
A Minicourse on the Finite Element method

Gustavo C. Buscaglia

ICMC-USP, São Carlos, Brasil
gustavo.buscaglia@gmail.com

1

1 Motivation

What is the Finite Element Method?

• It is a family, or a collection, of numerical techniques used for the approximation of partial differential
equations.

• Finite Element approximations are characterized in general by being based on variational
formulations of the problem and discretized by a well defined subspace of the appropriate function
spaces. They are usually defined by a so-called Discrete Variational Formulation.

• Finite Element spaces are also quite characteristic. They are based on a division of the domain
of the problem into a finite number of pieces, or subdomains. Then polynomial functions are
defined on each subdomain, building piecewise polynomial spaces. A transformation is used to
define convergent approximations at curved boundaries

• Software used in industry for the simulation of elliptic and parabolic problems are usually finite
element codes. Such problems include: thermal conduction, electrostatics, magnetostatics,
solid mechanics, low-inertia flows, among others.

2

What are the strengths of the FEM?

• It is a general method, in the sense that it naturally deals with multi-dimensionality, with anisotropy,
with geometrical complexity and with nonlinearity.

• Not all numerical methods accomplish that. Finite difference methods loose much of their appeal
when the geometry is complex, or varying in time. Boundary integral methods, being based on
Green’s functions, cannot deal with even mild nonlinearities, at least not without major reformulation.

What can one actually do with Finite Elements?

That depends on your role:

• As a software user, you can explore all sorts of problems. The software has become so userfriendly
that you hardly need to learn the theory at all... Perhaps out of curiosity? ,

• As an analyst, you can program finite elements to have a quick approximate solution to some
differential or optimality problem. Problems that can be formulated in terms of an energy are
especially easy. This minicourse is mainly oriented towards this role.

• Finally, as a developer, you can work on open source projects of Finite Elements, implement new
models as they are required by analysts of specific applications, develop algorithms for the many
open problems in the field.

3

2 Finite element partitions

Let Ω be the domain of definition of a problem, for example the interval (0, L) in 1D, or an arbitrary
polygon in 2D, etc.

The FEM partitions Ω into a collection of subdomains K, where each K is the image, by a suitable
transformation FK , of a unique subdomain K̂.

K = FK(K̂) (2.1)

4

First example: Ω = (0, L)

The master subdomain consists of:

• A compact set, the interval K̂ = [−1, 1].

• A finite dimensional space Ĝ, which we take as P1, the polynomials of degree ≤ 1.

• A set of geometrical degrees of freedom Θ̂, which we take as the values at the nodes {−1, 1}.

• This defines two geometrical basis functions on K̂:

G1(x̂) =
1

2
(1− x̂); G2(x̂) =

1

2
(1 + x̂) . (2.2)

• Any linear polynomial p in K̂ can be written as

p(x̂) = c1G1(x̂) + c2G2(x̂) . (2.3)

• This is a Lagrange basis, i.e., the coefficients are nothing but the nodal values, c1 = p(−1),
c2 = p(1), so that

p(x̂) = p(−1)G1(x̂) + p(1)G2(x̂) . (2.4)

The transformation
FK(x̂) = aG1(x̂) + bG2(x̂) . (2.5)

maps K̂ onto any interval K = [a, b]. Check that FK(−1) = a and FK(1) = b. Positions are linearly
interpolated in between.

5

function [g dg d2g] = masterp1(id,x)

n=max(size(x));

for i=1:n

if (id == 1)

g(1,i) = 0.5*(1-x(i));

g(2,i) = 1-g(1,i);

dg(1,i) = -0.5;

dg(2,i) = 0.5;

d2g(1,i) = 0;

d2g(2,i) = 0;

end

end

end

exa1.m

xhat=-1:0.1:1;

[g dg d2g] = masterp1(1,xhat);

a=3;b=7;

x=a*g(1,:)+b*g(2,:);

plot(xhat,0,x,0)

−1 1 a b

6

A mesh is composed of:

• A connectivity matrix.

• An array of coordinates.

exa2.m

conec=[1 2;2 3;3 4;4 5;5 6];

coord=[-10 -5 -1 0 4 10];

nel=size(conec,1); npe=size(conec,2);

nod=size(coord,2);

xhat=-0.9:0.3:0.9; nhat=size(xhat,2);

zhat=zeros(nhat,1);

figure 1;

for k=1:nel

[g dg d2g] = masterp1(1,xhat);

a=coord(conec(k,1));b=coord(conec(k,2));

x=a*g(1,:)+b*g(2,:);

c=k;

scatter(zhat,x,20,c,"filled")

hold on;

end

1

2

3

4

5

1

2

3

4

5

6

7

The mesh concept generalizes easily to differ-
ent geometries and topologies.

exa3.m

conec1=[1 2;2 3;3 4;4 5;5 6];

coord1=[-10 -5 -1 0 0 0;

