Introduction to the Finite Element method

Gustavo C. Buscaglia
ICMC-USP, São Carlos, Brasil
gustavo.buscaglia@gmail.com

© Gustavo C. Buscaglia, 2019.

Motivation

- For elliptic and parabolic problems, the most popular approximation method is the FEM.
- It is general, not restricted to linear problems, or to isotropic problems, or to any subclass of mathematical problems.
- It is geometrically flexible, complex domains are quite easily treated, not requiring adaptations of the method itself.
- It is easy to code, and the coding is quite problem-independent. Boundary conditions are much easier to deal with than in other methods.
- It is robust, because in most cases the mathematical problem has an underlying variational structure (energy minimization, for example).
- Galerkin approximations: Differential, variational and extremal formulations of a simple 1D boundary value problem. Well-posedness of variational formulations. Functional setting. Strong and weak coercivity. Lax-Milgram lemma. Banach's open mapping theorem. Céa's best-approximation property. Convergence under weak coercivity. (2 lectures)
- The spaces of FEM and their implementation: (3 lectures)
- Interpolation error and convergence: (2 lectures)
- Application to convection-diffusion-reaction problems: (2 lectures)
- Application to linear elasticity: (2 lectures)
- Mixed problems: (2 lectures)
- FEM for parabolic problems: (2 lectures)

1 Galerkin approximations

1.1 Variational formulation of a simple 1D example

Let u be the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.1}\\
u(0)=u(1)=0
\end{array}\right.
$$

The differential formulation (DF) of the problem requires $-u^{\prime \prime}+u$ to be exactly equal to f in all points $x \in(0,1)$.
Multiplying the equation by any function v and integrating by parts (recall that

$$
\begin{equation*}
\int_{0}^{1} w^{\prime} z d x=w(1) z(1)-w(0) z(0)-\int_{0}^{1} w z^{\prime} d x \tag{1.2}
\end{equation*}
$$

holds for all w and z that are regular enough) one obtains that u satisfies

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x-u^{\prime}(1) v(1)+u^{\prime}(0) v(0)=\int_{0}^{1} f v d x \quad \forall v \tag{1.3}
\end{equation*}
$$

- The requirement "for all x " of the DF has become "for all functions v ".
- Does equation (1.3) fully determine u ?
- What happened with the boundary conditions?

Consider the following problem in variational formulation (VF): "Determine $u \in W$, such that $u(0)=$ $u(1)=0$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x \tag{1.4}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=v(1)=0$."
Prop. 1.1 The solution u of the DF (eq. 1.1) is also a solution of the VF if W consists of continuous functions of sufficient regularity. As a consequence, problem VF admits at least one solution whenever DF does.

Proof. Following the steps that lead to the VF, it becomes clear that the only requirement for u to satisfy (1.4) is that the integration by parts formula (1.2) be valid.

Exo. 1.1 Show that the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.5}\\
u(0)=0, \quad u^{\prime}(1)=g \in \mathbb{R}
\end{array}\right.
$$

is a solution to: "Find $u \in W$ such that $u(0)=0$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x+g v(1) \tag{1.6}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=0$."

Consider the following problem in extremal formulation (EF): "Determine $u \in W$ such that it minimizes the function

$$
\begin{equation*}
J(w)=\int_{0}^{1}\left(\frac{1}{2} w^{\prime}(x)^{2}+\frac{1}{2} w(x)^{2}-f w\right) d x \tag{1.7}
\end{equation*}
$$

over the functions $w \in W$ that satisfy $w(0)=w(1)=0$."
Prop. 1.2 The unique solution u of (1.1) is also a solution to EF. As a consequence, EF admits at least one solution.

Proof. We need to show that $J(w) \geq J(u)$ for all $w \in W_{0}$, where

$$
W_{0}=\{w \in W, w(0)=w(1)=0\}
$$

Writing $w=u+\alpha v$ and replacing in (1.7) one obtains

$$
J(u+\alpha v)=J(u)+\alpha\left[\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v-f v\right) d x\right]+\alpha^{2} \int_{0}^{1}\left(\frac{1}{2} v^{\prime}(x)^{2}+\frac{1}{2} v(x)^{2}\right) d x
$$

The last term is not negative and the second one is zero.
Exo. 1.2 Identify the EF of the previous exercise.

Prop. 1.3 Let u be the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.8}\\
u(0)=1, \quad u^{\prime}(1)=g \in \mathbb{R}
\end{array}\right.
$$

then u is also a solution of "Determine $u \in W$ such that $u(0)=1$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x+g v(1) \tag{1.9}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=0$."
Further, defining for any $a \in \mathbb{R}$

$$
W_{a}=\{w \in W, w(0)=a\}
$$

u minimizes over W_{1} the function

$$
\begin{equation*}
J(w)=\int_{0}^{1}\left(\frac{1}{2} w^{\prime}(x)^{2}+\frac{1}{2} w(x)^{2}-f w\right) d x-g w(1) \tag{1.10}
\end{equation*}
$$

Exo. 1.3 Prove the last proposition.

Let us define the bilinear and linear forms corresponding to problem (1.1):

$$
\begin{equation*}
a(v, w)=\int_{0}^{1}\left(v^{\prime} w^{\prime}+v w\right) d x \quad \ell(v)=\int_{0}^{1} f v d x \tag{1.11}
\end{equation*}
$$

and the function $J(v)=\frac{1}{2} a(v, v)-\ell(v)$. Remember that W is a space of functions with some (yet unspecified) regularity and let $W_{0}=\{w \in W, w(0)=w(1)=0\}$.

The three formulations that we have presented up to now are, thus:
DF: Find a function u such that

$$
-u^{\prime \prime}(x)+u(x)=f(x) \quad \forall x \in(0,1), \quad u(0)=u(1)=0
$$

VF: Find a function $u \in W_{0}$ such that

$$
a(u, v)=\ell(v) \quad \forall v \in W_{0}
$$

EF: Find a function $u \in W_{0}$ such that

$$
J(u) \leq J(w) \quad \forall w \in W_{0}
$$

and we know that the exact solution of DF is also a solution of VF and of EF.

