathrm{XX}(1) * \mathrm{dg}(1)+\mathrm{XX}(2) * \mathrm{dg}(2)$;
uh=vdof*sf;
duh=vdof*dsf/dx;

This exercise should be enough to understand the energy function below.

$$
\begin{equation*}
E=\sum_{K}\left[\sum_{j=1}^{m}\left(\frac{\beta\left(q_{j}\right)}{2} u_{h}^{\prime}\left(q_{j}\right)^{2}+\frac{\gamma\left(q_{j}\right)}{2} u_{h}\left(q_{j}\right)^{2}-f\left(q_{j}\right) u_{h}\left(q_{j}\right)\right) J_{K}\left(\hat{q}_{j}\right) W_{j}\right] \tag{4.25}
\end{equation*}
$$

```
function E=energy1(vdoft)
    for i=1:npe
    x(1,:)=x(1,:)+XX(1,i)*g(i,:);
global L B pp nel dx=dx+XX(1,i)*dg(i,:);
global npe nodg ndof conecg conecdof coordg end
vdof=vdoft';
## integration points and weights
xh=-1:0.1:1;
wh=[1/20 1/10*ones (1,19) 1/20];
nhat=size(xh,2);
[g dg d2g]=masterlag(1,xh);
[sf dsf ddsf]=masterlag(pp,xh);
E=0;
for k=1:nel
    XX(:,1)=coordg(:, 爯ecg(k,1));
    XX(:,2)=\operatorname{coordg}(:,\operatorname{conecg}(k,2));
    x=zeros(1,nhat);
    dx=zeros(1,nhat);
    uh=vdof(conecdof(k,:))*sf;
    duh=vdof(conecdof(k,:))*dsf./dx;
    ####data
    beta=(1+4*(1+\operatorname{sign}(x-2*L/3))).*ones(1,nhat);
    gamma=2*ones(1,nhat);
    ff=x.*x.*ones(1,nhat);
    ####
    E=E+0.5*duh*(duh.*beta.*wh.*dx)'...
        +0.5*uh*(uh.*gamma.*wh.*dx)'...
        -ff*(uh.*wh.*dx)';
    end
    E=E-B*vdoft(ndof);
    end
```

And now the code that builds the mesh, solves the problem and plots the solution.

data

global L=5;
global A=1;
global B=-30;
global pp=3;
global nel=3;

build mesh

global npe nodg ndof conecg conecdof coordg
npe=2;
nodg=nel+1;
ndof=nel*pp+1;
conecg=[1 2];
conecdof=[1:pp+1];
for i=2:nel
conecg=[conecg;i,i+1];
conecdof=[conecdof;(i-1)*pp+1:i*pp+1];

```
```

```
## Application 1
```

```
```


Application 1

```
```

end

```
end
    coordg=zeros(1,nodg);
    coordg=zeros(1,nodg);
    hsize=L/nel;
    hsize=L/nel;
    for i=2:nodg
    for i=2:nodg
    coordg(i)=(i-1)*hsize;
    coordg(i)=(i-1)*hsize;
    end
    end
    ####
    ####
    U0=zeros(ndof,1);
    U0=zeros(ndof,1);
    [U obj info iter nf lambda]=...
    [U obj info iter nf lambda]=...
    sqp(UO,@energy1,@restrictions);
    sqp(UO,@energy1,@restrictions);
k=plotfem1(conecg,coordg,pp,conecdof,vv)
k=plotfem1(conecg,coordg,pp,conecdof,vv)
function r=restrictions(vdoft)
function r=restrictions(vdoft)
global A;
global A;
ndof=max(size(vdoft));
ndof=max(size(vdoft));
r=[vdoft(1)-A];
r=[vdoft(1)-A];
end
```

end

```

The whole code consists of: masterlag.m (21 lines), energy1.m (28 lines), restrictions.m (5 lines) and applic1.m (23 lines). Yes, there is the plotting function, too (see below).

\subsection*{4.3.3 The plotting function}

This function receives the mesh (conecg, coordg), the degree pp, the connectivity of DOFs conecdof and the vector \(\underline{U}\) of DOFs (in vdoft), and plots the corresponding function \(\mathcal{U}_{h}(\underline{U})\).
```

function idum=plotfem1(conecg,coordg,...
pp,conecdof,vdoft)
xh=-1:0.05:1;\#drawing points
nhat=size(xh, 2);
nel=size(conecg,1);npe=size(conecg, 2);
nodg=size(coordg,2);
[g dg d2g] = masterlag(1,xh);
[sf dsf ddsf]=masterlag(pp,xh);
for k=1:nel
XX(:, 1)=\operatorname{coordg}(:,\operatorname{conecg}(k,1));

```
```

XX(:,2)=coordg(:,conecg(k,2));

```
XX(:,2)=coordg(:,conecg(k,2));
x=zeros(1,nhat);
x=zeros(1,nhat);
for i=1:npe
for i=1:npe
x(1,:)=x(1,:)+XX(1,i)*g(i,:);
x(1,:)=x(1,:)+XX(1,i)*g(i,:);
end
end
f=vdoft(conecdof(k,:))'*sf;
f=vdoft(conecdof(k,:))'*sf;
plot(x,f,"r","linewidth",2); hold on;
plot(x,f,"r","linewidth",2); hold on;
hold on;
hold on;
idum=0;
idum=0;
end
```

end

```


\(\mathrm{A}|\mathrm{G}| \mathrm{P}|\mathrm{R}|\) ? \(\quad[2.248,2.643]\)
\begin{tabular}{l}
\(\mathrm{A}|\mathrm{G}| \mathrm{P}|R|\) \\
\hline File Edit
\end{tabular}

\(A|G| P|R| ? \quad[1.419,2.495]\)
File Edit


Numerical solutions with \(9 P_{1}, 3 P_{3}, 90 P_{1}, 30 P_{3}\).

\subsection*{4.3.4 A more efficient code}

A much more efficient implementation is to compute \(\nabla E\) and solve for \(\nabla E\left(u_{h}\right)=0\). You will find this implemented in applic1bis.m.
The key step is, instead of minimizing, to invoke the (nonlinear) solver fsolve in the following way:
vv=fsolve(@denergy1,vv0);
This will result in a vector vv such that all the derivatives of the energy with respect to the degrees of freedom are zero (i.e., the minimum).
The function denergy1 must provide the derivative of \(E\) with respect to the degrees of freedom. It is implemented in denergy1.m.

Exo. 4.2 Understand (line by line) the function denergy1.m. Try to find the relationship between it and the functions energy1.m and restrictions.m.```