0 0 0 0 4 10];

conec2=[1 2;2 3;3 4;4 5;5 6;6 7;7 8;8 1];

coord2=[-10 -5 -2 -2 -2 -5 -10 -10;

3 3 3 6 9 9 9 6];

nel1=size(conec1,1);npe=size(conec1,2);

nod1=size(coord1,2);

nel2=size(conec2,1);npe=size(conec2,2);

nod2=size(coord2,2);

xhat=-0.9:0.3:0.9;nhat=size(xhat,2);

[g dg d2g] = masterp1(1,xhat);

figure 1;

for k=1:nel1

a=coord1(:,conec1(k,1));b=coord1(:,conec1(k,2));

x(1,:)=a(1)*g(1,:)+b(1)*g(2,:);

x(2,:)=a(2)*g(1,:)+b(2)*g(2,:); c=k;

scatter(x(1,:),x(2,:),20,c,"filled")

hold on;

end

for k=1:nel2

a=coord2(:,conec2(k,1));b=coord2(:,conec2(k,2));

x(1,:)=a(1)*g(1,:)+b(1)*g(2,:);

x(2,:)=a(2)*g(1,:)+b(2)*g(2,:); c=k;

scatter(x(1,:),x(2,:),20,c,"filled")

hold on;

end

8

Disclaimer: Why Octave?

I am giving you examples in Octave. They should also work in Matlab. The reasons for this are:

• I want to show a complete implementation of the concepts. Show that it is simple and that
it works.

• Octave is not the best-performing Language for most applications, but it can do amazing
things!. With some FE concepts and Octave, one can easily solve quite sophisticated models in
several applications. ,
• If you know what to do in Octave but your application exceeds Octave’s capabilities, all you

need to do is to look for more efficient software packages and replace the Octave functions by the
appropriate counterparts.

So, try to understand the Octave coding, the codes are available at my site and the package is free
software. It will already allow you to compute interesting things, and if you need more performance
the remedies are not hard to find.

9

Second example: A two-dimensional polygon

• We take the master subdomain as the unit
triangle K̂ = {x ∈ R2, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤
1− x1}.

1

3

2

• The geometrical basis functions

G1(x̂) = 1− x̂1 − x̂2 (2.6)

G2(x̂) = x̂1 (2.7)

G3(x̂) = x̂2 (2.8)

function [g dg d2g] = masterp1(id,x)

n=size(x,2);

for i=1:n

if (id == 1)

g(1,i) = 0.5*(1-x(1,i));

g(2,i) = 1-g(1,i);

dg(1,i) = -0.5;

dg(2,i) = 0.5;

d2g(1,i) = 0;

d2g(2,i) = 0;

elseif (id == 2)

g(1,i) = 1-x(1,i)-x(2,i);

g(2,i) = x(1,i);

g(3,i) = x(2,i);

dg(1,1,i) = -1;

dg(1,2,i) = -1;

dg(2,1,i) = 1;

dg(2,2,i) = 0;

dg(3,1,i) = 0;

dg(3,2,i) = 1;

d2g(1:3,1:2,i)=zeros(3,2);

end

end

end

• The transformation

FK(x̂) =
3∑

i=1

XiGi(x̂) (2.9)

which transforms K̂ into the arbitrary triangle
with vertices X1, X2 and X3.

10

1

3

2

5

4

1

2

3

Mesh and transformation (exa4.m)

conec=[1 2 3;3 2 4;4 2 5];

coord=[4 8 4 8 12;

2 2 6 8 4];

for k=1:nel

XX(:,1)=coord(:,conec(k,1));

XX(:,2)=coord(:,conec(k,2));

XX(:,3)=coord(:,conec(k,3));

x=zeros(2,nhat);

for i=1:npe

x(1,:)=x(1,:)+XX(1,i)*g(i,:);

x(2,:)=x(2,:)+XX(2,i)*g(i,:);

end

end

11

Mesh generation: GMesh
Software package for mesh generation. Two
steps: (1) Define the geometry. (2) Generate
mesh.

function [mesh, GMSH_OUT]=CreateMesh(r,ip)

name=[tmpnam ".geo"];

fid=fopen (name, "w");

% POINTS

string=sprintf("Point(1)={4,2,0,%f};\n",r);

fputs (fid, string);

string=sprintf("Point(2)={8,2,0,%f};\n",r);

fputs (fid, string);

string=sprintf("Point(3)={4,6,0,%f};\n",r);

fputs (fid, string);

string=sprintf("Point(4)={8,8,0,%f};\n",r);

fputs (fid, string);

string=sprintf("Point(5)={12,4,0,%f};\n",r);

fputs (fid, string);

% LINES joining the POINTS

fputs (fid, "Line(1) = {1, 2};\n");

fputs (fid, "Line(2) = {2, 5};\n");

fputs (fid, "Line(3) = {5, 4};\n");

fputs (fid, "Line(4) = {4, 3};\n");

fputs (fid, "Line(5) = {3, 1};\n");

% SURFACEs grouping the LINES

fputs(fid,"Line Loop(6)={1,2,3,4,5};\n");

fputs (fid, "Plane Surface(7) = {6};\n");

fclose (fid);

% MESH and glue all SURFACES

[mesh GMSH_OUT] = msh2m_gmsh...