The logic of the construction is justified by the following
Theorem 1.4 If W is taken as

$$
W=\left\{w:(0,1) \rightarrow \mathbb{R}, \int_{0}^{1} w(x)^{2} d x<+\infty, \int_{0}^{1} w^{\prime}(x)^{2} d x<+\infty\right\} \stackrel{\text { def }}{=} H^{1}(0,1)
$$

and if f is such that there exists $C \in \mathbb{R}$ for which

$$
\begin{equation*}
\int_{0}^{1} f(x) w(x) d x \leq C \sqrt{\int_{0}^{1} w^{\prime}(x)^{2} d x} \quad \forall w \in W_{0} \tag{1.12}
\end{equation*}
$$

then problems (VF) and (EF) have one and only one solution, and their solutions coincide.
The proof will be given later, now let us consider its consequences:

- The differential equation has at most one solution in W.
- If the solution u to (VF)-(EF) is regular enough to be considered a solution to (DF), then u is the solution to (DF).
- If the solution u to (VF)-(EF) is not regular enough to be considered a solution to (DF), then (DF) has no solution.
$\Rightarrow \quad(\mathrm{VF})$ is a generalization of (DF).

Exo. 1.4 Show that $W_{0} \subset C^{0}(0,1)$. Further, compute $C \in \mathbb{R}$ such that

$$
\max _{x \in[0,1]}|w(x)| \leq C \sqrt{\int_{0}^{1} w^{\prime}(x)^{2} d x} \quad \forall w \in W_{0}
$$

Hint: You may assume that $\int_{0}^{1} f(x) g(x) d x \leq \sqrt{\int_{0}^{1} f(x)^{2} d x} \sqrt{\int_{0}^{1} g(x)^{2} d x}$ for any f and g (CauchySchwarz).

Exo. 1.5 Consider $f(x)=|x-1 / 2|^{\gamma}$. For which exponents γ is $\int_{0}^{1} f(x) w(x) d x<+\infty$ for all $w \in W_{0}$?
Exo. 1.6 Consider as f the "Dirac delta function" at $x=1 / 2$, that we will denote by $\delta_{1 / 2}$. It can be considered as a "generalized" function defined by

$$
\int_{0}^{1} \delta_{1 / 2}(x) w(x) d x=w(1 / 2) \quad \forall w \in C^{0}(0,1)
$$

Prove that $\delta_{1 / 2}$ satisfies (1.12) and determine the analytical solution to (VF).
Exo. 1.7 Determine the DF and the EF corresponding to the following VF: "Find $u \in W=H^{1}(0,1)$, $u(0)=1$, such that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} w^{\prime}+u w\right) d x=w(1 / 2) \quad \forall w \in W_{0} \tag{1.13}
\end{equation*}
$$

where $W_{0}=\{w \in W, w(0)=0\} . "$

1.2 Variational formulations in general

Let V be a Hilbert space with norm $\|\cdot\|_{V}$. Let $a(\cdot, \cdot)$ and $\ell(\cdot)$ be bilinear and linear forms on V satisfying (continuity), for all $v, w \in V$,

$$
\begin{equation*}
a(v, w) \leq N_{a}\|v\|_{V}\|w\|_{V}, \quad \ell(v) \leq N_{\ell}\|v\|_{V} \tag{1.14}
\end{equation*}
$$

This last inequality means that $\ell \in V^{\prime}$, the (topological) dual of V. The minimum N_{ℓ} that satisfies this inequality is called the norm of ℓ in V^{\prime}, i.e.

$$
\begin{equation*}
\|\ell\|_{V^{\prime}} \stackrel{\text { def }}{=} \sup _{0 \neq v \in V} \frac{\ell(v)}{\|v\|_{V}} \tag{1.15}
\end{equation*}
$$

The abstract VF we consider here is:

$$
\begin{equation*}
\text { "Find } u \in V \text { such that } \quad a(u, v)=\ell(v) \quad \forall v \in V \text { " } \tag{1.16}
\end{equation*}
$$

Exo. 1.8 Assume that V is finite dimensional, of dimension n, and let $\left\{\phi^{1}, \phi^{2}, \ldots, \phi^{n}\right\}$ be a basis. Show that (1.16) is then equivalent to

$$
\begin{equation*}
\underline{V}^{T} \underline{\underline{A}} \underline{U}=\underline{V}^{T} \underline{L} \quad \forall \underline{V} \in \mathbb{R}^{n} \tag{1.17}
\end{equation*}
$$

which in turn is equivalent to the linear system

$$
\begin{equation*}
\underline{\underline{A}} \underline{U}=\underline{L} ; \tag{1.18}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i j} \stackrel{\text { def }}{=} a\left(\phi^{j}, \phi^{i}\right), \quad L_{i} \stackrel{\text { def }}{=} \ell\left(\phi^{i}\right) \tag{1.19}
\end{equation*}
$$

and \underline{U} is the coefficient column vector of the expansion of u, i.e.,

$$
\begin{equation*}
u=\sum_{i=1}^{n} U_{i} \phi^{i} \tag{1.20}
\end{equation*}
$$

Def. 1.5 The bilinear form $a(\cdot, \cdot)$ is said to be strongly coercive if there exists $\alpha>0$ such that

$$
\begin{equation*}
a(v, v) \geq \alpha\|v\|_{V}^{2} \quad \forall v \in V \tag{1.21}
\end{equation*}
$$

Def. 1.6 The bilinear form $a(\cdot, \cdot)$ is said to be weakly coercive (or to satisfy an inf-sup condition) if there exists $\beta>0$ such that

$$
\begin{equation*}
\sup _{0 \neq w \in V} \frac{a(v, w)}{\|w\|_{V}} \geq \beta\|v\|_{V} \quad \forall v \in V \tag{1.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{0 \neq v \in V} \frac{a(v, w)}{\|v\|_{V}} \geq \beta\|w\|_{V} \quad \forall w \in V \tag{1.23}
\end{equation*}
$$

Exo. 1.9 Prove that strong coercivity implies weak coercivity.
Exo. 1.10 Prove that, if V is finite dimensional, then (i) $a(\cdot, \cdot)$ is strongly coercive iff $\underline{\underline{A}}$ is positive definite $\left(\underline{X}^{T} \underline{\underline{A}} \underline{X}>0 \forall \underline{X} \in \mathbb{R}^{n}\right)$, and (ii) $a(\cdot, \cdot)$ is weakly coercive iff $\underline{\underline{A}}$ is invertible.