(canonicalize_file_name(name)(1:end-4),...

"clscale", "1.0");

if(ip == 1)

trimesh(mesh.t(1:3,:)’,mesh.p(1,:)’,...

mesh.p(2,:)’);

end

% Delete auxiliary files

unlink (canonicalize_file_name (name));

end

1

3

2

5

4

12

[mm idum]=CreateMesh(2,1)

mm.p −→ coordinates

octave:> mm.p’

ans =

4.0000 2.0000

8.0000 2.0000

4.0000 6.0000

8.0000 8.0000

12.0000 4.0000

6.0000 2.0000

9.3333 2.6667

10.6667 3.3333

10.6667 5.3333

etcetera

mm.t −→ connectivity

octave:> mm.t’

ans =

1 19 13 7

14 15 17 7

7 8 15 7

6 19 1 7

8 9 15 7

10 17 15 7

etcetera

mm.e −→ boundary edges

octave:> mm.e’

ans =

1 6 0 0 1 7 0

6 2 0 0 1 7 0

2 7 0 0 2 7 0

7 8 0 0 2 7 0

8 5 0 0 2 7 0

5 9 0 0 3 7 0

9 10 0 0 3 7 0

10 4 0 0 3 7 0

4 11 0 0 4 7 0

11 12 0 0 4 7 0

12 3 0 0 4 7 0

3 13 0 0 5 7 0

13 1 0 0 5 7 0

13

Meshes of arbitrary refinement can be generated on general geometries 1D/2D/3D.

[mmm idum]=CreateMesh(2,1)

[mmm idum]=CreateMesh(1,1)

[mmm idum]=CreateMesh(0.5,1)

[mmm idum]=CreateMesh(0.25,1)

14

An example using localized refinement and
bsplines.

CreateMeshexa5(0.4,1)

CreateMeshexa5(0.2,1)

CreateMeshexa5(0.1,1)

15

Takeaway

The three ingredients:

• Master subdomain

• Geometrical basis functions

• Mesh (connectivity + coordinates)

allow for the easy construction of transformations

FK(x̂) =
∑
i

XiGi(x̂)

so that each point of Ω is the image of one point x̂ for the one subdomain
K to which it belongs (except at subdomain edges).

16

3 Finite element spaces

3.1 The master element

The master element (simplified version) consists of

• A master subdomain, i.e., K̂ equipped with its geometrical basis functions {Gi}ng

i=1.

• A set of shape functions (basis functions) {N̂j}ns
j=1.

The linear combinations of the shape functions define a vector space of functions of x̂:

P̂ = {p : K̂ → R | p(x̂) =
ns∑
i=1

σi N̂i(x̂), whereσi ∈ R, ∀ i} . (3.1)

The element is isoparametric if Gi = N̂i.

17

Example 1: Lagrange Pp element in 1D

• Set K̂ = [−1, 1].

• The geometrical basis functions are, as before:

G1(x̂) =
1

2
(1− x̂); G2(x̂) =

1

2
(1 + x̂) (3.2)

• Let
{
X̂ i
}p+1

i=1
be evenly distributed points with X̂1 = −1 and X̂p+1 = 1. These will be the nodes of

K̂. The integer p is the degree of the element.

• The shape functions are the Lagrange polynomials of X̂1, . . ., X̂p+1.

N̂i(x̂) =

p+1∏
j 6=i=1

x̂− X̂j

X̂ i − X̂j
(3.3)

• Notice that if p = 1 then N̂1 = G1 and N̂2 = G2.

18

The following code computes the shape functions of the Lagrange Pp element for all the x̂-values given in
the vector xhat.

masterlag.m

function sf=masterlag(p,xhat)

#Lagrange basis

nh=max(size(xhat));

d=2; #master is [-1,1]

n=p+1; #number of nodes

dx=d/p; #distance between nodes

xno(1:n)=(-1:dx:1);

for ih=1:nh

xh=xhat(ih);

for i=1:n

aux=1;

for j=1:n

if (j!=i)

aux=aux*(xh.-xno(j))/(xno(i)-xno(j));

end

end

sf(i,ih)=aux;

end

end

19

Actually, we will need not just the value of N̂i(x̂) but also those of N̂ ′i(x̂) and possibly of N̂ ′′i (x̂). We can
do the derivatives by hand or differentiate the code as follows:

masterlag.m
function [sf dsf]=masterlag(p,xhat)