Exo. 1.11 Prove that, if $a(\cdot, \cdot)$ is weakly coercive, then the solution u of (1.16) depends continuously on the forcing $\ell(\cdot)$. Specifically, prove that

$$
\begin{equation*}
\|u\|_{V} \leq \frac{1}{\beta}\|\ell\|_{V^{\prime}} \tag{1.24}
\end{equation*}
$$

Theorem 1.7 Assuming V to be a Hilbert space, problem (1.16) is well posed for any $\ell \in V^{\prime}$ if and only if (i) $a(\cdot, \cdot)$ is continuous, and (ii) $a(\cdot, \cdot)$ is weakly coercive.

A simpler version of this result is known as Lax-Milgram lemma:
Theorem 1.8 Assuming V to be a Hilbert space, if $a(\cdot, \cdot)$ is continuous and strongly coercive then problem (1.16) is well posed for any $\ell \in V^{\prime}$.

Proof. This proof uses the so-called "Galerkin method", which will be useful to introduce... the Galerkin method!
Let $\left\{\phi^{i}\right\}$ be a basis of V. Denoting $V_{N}=\operatorname{span}\left(\phi^{1}, \ldots, \phi^{N}\right)$ we can define $u_{N} \in V_{N}$ as the unique solution of $a\left(u_{N}, v\right)=\ell(v)$ for all $v \in V_{N}$. This generates a sequence $\left\{u_{N}\right\}_{N=1,2, \ldots}$ in V. Further, this sequence is bounded, because

$$
\left\|u_{N}\right\|_{V}^{2} \leq \frac{1}{\alpha} a\left(u_{N}, u_{N}\right)=\frac{1}{\alpha} \ell\left(u_{N}\right) \leq \frac{\|\ell\|_{V^{\prime}}}{\alpha}\left\|u_{N}\right\|_{V} \quad \Rightarrow \quad\left\|u_{N}\right\|_{V} \leq \frac{\|\ell\|_{V^{\prime}}}{\alpha}, \forall N
$$

Recalling the weak compactness of bounded sets in Hilbert spaces, there exists $u \in V$ such that a subsequence of $\left\{\overline{\left.u_{N}\right\}}\right.$ (still denoted by $\left\{u_{N}\right\}$ for simplicity) converges to u weakly. It remains to prove that $a(u, v)=\ell(v)$ for all $v \in V$. To see this, notice that

$$
a\left(u, \phi^{i}\right)=a\left(\lim _{N} u_{N}, \phi^{i}\right)=\lim _{N} a\left(u_{N}, \phi^{i}\right)=\ell\left(\phi^{i}\right)
$$

where the last equality holds because $a\left(u_{N}, \phi^{i}\right)=\ell\left(\phi^{i}\right)$ whenever $N \geq i$. Uniqueness is left as an exercise.

Exo. 1.12 Prove uniqueness in the previous theorem (bounded sequences may have several accumulation points).

Remark 1.9 The space $L^{2}(a, b)$ (also denoted by $H^{0}(a, b)$) is the Hilbert space of functions $f:(a, b) \rightarrow \mathbb{R}$ such that $\int_{a}^{b} f^{2}(x) d x<+\infty$.
The scalar product is

$$
\begin{equation*}
(f, g)_{L^{2}(a, b)}=\int_{a}^{b} f(x) g(x) d x \tag{1.25}
\end{equation*}
$$

and accordingly

$$
\begin{equation*}
\|f\|_{L^{2}(a, b)}=(f, f)_{L^{2}(a, b)}^{1 / 2}=\sqrt{\int_{a}^{b} f^{2}(x) d x} . \tag{1.26}
\end{equation*}
$$

Also of frequent use are the Hilbert spaces $H^{1}(a, b)$ and $H^{2}(a, b)$:

$$
\begin{align*}
H^{1}(a, b) & =\left\{f \in L^{2}(a, b) \mid f^{\prime} \in L^{2}(a, b)\right\} \tag{1.27}\\
|f|_{H^{1}(a, b)} & =\left\|f^{\prime}\right\|_{L^{2}(a, b)} \tag{1.28}\\
\|f\|_{H^{1}(a, b)} & =\|f\|_{L^{2}(a, b)}+|f|_{H^{1}(a, b)} \tag{1.29}\\
H^{2}(a, b) & =\left\{f \in H^{1}(a, b) \mid f^{\prime \prime} \in L^{2}(a, b)\right\} \tag{1.30}\\
|f|_{H^{2}(a, b)} & =\left\|f^{\prime \prime}\right\|_{L^{2}(a, b)} \tag{1.31}\\
\|f\|_{H^{2}(a, b)} & =\|f\|_{H^{1}(a, b)}+|f|_{H^{2}(a, b)} \tag{1.32}
\end{align*}
$$

Exo. 1.13 Other equivalent norms can be defined in $H^{1}(a, b)$, e.g.,

1. $\left|\left|\mid f \|_{H^{1}(a, b)}=\left(\|f\|_{L^{2}(a, b)}^{2}+|f|_{H^{1}(a, b)}^{2}\right)^{1 / 2}\right.\right.$
2. $\left|\left||f| \|_{H^{1}(a, b)}=\max \left(\|f\|_{L^{2}(a, b)},|f|_{H^{1}(a, b)}\right)\right.\right.$
3. $\left\|\|f\|_{H^{1}(a, b)}=\right\| f\left\|_{L^{2}(a, b)}+\right\| \ell f^{\prime} \|_{L^{2}(a, b)}$, where $\ell:(a, b) \rightarrow \mathbb{R}$ satisfies $0<\ell_{\min } \leq \ell(x) \leq \ell_{\max }$ for all $x \in(a, b)$. Notice that if $\ell(x)$ has dimensions of length then this norm is unit-consistent.

Find the constants c and C such that $c\|f\| \leq\| \| f\| \| \leq C\|f\|$.
Remark 1.10 For the spaces $H^{1}(a, b)$ and $H^{2}(a, b)$ to be complete, one needs a weaker definition of the derivative. For this purpose, one first introduces the space

$$
\begin{equation*}
\mathcal{D}(a, b)=C_{0}^{\infty}(a, b)=\left\{\varphi \in C^{\infty}(a, b) \mid \varphi \text { has compact support in }(a, b)\right\} \tag{1.33}
\end{equation*}
$$

Given a function $f:(a, b) \rightarrow \mathbb{R}$, if there exists $g:(a, b) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\int_{a}^{b} g(x) \varphi(x) d x=-\int_{a}^{b} f(x) \varphi^{\prime}(x) d x, \quad \forall \varphi \in \mathcal{D}(a, b) \tag{1.34}
\end{equation*}
$$

then we say that f^{\prime} exists in a weak sense, and that $f^{\prime}=g$.
Exo. 1.14 Show that the function

$$
\phi(x)= \begin{cases}\exp \left(1 /\left(|x|^{2}-1\right)\right) & \text { if }|x|<1 \tag{1.35}\\ 0 & \text { if }|x| \geq 1\end{cases}
$$

belongs to $\mathcal{D}(\mathbb{R})$. By suitably shifting and scaling the argument of ϕ show that $\mathcal{D}(a, b)$ has infinite dimension for all $a<b$. (Hint: See Brenner-Scott, p. 27)

Exo. 1.15 Consider $f(x)=1-|x|$ in the domain $(-1,1)$. Prove that its weak derivative is given by

$$
f^{\prime}(x)= \begin{cases}1 & \text { if } x<0 \tag{1.36}\\ -1 & \text { if } x>0\end{cases}
$$

Prove also that $f^{\prime \prime}$ does not exist. (Hint: See Brenner-Scott, p. 28)
Exo. 1.16 Let $f \in L^{2}(a, b)$, and let $V=H^{1}(a, b)$. Show that $\ell(v)=\int_{a}^{b} f(x) v(x) d x$ belongs to V^{\prime} and that $\|\ell\|_{V^{\prime}} \leq\|f\|_{L^{2}(a, b)}$.

Summary and suggested exercises:

1. The Differential, Variational and Extremal formulations are equivalent in a sense that can be made precise with suitable spaces and definitions of derivatives.
2. Be sure to understand how to deduce the DF (including boundary conditions) from the VF or from the EF, and viceversa.
3. If the bilinear form of the VF is weakly stable, then all three formulations have a unique solution.
4. Consider the following problem: We want to compute the solution to a steady heat conduction problem, $-\left(k u^{\prime}\right)^{\prime}=0$ for a slab of thickness a, i.e., having as domain the interval $(0, a)$. The boundary conditions are $u(0)=0, u(a)=U$. Between $x=1 / 3$ and $x=1 / 2$ there is a layer of high conductivity material, which makes that the temperature is assume constant there. Write down the DF, VF and EF of this problem, considering the restriction imposed over the possible temperature fields.

1.3 Galerkin approximations

The previous proof suggests a numerical method, the Galerkin method, to approximate the solution of a variational problem and thus of an elliptic PDE. The idea is simply to restrict the variational problem to a subspace of V that we will denote by V_{h}.

Discrete variational problem (Galerkin): Find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\ell\left(v_{h}\right) \quad \forall v_{h} \in V_{h} \tag{1.37}
\end{equation*}
$$

When the bilinear form $a(\cdot, \cdot)$ is symmetric and strongly coercive, this discrete probleme is equivalent to
Discrete extremal problem (Galerkin): Find $u_{h} \in V_{h}$ which minimizes over V_{h} the function

$$
\begin{equation*}
J(w)=\frac{1}{2} a(w, w)-\ell(w) \tag{1.38}
\end{equation*}
$$

Exo. 1.17 Prove this last assertion.

The natural questions that arise are:

- Does u_{h} exist? Is it unique?
- Does u_{h} approximate u (the exact solution)?
- How difficult is it to compute u_{h} ?

Does u_{h} exist? Is it unique?

Case 1) Strong coercivity of the form $a(\cdot, \cdot)$ over V

If $a(\cdot, \cdot)$ is strongly coercive over V, then

$$
\inf _{0 \neq w \in V} \frac{a(w, w)}{\|w\|_{V}^{2}}=\alpha>0
$$

If $V_{h} \subset V$, then $a(\cdot, \cdot)$ is strongly coercive over V_{h} (because the infimum is taken over a smaller set). Then u_{h} exists and is unique as a consequence of Exo. 1.10 .

Case 2) Weak coercivity of the form $a(\cdot, \cdot)$ over V
If $a(\cdot, \cdot)$ is just weakly coercive over V, then it may or may not be weakly coercive over V_{h}. Compare the two following conditions

$$
\text { (A) } \inf _{w \in V} \sup _{v \in V} \frac{a(w, v)}{\|w\|_{V}\|v\|_{V}}=\beta>0, \quad \text { (B) } \inf _{w \in V_{h}} \sup _{v \in V_{h}} \frac{a(w, v)}{\|w\|_{V}\|v\|_{V}}=\beta_{h}>0 .
$$

It is not true that $(A) \Rightarrow(B)$ because the sup in (B) is taken over a smaller set. In this case the weak coercivity of the discrete problem must be proven independently, it is not inherited from the weak coercivity over the whole space V.

Does u_{h} approximate u ?