#Lagrange basis

nh=max(size(xhat));

d=2; #master is [-1,1]

n=p+1; #number of nodes

dx=d/p; #distance between nodes

xno(1:n)=(-1:dx:1);

for ih=1:nh

xh=xhat(ih);

for i=1:n

daux=0;#derivative of next line

aux=1;

for j=1:n

if (j!=i)

daux=aux/(xno(i)-xno(j))+daux*(xh-xno(j))/(xno(i)-xno(j));#deriv. of next line

aux=aux*(xh.-xno(j))/(xno(i)-xno(j));

end

end

dsf(i,ih)=daux;#deriv. of next line

sf(i,ih)=aux;

end

end

20

octave:> xh=-1:0.01:1;

octave:> pp=1;

octave:>[sf dsf]=masterlag(pp,xh);

octave:> plot(xh,sf,"linewidth",2)

octave:> xh=-1:0.01:1;

octave:> pp=2;

octave:>[sf dsf]=masterlag(pp,xh);

octave:> plot(xh,sf,"linewidth",2)

21

octave:> xh=-1:0.01:1;

octave:> pp=3;

octave:>[sf dsf]=masterlag(pp,xh);

octave:> plot(xh,sf,"linewidth",2)

octave:> xh=-1:0.01:1;

octave:> pp=4;

octave:>[sf dsf]=masterlag(pp,xh);

octave:> plot(xh,sf,"linewidth",2)

22

octave:> xh=-1:0.01:1;

octave:> pp=5;

octave:>[sf dsf]=masterlag(pp,xh);

octave:> plot(xh,sf,"linewidth",2)

octave:> xh=-1:0.01:1;

octave:> pp=6;

octave:>[sf dsf]=masterlag(pp,xh);

octave:> plot(xh,sf,"linewidth",2)

23

The use of the shape functions {N̂i} creates a reparameterization of the polynomials Pp(K̂).
Any quadratic

q(x̂) = α1 + α2x̂+ α3x̂
2 ,

for example, can be written as

q(x̂) = β1N̂
(p=2)
1 (x̂) + β2N̂

(p=2)
2 (x̂) + β3N̂

(p=2)
3 (x̂)

= γ1N̂
(p=3)
1 (x̂) + γ2N̂

(p=3)
2 (x̂) + β3N̂

(p=3)
3 (x̂) + β4N̂

(p=3)
4 (x̂)

= . . .

The degrees of freedom are now β1 − β3, if p = 2, or γ1 − γ4, if p = 3, etc. They are nothing but the
values of q at the nodes of K̂. Each set of DOFs uniquely defines a polynomial.

octave:> x=-1:0.1:1;

octave:> pp=3;

octave:> gamma=[1 1 3 3];

octave:> plot(x,gamma*sf,"linewidth",2)

24

octave:> x=-1:0.01:1;

octave:> pp=9;

octave:> gamma=[1 1 1 1 1 3 3 3 3 3];

octave:> plot(x,gamma*sf,"linewidth",2)

25

Exo. 3.1 Compute by hand the derivative of the shape functions of the P3 element and compare with
the functions coded in dsf.

Exo. 3.2 Extend the function masterlag to also calculate the second derivatives.

function [sf dsf ddsf]=masterlag(p,xhat)

Takeaway

• It is easy and automatic to compute the Lagrange basis of Pp(K̂), and its
derivatives. Simply call masterlag(p,xhat)!,

• Code differentiation is awesome! ,,
In fact, it can itself be automated. Automatic differentiation is considered one of
the important algorithms of the 20th century (together with FFT, Monte Carlo,
and others).

26

What do we have up to now?

• A mesh, this is, a partition of the domain Ω into a collection of subdomains {K}. This can be
done by hand (in 1D), or automatically with available codes such as GMesh.

• A transformation FK of a unique master subdomain K̂ onto each K in the mesh.

• A set of shape functions which are a basis of P̂ = Pp(K̂), with a specific parameterization which
defines suitable degrees of freedom.

To build a vector space of functions over Ω it only remains to:

• Use the transformation FK to define basis functions in K = FK(K̂). This also defines a set of
degrees of freedom on the space P (K).

• The finite element functions in Ω are defined piecewise, for each K, as a linear combination of the
basis.

27

3.2 The finite element

Let K̂ and K be given, and let FK : K̂ → K be a one-to-one mapping. Then to every function
ψ̂ : K̂ → R corresponds a function ψ : K → R defined by

ψ(x) = ψ̂
(
F−1
K (x)

)
(3.4)

or, equivalently,
ψ(x) = ψ(FK(x̂)) = ψ̂(x̂) .

• If ψ̂ is a polynomial of degree k and FK is affine (each component a polynomial of degree one),
then ψ is a polynomial of degree k.

• P̂k = Pk, if FK is affine.

• This is not the only correspondence between functions in K̂ and functions in K that is used. It
is certainly the most frequent.

28

The finite element consists of

• A master element.