Case 1) Strong coercivity of the form $a(\cdot, \cdot)$ over V

Lemma 1.11 (J. Céa) If $a(\cdot, \cdot)$ and $\ell(\cdot)$ are continuous in V and $a(\cdot, \cdot)$ is strongly coercive, then

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V} \leq \frac{N_{a}}{\alpha}\left\|u-v_{h}\right\|_{V} \quad \forall v_{h} \in V_{h} \tag{1.39}
\end{equation*}
$$

Proof. Notice the so-called Galerkin orthogonality:

$$
\begin{equation*}
a\left(u-u_{h}, v_{h}\right)=0 \quad \forall v_{h} \in V_{h} \tag{1.40}
\end{equation*}
$$

which implies that $a\left(u-u_{h}, u-u_{h}\right)=a\left(u-u_{h}, u-v_{h}\right)$ for all $v_{h} \in V_{h}$. Using this,

$$
\left\|u-u_{h}\right\|_{V}^{2} \leq \frac{1}{\alpha} a\left(u-u_{h}, u-u_{h}\right)=\frac{1}{\alpha} a\left(u-u_{h}, u-v_{h}\right) \leq \frac{N_{a}}{\alpha}\left\|u-u_{h}\right\|_{V}\left\|u-v_{h}\right\|_{V} \quad \forall v_{h} \in V_{h}
$$

In other words, $\left\|u-u_{h}\right\|_{V} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V}$.
Let h be a real parameter, typically a "mesh size". We say that a family $\left\{V_{h}\right\}_{h>0} \subset V$ satisfies the approximability property if:

$$
\begin{equation*}
\lim _{h \rightarrow 0} \operatorname{dist}\left(u, V_{h}\right)=\lim _{h \rightarrow 0} \inf _{v \in V_{h}}\|u-v\|_{V}=0 \tag{1.41}
\end{equation*}
$$

Corollary 1.12 If $a(\cdot, \cdot)$ and $\ell(\cdot)$ are continuous in $V, a(\cdot, \cdot)$ is strongly coercive, and the family $\left\{V_{h}\right\}_{h>0} \subset$ V satisfies (1.41), then

$$
\lim _{h \rightarrow 0} u_{h}=u
$$

in the sense of the norm $\|\cdot\|_{V}$.

If the strongly coercive bilinear form is symmetric, then $a(\cdot, \cdot)$ is a scalar product over V. In this case, Galerkin orthogonality corresponds to: The Galerkin solution u_{h} is the orthogonal projection of u onto V_{h}.
Further, the energy norm can be defined

$$
\begin{equation*}
\|v\|_{a}=\sqrt{a(v, v)} \tag{1.42}
\end{equation*}
$$

which satisfies the equivalence

$$
\begin{equation*}
\alpha^{\frac{1}{2}}\|v\|_{V} \leq\|v\|_{a} \leq N_{a}^{\frac{1}{2}}\|v\|_{V} . \tag{1.43}
\end{equation*}
$$

Exo. 1.18 Show that the Galerkin approximation is optimal in the energy norm,

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{a} \leq\left\|u-v_{h}\right\|_{a}, \quad \forall v_{h} \in V_{h} \tag{1.44}
\end{equation*}
$$

without the constants that appear in Céa's lemma. Further show that the following sharper estimate holds:

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V} \leq\left(\frac{N_{a}}{\alpha}\right)^{\frac{1}{2}}\left\|u-v_{h}\right\|_{V}, \quad \forall v_{h} \in V_{h} \tag{1.45}
\end{equation*}
$$

Case 2) Weak coercivity of the form $a(\cdot, \cdot)$ over V_{h}
Assume now that the weak coercivity constant β_{h} is positive for all $h>0$, so that u_{h} exists and is unique. Notice that Galerkin orthogonality still holds.

Lemma 1.13 If $a(\cdot, \cdot)$ and $\ell(\cdot)$ are continuous in V, and $a(\cdot, \cdot)$ is weakly coercive in V_{h} with constant $\beta_{h}>0$, then

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V} \leq\left(1+\frac{N_{a}}{\beta_{h}}\right)\left\|u-v_{h}\right\|_{V} \quad \forall v_{h} \in V_{h} \tag{1.46}
\end{equation*}
$$

Proof. One begins by decomposing the error as follows (we omit the subindex V in the norm)

$$
\begin{equation*}
\left\|u-u_{h}\right\| \leq\left\|u-v_{h}\right\|+\left\|u_{h}-v_{h}\right\| \quad \forall v_{h} \in V_{h} \tag{1.47}
\end{equation*}
$$

and then using the weak coercivity

$$
\left\|u_{h}-v_{h}\right\| \leq \frac{1}{\beta_{h}} \sup _{w_{h} \in V_{h}} \frac{a\left(u_{h}-v_{h}, w_{h}\right)}{\left\|w_{h}\right\|}=\frac{1}{\beta_{h}} \sup _{w_{h} \in V_{h}} \frac{a\left(u-v_{h}, w_{h}\right)}{\left\|w_{h}\right\|} \leq \frac{N_{a}}{\beta_{h}}\left\|u-v_{h}\right\|
$$

Substituting this into (1.47) one proves the claim.
Corollary 1.14 Under the hypotheses of Lemma 1.13, if there exists $\beta_{0}>0$ such that $\beta_{h}>\beta_{0}$ for all h and the family $\left\{V_{h}\right\}_{h>0} \subset V$ satisfies (1.41), then

$$
\lim _{h \rightarrow 0} u_{h}=u
$$

in the sense of the norm $\|\cdot\|_{V}$.

Let us go back to our problem $-u^{\prime \prime}+u=f$ in $(0,1)$ with $u(0)=u(1)=0$, which in VF requires to compute $u \in H^{1}(0,1)$ satisfying the boundary conditions and such that

$$
\begin{equation*}
\int_{0}^{1}\left[u^{\prime}(x) v^{\prime}(x)+u(x) v(x)\right] d x=\int_{0}^{1} f(x) v(x) d x \tag{1.48}
\end{equation*}
$$

Suitable spaces for the Galerkin approximation are, for example,

- \mathcal{P}_{k} : The polynomials of degree up to k.
- \mathcal{F}_{k} : The space generated by the functions $\phi^{m}(x)=\sin (m \pi x), m=1,2, \ldots, k$.

Exo. 1.19 Show that $a(\cdot, \cdot)$ is continuous and strongly coercive over $V=H^{1}(0,1)$ with the norm

$$
\|w\|_{V} \stackrel{\text { def }}{=}\left[\int_{0}^{1}\left[w^{\prime}(x)^{2}+w(x)^{2}\right] d x\right]^{\frac{1}{2}}
$$

Exo. 1.20 Build a small program in Matlab or Octave (or something else) that solves the Galerkin approximation of problem (1.48) considering $f=\delta_{1 / 4}$ and the spaces \mathcal{P}_{k} and/or \mathcal{F}_{k}, for some values of k. Compare the results to the analytical solution building plots of u and u_{h}. Also, build graphs of $\left\|u-u_{h}\right\|$ vs k.

In general, however, the construction of spaces of global basis functions, as the ones above, is not practical because it leads to dense matrices. In the next chapter we will introduce the spaces of the FEM, which are characterized by having bases with small support and thus lead to sparse matrices.

Exercises

Reading assignment: Read Chapter 1 of Duran's notes (all of it).

Exo. 1.21 Carry out the "easy computation" that shows that $\underline{\underline{A}}$ is the tridiagonal matrix such that the diagonal elements are $2 / h+2 h / 3$ and the extra-diagonal elements are $-\overline{1} / h+h / 6$ (Durán, page 3).

Exo. 1.22 Can a symmetric bilinear form be weakly coercive but not strongly coercive?
Exo. 1.23 To what variational formulation and what differential formulation corresponds the following extremal formulation?
Find $u \in V, V$ consisting of functions that are smooth in $(0,1 / 2)$ and $(1 / 2,1)$ but can exhibit a (bounded) discontinuity at $x=1 / 2$, that minimizes the function

$$
\begin{equation*}
J(w)=\int_{0}^{1}\left[w^{\prime}(x)^{2}+2 w(x)^{2}\right] d x+4[w(1 / 2+)-w(1 / 2-)]^{2}-\int_{0}^{1 / 2} 7 w(x) d x-9 w(0) \tag{1.49}
\end{equation*}
$$

where $w(1 / 2 \pm)$ represent the values on each side of the discontinuity. Notice that the space V (is it a vector space really?) has no boundary condition imposed. What are the boundary conditions of the DF at $x=0$ and $x=1$?

Exo. 1.24 Consider the bilinear form

$$
a(u, v)=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x
$$

Prove that this form is not strongly coercive in $H^{1}(0,1)$ considering the norm

$$
\|w\|_{H^{1}} \stackrel{\text { def }}{=}\left\{\int_{0}^{1}\left[u^{\prime}(x)^{2}+u(x)^{2}\right] d x\right\}^{\frac{1}{2}}
$$

and that it is, with the same norm, in

$$
H_{0}^{1}(0,1) \stackrel{\text { def }}{=}\left\{w \in H^{1}(0,1), w(0)=w(1)=0\right\}
$$

Worked example

Let us consider a heat transfer problem within a wall of cross-section $S \times 0 \subset \mathbb{R}^{3}$, which has one face $\left(\Gamma_{L}\right)$ at temperature T_{L}, the opposite face $\left(\Gamma_{R}\right)$ at T_{R} and the remaining faces Γ_{A} adiabatical (no heat flux). Inside the wall the material satisfies

$$
\begin{equation*}
-\nabla \cdot(\alpha \nabla T)=f \tag{1.50}
\end{equation*}
$$

where f is a source (which could come from radiation heating for example). Two rods of highly conductive material (conductivity $\gg \alpha$), which define internal boundaries Γ_{1} and Γ_{2}, have been inserted in the wall to improve the temperature distribution. The problem is assumed symmetrical along x_{3}, rendering it 2D. The domain Ω of 1.50 thus consists of S minus the cross sections of the rods, its boundary $\partial \Omega$ is the union of $\Gamma_{L}, \Gamma_{R}, \Gamma_{A}, \Gamma_{1}$ and Γ_{2}.
Some of the boundary conditions are clear:

$$
\begin{equation*}
\left.T\right|_{\Gamma_{L}}=T_{L},\left.\quad T\right|_{\Gamma_{R}}=T_{R},\left.\quad \alpha \nabla T \cdot \mathbf{n}\right|_{\Gamma_{A}}=0 \tag{1.51}
\end{equation*}
$$

Those on Γ_{1} and Γ_{2} not so much. Because of the high conductivity of the rods we can assume that

$$
\begin{equation*}
\left.T\right|_{\Gamma_{1}}=T_{1} \in \mathbb{R},\left.\quad T\right|_{\Gamma_{2}}=T_{2} \in \mathbb{R}, \tag{1.52}
\end{equation*}
$$

but we do not know a priori the values of T_{1} and T_{2}. Because of the symmetry along x_{3}, we can assume that there is no net heat flux across Γ_{1} or Γ_{2}, i.e.,

$$
\begin{equation*}
\int_{\Gamma_{i}} \alpha \nabla T \cdot \mathbf{n}=0, \quad i=1,2 . \tag{1.53}
\end{equation*}
$$

That is all we can say about the boundary conditions at Γ_{1} and Γ_{2} (can you think of anything else?).

We now introduce an affine space which only incorporates the Dirichlet conditions of the problem,

$$
\begin{equation*}
V_{D}=\left\{v \in H^{1}(\Omega),\left.v\right|_{\Gamma_{L}}=T_{L},\left.v\right|_{\Gamma_{R}}=T_{R},\left.v\right|_{\Gamma_{1}}=T_{1},\left.v\right|_{\Gamma_{2}}=T_{2}, \text { where } T_{L}, T_{R} \text { are given and } T_{1}, T_{2} \in \mathbb{R}\right\} \tag{1.54}
\end{equation*}
$$

and consider the following optimization problem:

Find T that minimizes, over V_{D}, the function

$$
\begin{equation*}
J(v)=\frac{1}{2} \int_{\Omega} \alpha \nabla v \cdot \nabla v-\int_{\Omega} f v . \tag{1.55}
\end{equation*}
$$

Prop. 1.15 There exists a unique minimum T of J in V_{D}. Further,

- it satisfies the differential equation (1.50) and the boundary conditions (1.51-(1.53),
- it satisfies the variational formulation

$$
\begin{equation*}
a(T, w)=\ell(w) \quad \forall w \in V_{0} \tag{1.56}
\end{equation*}
$$

where $a(v, w)=\int_{\Omega} \alpha \nabla v \cdot \nabla w, \ell(w)=\int_{\Omega} f w$ and
$V_{0}=\left\{v \in H^{1}(\Omega),\left.v\right|_{\Gamma_{L}}=0,\left.v\right|_{\Gamma_{R}}=0,\left.v\right|_{\Gamma_{1}}=T_{1},\left.v\right|_{\Gamma_{2}}=T_{2}\right.$, where T_{L}, T_{R} are given and $\left.T_{1}, T_{2} \in \mathbb{R}\right\}$,