• A compact K, which is the image of a transformation FK that maps K̂ onto K.

• A set of basis functions which are the transformed images of the shape functions. In most
finite elements,

Ni(FK(x̂)) =
1

αi

N̂i(x̂) . (3.5)

In the case of Lagrange elements, among others, αi = 1 for all i.

Denoting x = FK(x̂), we have ∑
k

∂Ni

∂xk
(x)Bkj(x̂) =

1

αi

∂N̂i

∂x̂k
(3.6)

where Bkj = ∂(FK)k/∂x̂j is the Jacobian matrix of the transformation x̂ 7→ x. Another way of writing the
previous equation is

BT ∇Ni(x) =
1

αi

∇N̂i(x̂) . (3.7)

29

Example 1: Lagrange Pp element in 1D
Notice below the mesh, the degree and the DOF
values
exapp.m

conecg=[1 2;2 3;3 4];

coordg=[0 2 4 7];

xh=-1:0.05:1;#drawing points

nhat=size(xh,2);

nel=size(conecg,1);npe=size(conecg,2);

nodg=size(coordg,2);

pp=3;

[g dg d2g] = masterp1(1,xh);

[sf dsf ddsf]=masterlag(pp,xh);

vdofs = [0 0 2 4;

-1 0 2 3;

3 1 2 1];

for k=1:nel

XX(:,1)=coordg(:,conecg(k,1));

XX(:,2)=coordg(:,conecg(k,2));

x=zeros(1,nhat);

for i=1:npe

x(1,:)=x(1,:)+XX(1,i)*g(i,:);

end

f=vdofs(k,:)*sf;

plot(x,f,"linewidth",2); hold on;

hold on;

end

hold off

If the last DOF of an element does not coincide with
the first DOF of the next one, the function is dis-
continuous.

30

The unknowns are renumbered, so that all conti-
nuity requirements of the possible functions are en-
forced (identification of unknowns). This is easily
accomplished with a mesh,

ndof=10;conecdof=[1 2 3 4;4 5 6 7;7 8 9 10];

and the DOF vector

vdof=[0 0 2 0 2 3 1 2 1];

In this way, the following code draws the finite ele-
ment function that corresponds to vdof.

exapp2.m

vdof=[0 0 2 0 2 3 1 2 1 1];

conecg=[1 2;2 3;3 4];

coordg=[0 2 4 7];

conecdof=[1 2 3 4;4 5 6 7;7 8 9 10];

pp=3;

xh=-1:0.05:1;#drawing points

nhat=size(xh,2);

nel=size(conecg,1);npe=size(conecg,2);

nodg=size(coordg,2);

[g dg d2g] = masterp1(1,xh);

[sf dsf ddsf]=masterlag(pp,xh);

for k=1:nel

XX(:,1)=coordg(:,conecg(k,1));

XX(:,2)=coordg(:,conecg(k,2));

x=zeros(1,nhat);

for i=1:npe

x(1,:)=x(1,:)+XX(1,i)*g(i,:);

end

f=vdof(conecdof(k,:))*sf;

plot(x,f,"linewidth",2); hold on;

hold on;

end

hold off

31

By changing the values in vdof we explore the finite element space Wh.
In this case the FE space is the set of piecewise polynomial functions, that are continuous at element
boundaries.

Wh ∈ C0(Ω) , but Wh 6∈ C1(Ω) . (3.8)

32

vdof=[0 0 1 0 0 0 0 0 0 0] vdof=[0 0 0 0 0 0 1 0 0 0]

There is a correspondence between the DOF vector U and the function uh ∈ Wh. Setting Uj = δij one
obtains the global basis function φi. Above, φ3(x) and φ7(x).

33

Example 2: Lagrange Pp element in 2D
A similar construction can be performed to build Pp elements in 2D and 3D.

34

35

3.3 Finite element spaces and approximation

• The finite element space is the vector space obtained by assigning arbitrary values to the
degrees of freedom of the finite element mesh.

• By suitably defining the DOFs, it is possible to ensure continuity of all the functions in the FE
space. Notice that each finite element comes with its particular choice of DOF.

• There are many continuous FEs in 2D/3D, but C1-continuity is rare.

• The FE basis is sparse (for each i, there are few j’s such that supp(φi) ∩ supp(φj) 6= ∅). This
leads to sparse matrices.

• The DOF of the FE make it easy to impose boundary conditions.

36

Lemma: (Babuska, Suri, 1987) The space Wh has the capabilities of approximating functions quite accu-
rately. If h is the size of the largest element, p the degree, then there exists Ck such that

min
vh ∈Wh

‖u− vh‖L2(Ω) ≤ Ck
hmin(p+1,k)

pk
‖Dku‖L2(Ω) (3.9)

which tends to zero as h→ 0 (refining the mesh) or p→ +∞ (increasing the order).
Below we see in red the function sin(x) (circles) and its interpolation uh with the previously used mesh
and p = 3 (continuous line). In blue, the function cos(x) and the derivative u′h(x).

37

Exo. 3.3 The previous figure was obtained with the code exapp5.m below. Explain why the line

df=vdof(conecdof(k,:))*dsf./dx;

computes f ′, the derivative of the function f defined by the DOFs given by vdof.

cdof=[0 2/3 4/3 2 8/3 10/3 4 5 6 7];

vdof=sin(cdof);

conecg=[1 2;2 3;3 4];

coordg=[0 2 4 7];

conecdof=[1 2 3 4;4 5 6 7;7 8 9 10];

pp=3;

xh=-1:0.05:1;#drawing points

nhat=size(xh,2);

nel=size(conecg,1);npe=size(conecg,2);

nodg=size(coordg,2);

[g dg d2g] = masterp1(1,xh);

[sf dsf ddsf]=masterlag(pp,xh);

for k=1:nel

XX(:,1)=coordg(:,conecg(k,1));

XX(:,2)=coordg(:,conecg(k,2));

x=zeros(1,nhat); dx=zeros(1,nhat);

for i=1:npe

x(1,:)=x(1,:)+XX(1,i)*g(i,:);

dx(1,:)=dx(1,:)+XX(1,i)*dg(i,:);

end

f=vdof(conecdof(k,:))*sf;

df=vdof(conecdof(k,:))*dsf./dx;

plot(x,sin(x),"or","linewidth",1); hold on;

plot(x,f,"r","linewidth",2); hold on;

plot(x,cos(x),"ob","linewidth",1); hold on;

plot(x,df,"b","linewidth",2); hold on;

hold on;

end

hold off

38

Takeaway

• Combining a mesh and a master element through

Ni(FK(x̂)) =
1

αi
N̂i(x̂) , (3.10)

we obtain a finite element space Wh ⊂ C0(Ω).

• The basis functions Ni(x) are piecewise polynomials with compact support
(sparse matrices).

• This space has good approximation properties, if h is small and/or p large.

• To solve a problem with exact solution u(x), it remains to define a strategy to
choose some uh ∈ Wh that approximates u.

39

4 Minimizing the energy

4.1 Minimization problems

Many problems can be formulated as minimizing some energy function, be it physical or not.

Example: Filtering a noisy function

Given a function w ∈ L2(Ω) that we assume noisy, we can remove some of the noise by minimizing
the energy

E(v) =
1

2

∫
Ω

(w − v)2 dΩ +
ε2

2

∫
Ω

‖∇v‖2 dΩ . (4.1)

This results in a function u that is a smoothed version of the original function w, averaged over distances
of order ε.

Example: Deformation of a chord

Let a chord be attached to x = 0 and x = L. The tension of the chord is T and it is subject to a
transverse force f(x). The equilibrium vertical displacement u(x) minimizes the energy

E(v) =

∫ L

0

(
T

2
v′(x)2 − f(x) v(x)

)
dx (4.2)

over the space of continuous functions that are zero at x = 0 and at x = L.

40

Example: Solving elliptic equations

Consider the differential problem in Ω = (a, b):

− d

dx

(
β(x)

du

dx

)
+ γ(x)u(x) = f(x) (4.3)

u(a) = A (Dirichlet) (4.4)

β(b)u′(b) = B (Neumann) (4.5)

Its exact solution minimizes the energy

E(v) =

∫ b

a

[
β

2
v′(x)2 +

γ

2
v(x)2 − f(x) v(x)

]
dx− B v(b) (4.6)

over the set of functions that take the value A at x = a.

41

Example: Thermal conduction problems

A solid with thermal conductivity β(x) occupies the region Ω ⊂ R3. Its boundary ∂Ω consists of two
parts: (a) Γ1 , where the heat flux Q(x) is known; (b) Γ2 , where the surface is in contact with the
ambient (temperature Ta, convection coefficient H).
The differential problem for the temperature field T (x) is

−∇ · (β∇T) = 0 in Ω (4.7)

β
∂T

∂n
= Q on Γ1 (4.8)

β
∂T

∂n
= H (Ta − T) on Γ2 (4.9)

(4.10)

The solution minimizes the (mathematical) energy

E(v) =
1

2

∫
Ω

β ‖∇v‖2 dΩ +
1

2

∫
Γ2

H (Ta − v)2 dΓ −
∫

Γ1

Qv dΓ . (4.11)

42

4.2 The Galerkin method

• Let the exact solution u of a mathematical problem be defined as the (unique) minimizer of
some energy functional E over some infinite-dimensional function space V .

• Let Vh be a finite-dimensional subspace of V .

Then, the Galerkin approximation uh of u is defined as the (unique) minimizer of E over Vh.

Under realistic hypotheses it is possible to prove the optimal error bound

‖u− uh‖V ≤ C min
vh ∈Vh

‖u− vh‖V , (4.12)

with C independent of h (mesh size) and p (polynomial degree).