Proof of the proposition: We first establish 1.56). For this, from T being a minimizer we know that

$$
\begin{equation*}
J(T) \leq J(T+\epsilon w) \tag{1.58}
\end{equation*}
$$

whenever $T+\epsilon w$ is in V_{D}. It is not difficult to see that this happens iff $w \in V_{0}, \epsilon$ being an arbitrary real number. By taking $v=T+\epsilon w$ in 1.55 and expanding the product we arrive at

$$
J(T+\epsilon w)=J(T)+\epsilon(a(T, w)-\ell(w))+\frac{1}{2} \epsilon^{2} a(w, w)
$$

which satisfies (1.58) iff the claim (1.56) holds true.
Next, we verify that $a(\cdot, \cdot)$ is a bilinear form that is continuous in $H^{1}(\Omega)$ and and strongly coercive in $V_{0} \subset H^{1}(\Omega)$. For the latter, we use Poincaré's inequality

$$
\|w\|_{L_{2}(\Omega)} \leq c\|\nabla w\|_{L^{2}(\Omega)}, \quad \forall w \in H^{1}(\Omega),\left.w\right|_{\Gamma_{L} \cup \Gamma_{R}}=0 .
$$

This tells us that the solution of both the optimization problem and the variational problem exists and is unique.
To prove the first claim, we begin by noticing that, since $T \in V_{D}$, there exist two numbers T_{1} and T_{2} that make (1.52) to hold. Integration by parts of (1.56) then leads us to

$$
\int_{\Omega}[-\nabla \cdot(\alpha \nabla T)-f] w+\int_{\Gamma_{A}}[\alpha \nabla T \cdot \mathbf{n}] w+\int_{\Gamma_{1}}[\alpha \nabla T \cdot \mathbf{n}] w+\int_{\Gamma_{2}}[\alpha \nabla T \cdot \mathbf{n}] w=0 .
$$

From the first term we conclude 1.50 by taking arbitrary w in $\mathcal{D}(\Omega)$. From $T \in V_{D}$ and the second term we conclude (1.51) noticing that for any $\varphi \in \mathcal{D}\left(\Gamma_{A}\right)$ there exists $w \in V_{0}$ such that $\left.w\right|_{\Gamma_{A}}=\varphi$, $\left.w\right|_{\Gamma_{1}}=\left.w\right|_{\Gamma_{2}}=0$. On the other hand, we cannot conclude that $\alpha \nabla T \cdot \mathbf{n}$ is zero on Γ_{1} (or Γ_{2}), because w is constant there. The constant is however arbitrary, allowing us to conclude (1.53).

Let us now exploit the linearity of the problem. We define three functions θ_{0}, θ_{1} and θ_{2} as the unique solutions of

- $\theta_{0} \in V_{D 0}$ such that $a\left(\theta_{0}, w\right)=\ell(w), \forall w \in V_{00}$, where

$$
V_{D 0}=\left\{w \in V_{D},\left.w\right|_{\Gamma_{i}}=0, i=1,2\right\}, \quad V_{00}=\left\{w \in V_{0},\left.w\right|_{\Gamma_{i}}=0, i=1,2\right\}
$$

- $\theta_{i} \in V_{i}, i=1,2$ such that $a\left(\theta_{i}, w\right)=0, \forall w \in V_{00}$, where

$$
V_{i}=\left\{w \in V_{0},\left.w\right|_{\Gamma_{i}}=1 \text { and }\left.w\right|_{\Gamma_{j}}=0 \text { if } j \neq i\right\}
$$

Notice that all θ_{i} 's are solutions of standard problems, with Dirichlet conditions on $\Gamma_{L} \cup \Gamma_{R} \cup \Gamma_{1} \cup \Gamma_{2}$ and Neumann conditions on Γ_{A}.
We remark that any $w \in V_{0}$ can be uniquely written as

$$
\begin{equation*}
w=w_{0}+W_{1} \phi_{1}+W_{2} \phi_{2} \tag{1.59}
\end{equation*}
$$

where $w_{0} \in V_{00}, W_{i} \in \mathbb{R}$ and ϕ_{i} is a fixed, arbitrary element of V_{i}.
Prop. 1.16 The solution T of the problem satisfies

$$
T=\theta_{0}+T_{1} \theta_{1}+T_{2} \theta_{2}
$$

where T_{1} and T_{2} are the solution to the linear system

$$
\begin{align*}
& a\left(\theta_{1}, \phi_{1}\right) T_{1}+a\left(\theta_{2}, \phi_{1}\right) T_{2}=\ell\left(\phi_{1}\right)-a\left(\theta_{0}, \phi_{1}\right), \tag{1.60}\\
& a\left(\theta_{1}, \phi_{2}\right) T_{1}+a\left(\theta_{2}, \phi_{2}\right) T_{2}=\ell\left(\phi_{2}\right)-a\left(\theta_{0}, \phi_{2}\right) . \tag{1.61}
\end{align*}
$$

Further, the coefficients of this system are independent of the particular choice of ϕ_{1} and ϕ_{2}

Proof of the proposition:

Plugging $\tilde{T}\left(T_{1}, T_{2}\right)=\theta_{0}+T_{1} \theta_{1}+T_{2} \theta_{2}$ into the variational formulation we see that $a\left(\tilde{T}\left(T_{1}, T_{2}\right), w\right)=\ell(w)$ for all $w \in V_{00}$ irrespective of the values T_{1}, T_{2}. It only remains to show that the same holds for $w=\phi_{1}$ and $w=\phi_{2}$, which happens iff the linear system in the proposition holds true. The independence of ϕ_{i} is proved noticing that any other choice $\tilde{\phi}_{i} \in V_{i}$ leads to coefficients $a\left(\theta_{j}, \tilde{\phi}_{i}\right)$ that satisfy

$$
a\left(\theta_{j}, \tilde{\phi}_{i}\right)=a\left(\theta_{j}, \phi_{i}\right)+a\left(\theta_{j}, \tilde{\phi}_{i}-\phi_{i}\right)
$$

and the second term on the right is zero because $\tilde{\phi}_{i}-\phi_{i} \in V_{00}$.