43

4.3 A first application and implementation

4.3.1 Numerical method

Problem: Solve the differential problem

− (β u′)
′
+ γ u = f , u(0) = A, β(L)u′(L) = B , (4.13)

with

β(x) =

{
1 se x < 2L/3

9 se x > 2L/3
, γ = 2, f = x2 ∀x . (4.14)

The energy, to be minimized over V = {v : (0, L)→ R | v(0) = A} is

E(v) =

∫ L

0

(
1

2
β (u′)2 +

1

2
γ u2 − f u

)
dx− B u(L) . (4.15)

44

Numerical method (Galerkin method): Given a finite element space Vh, compute the approxi-
mate solution uh ∈ Vh defined by

E(uh) ≤ E(vh) , ∀ vh ∈ Vh, vh(0) = A . (4.16)

This is a minimization problem in Vh subject to the constraint vh(0) = A.

In terms of the basis functions φ1, φ2, . . ., φM (which are fixed once the mesh has been chosen), and
denoting the coefficients by U1, . . ., UM , we have

uh(x) = U1 φ1(x) + . . .+ UM φM(x) . (4.17)

This defines a mapping Uh : RM → Vh,

uh = Uh(U) = U1 φ1 + . . .+ UM φM . (4.18)

We can thus rewrite (4.16) in terms of vectors in RM :

E(U)
def
= E(Uh(U)) ≤ E(Uh(V)) = E(U) , ∀V ∈ RM , V1 = A (4.19)

where we have assumed that the node at x = 0 has been assigned the number 1. This shows that we
have reduced the problem to a minimization problem in RM .

45

Numerical strategy:

1. Build a function energy.m that computes E(V) for any V ∈ RM .

2. Call the Octave function sqp and get the solution U .

U0=zeros(ndof,1); U=sqp(U0,@energy);

3. End! ,

46

4.3.2 The energy code

Let us assume that B = 0 for now. Then, defining

Z(vh(x), v′h(x)) =
1

2

(
β(x) v′h(x)2 + γ(x) vh(x)2

)
− f(x) v(x) , (4.20)

and using that Ω ' ∪Nel
K=1FK(K̂), we can decompose the energy integral as

E =

∫ L

0

Z(vh(x), v′h(x)) dx =
∑
K

∫
FK(K̂)

Z(vh(x), v′h(x)) dx (4.21)

and now change variables to K̂, to give

E =
∑
K

∫
K̂

Z(vh(FK(x̂)), v′h(FK(x̂)))
∂FK

∂x̂
(x̂) dx̂ . (4.22)

The last ingredient is numerical integration in K̂.

47

Parenthesis: Numerical integration (quadrature)

1. One defines a set of m points in K̂,

q̂1, q̂2, . . . , q̂m ,

2. and a set of m weights,
W1,W2, . . . ,Wm .

3. One approximates any integral in K̂ as∫
K̂

g(x̂) dx̂ ' g(q̂1)W1 + g(q̂2)W2 + . . .+ g(q̂m)Wm =
m∑
j=1

g(q̂j)Wj . (4.23)

Now we go back to the computation of the energy...

48

So,

E =

∫ L

0

Z(vh(x), v′h(x)) dx =
∑
K

∫
FK(K̂)

Z(vh(x), v′h(x)) dx

=
∑
K

∫
K̂

Z(vh(FK(x̂)), v′h(FK(x̂)))
∂FK

∂x̂
(x̂) dx̂

=
∑
K

[
m∑
j=1

Z(vh(FK(q̂j)), v
′
h(FK(q̂j))JK(q̂j)Wj

]

where we have set JK = ∂FK/∂x̂.
For easy programming, one first computes qj = FK(q̂j) and then calculates

E =
∑
K

[
m∑
j=1

Z(vh(qj), v
′
h(qj))JK(q̂j)Wj

]
(4.24)

Remember, Z(x) = 1
2

(β(x) v′h(x)2 + γ(x) vh(x)2)− f(x) vh(x), so that if we can compute vh and v′h at
the images of the quadrature points, we are done. We now show how to do that.

49

Exo. 4.1 Let xh be a point in K̂ = [−1, 1], and let XX(1) and XX(2) be the extreme points of K, which
is an element of type Pp. Let also vdof(1:pp+1) be the values of U corresponding to the degrees of
freedom of element K.
Show that the following code computes:

• The variable x, which is the image of xh by FK.

• The variable dx, which is the value of F ′K at xh.

• The variable uh, which is the value of uh at x.

• The variable duh, which is the value of u′h at x.

[g dg d2g]=masterlag(1,xh);

[sf dsf ddsf]=masterlag(pp,xh);

x=XX(1)*g(1)+XX(2)*g(2);

dx=XX(1)*dg(1)+XX(2)*dg(2);

uh=vdof*sf;

duh=vdof*dsf/dx;

This exercise should be enough to understand the energy function below.

50

E =
∑
K

[
m∑
j=1

(
β(qj)

2
u′h(qj)

2 +
γ(qj)

2
uh(qj)

2 − f(qj)uh(qj)

)
JK(q̂j)Wj

]
(4.25)

function E=energy1(vdoft)

global L B pp nel

global npe nodg ndof conecg conecdof coordg

vdof=vdoft’;

integration points and weights

xh=-1:0.1:1;

wh=[1/20 1/10*ones(1,19) 1/20];

nhat=size(xh,2);

[g dg d2g]=masterlag(1,xh);

[sf dsf ddsf]=masterlag(pp,xh);

E=0;

for k=1:nel

XX(:,1)=coordg(:,conecg(k,1));

XX(:,2)=coordg(:,conecg(k,2));

x=zeros(1,nhat);

dx=zeros(1,nhat);

for i=1:npe

x(1,:)=x(1,:)+XX(1,i)*g(i,:);

dx=dx+XX(1,i)*dg(i,:);

end

uh=vdof(conecdof(k,:))*sf;

duh=vdof(conecdof(k,:))*dsf./dx;

####data

beta=(1+4*(1+sign(x-2*L/3))).*ones(1,nhat);

gamma=2*ones(1,nhat);

ff=x.*x.*ones(1,nhat);

####

E=E+0.5*duh*(duh.*beta.*wh.*dx)’...

+0.5*uh*(uh.*gamma.*wh.*dx)’...

-ff*(uh.*wh.*dx)’;

end

E=E-B*vdoft(ndof);

end

51

And now the code that builds the mesh, solves the problem and plots the solution.

Application 1

##

data

global L=5;

global A=1;

global B=-30;

global pp=3;

global nel=3;

build mesh

global npe nodg ndof conecg conecdof coordg

npe=2;

nodg=nel+1;

ndof=nel*pp+1;

conecg=[1 2];

conecdof=[1:pp+1];

for i=2:nel

conecg=[conecg;i,i+1];

conecdof=[conecdof;(i-1)*pp+1:i*pp+1];

end

coordg=zeros(1,nodg);

hsize=L/nel;

for i=2:nodg

coordg(i)=(i-1)*hsize;

end

####

U0=zeros(ndof,1);

[U obj info iter nf lambda]=...

sqp(U0,@energy1,@restrictions);

k=plotfem1(conecg,coordg,pp,conecdof,vv)

function r=restrictions(vdoft)

global A;

ndof=max(size(vdoft));

r=[vdoft(1)-A];

end

The whole code consists of: masterlag.m (21 lines), energy1.m (28 lines), restrictions.m (5 lines) and
applic1.m (23 lines). Yes, there is the plotting function, too (see below).

52

4.3.3 The plotting function

This function receives the mesh (conecg, coordg), the degree pp, the connectivity of DOFs conecdof and
the vector U of DOFs (in vdoft), and plots the corresponding function Uh(U).

function idum=plotfem1(conecg,coordg,...

pp,conecdof,vdoft)

xh=-1:0.05:1;#drawing points

nhat=size(xh,2);

nel=size(conecg,1);npe=size(conecg,2);

nodg=size(coordg,2);

[g dg d2g] = masterlag(1,xh);

[sf dsf ddsf]=masterlag(pp,xh);

for k=1:nel

XX(:,1)=coordg(:,conecg(k,1));

XX(:,2)=coordg(:,conecg(k,2));

x=zeros(1,nhat);

for i=1:npe

x(1,:)=x(1,:)+XX(1,i)*g(i,:);

end

f=vdoft(conecdof(k,:))’*sf;

plot(x,f,"r","linewidth",2); hold on;

hold on;

idum=0;

end

Just 18 lines! ,

53

Numerical solutions with 9P1, 3P3, 90P1, 30P3.

54

4.3.4 A more efficient code

A much more efficient implementation is to compute ∇E and solve for ∇E(uh) = 0. You will find this
implemented in applic1bis.m.
The key step is, instead of minimizing, to invoke the (nonlinear) solver fsolve in the following way:

vv=fsolve(@denergy1,vv0);

This will result in a vector vv such that all the derivatives of the energy with respect to the degrees of
freedom are zero (i.e., the minimum).
The function denergy1 must provide the derivative of E with respect to the degrees of freedom. It is
implemented in denergy1.m.

Exo. 4.2 Understand (line by line) the function denergy1.m. Try to find the relationship between it and
the functions energy1.m and restrictions.m.

55

	Motivation
	Finite element partitions
	Finite element spaces
	The master element
	The finite element
	Finite element spaces and approximation

	Minimizing the energy
	Minimization problems
	The Galerkin method
	A first application and implementation
	Numerical method
	The energy code
	The plotting function
	A more efficient code