Computation of the coefficients of the linear system:

Notice that $-\nabla \cdot\left(\alpha \nabla \theta_{0}\right)=f$, and that $-\nabla \cdot\left(\alpha \nabla \theta_{j}\right)=0, j=1,2$.

$$
\begin{gathered}
A_{i j}=a\left(\theta_{j}, \phi_{i}\right)=\int_{\Omega} \alpha \nabla \theta_{j} \cdot \nabla \phi_{i}=\int_{\partial \Omega} \alpha \nabla \theta_{j} \cdot \mathbf{n} \phi_{i}=\int_{\Gamma_{i}} \alpha \nabla \theta_{j} \cdot \mathbf{n}, \\
b_{i}=\int_{\Omega} f \phi_{i}-\int_{\Omega} \alpha \nabla \theta_{0} \cdot \nabla \phi_{i}=-\int_{\Gamma_{i}} \alpha \nabla \theta_{0} \cdot \mathbf{n} .
\end{gathered}
$$

The arbitrariness of ϕ_{i} is evident in the rightmost expressions.

Galerkin approximation: Let us now consider a finite element space $W^{h} \subset H^{1}(\Omega)$. We can thus define $V_{D}^{h}=V_{D} \cap W^{h}$ (assuming T_{L} and T_{R} to be simple enough, or taking interpolations of them), $V_{0}^{h}=V_{0} \cap W^{h}$, $V_{D 0}^{h}=V_{D 0} \cap W^{h}, V_{00}^{h}=V_{00} \cap W^{h}, V_{i}^{h}=V_{i} \cap W^{h}$. Then the discrete solution $T^{h} \in V_{D}^{h}$ exists, is unique (continuity and strong coercivity are inherited by the subspaces), satisfies $a\left(T^{h}, w\right)=\ell(w)$ for all $w \in V_{0}^{h}$ and can be written as

$$
T^{h}=\theta_{0}^{h}+T_{1}^{h} \theta_{1}^{h}+T_{2}^{h} \theta_{2}^{h}
$$

where $\theta_{0}^{h} \in V D 0^{h}, \theta_{i}^{h} \in V_{i}^{h}, i=1,2$, satisfy

$$
a\left(\theta_{0}^{h}, w\right)=\ell(w), \quad a\left(\theta_{i}^{h}, w\right)=0, \quad \forall w \in V_{00}^{h} .
$$

The linear system to compute T_{1}^{h} and T_{2}^{h} is the discrete version of 1.60 - 1.61 , putting the superscript h appropriately.
Notice that in this case

$$
\begin{gathered}
A_{i j}^{h}=a\left(\theta_{j}^{h}, \phi_{i}^{h}\right)=\int_{\Omega} \alpha \nabla \theta_{j}^{h} \cdot \nabla \phi_{i}^{h} \neq \int_{\Gamma_{i}} \alpha \nabla \theta_{j}^{h} \cdot \mathbf{n}=\tilde{A}_{i j}^{h}, \\
b_{i}^{h}=\int_{\Omega} f \phi_{i}^{h}-\int_{\Omega} \alpha \nabla \theta_{0}^{h} \cdot \nabla \phi_{i}^{h} \neq-\int_{\Gamma_{i}} \alpha \nabla \theta_{0}^{h} \cdot \mathbf{n}=\tilde{b}_{i}^{h},
\end{gathered}
$$

but the arbitrariness of $\phi_{i}^{h} \in V_{i}^{h}$ still holds.

Convergence of the Galerkin approximation:

From Cea's lemma we know that

$$
\begin{aligned}
& \left\|\theta_{0}-\theta_{0}^{h}\right\|_{W} \leq C \min _{v_{h} \in V_{D 0}^{h}}\left\|\theta_{0}-v_{h}\right\|_{W}, \\
& \left\|\theta_{j}-\theta_{j}^{h}\right\|_{W} \leq C \min _{v_{h} \in V_{i}^{h}}\left\|\theta_{j}-v_{h}\right\|_{W},
\end{aligned}
$$

where $W=H^{1}(\Omega)$. The minima above can be shown to be $\leq C h^{p}$, with p the polynomial degree of the FE space.
Then, if T_{1}^{h} and T_{2}^{h} approximate T_{1} and T_{2} one has convergence of T^{h} to T. Denoting $\underline{z}=\left(T_{1}, T_{2}\right)^{T}$ and $\underline{z}^{h}=\left(T_{1}^{h}, T_{2}^{h}\right)^{T}$ we have

$$
\underline{z}-\underline{z}^{h}=A^{-1} \underline{b}-\left(A^{h}\right)^{-1} \underline{b}^{h}=A^{-1}\left(\underline{b}-\underline{b}^{h}\right)+\left[A^{-1}-\left(A^{h}\right)^{-1}\right] \underline{b}^{h} \leq c\left[\left\|A-A^{h}\right\|+\left\|\underline{b}-\underline{b}^{h}\right\|\right]
$$

(constant c not the same as before, but independent of $h!$). What this inequality tells us is that the values of T_{1} and T_{2} will be approximated with the same order that the coefficients of the linear system are.
Prop. 1.17 The coefficients $A_{i j}^{h}$ and b_{i}^{h} satisfy

$$
\begin{align*}
\left|A_{i j}-A_{i j}^{h}\right| & \leq c h^{2 p} \tag{1.62}\\
\left|b_{i}-b_{i}^{h}\right| & \leq c h^{2 p} \tag{1.63}
\end{align*}
$$

and thus $\left|T_{1}-T_{1}^{h}\right| \leq c h^{2 p}$ and $\left|T_{2}-T_{2}^{h}\right| \leq c h^{2 p}$.
Proof: We take $\phi_{i}=\theta_{i}^{h} \in V_{i}^{h} \subset V_{i}$.

$$
A_{i j}-A_{i j}^{h}=a\left(\theta_{j}-\theta_{j}^{h}, \theta_{i}^{h}\right)=a\left(\theta_{i}^{h}, \theta_{j}-\theta_{j}^{h}\right)=-a\left(\theta_{i}-\theta_{i}^{h}, \theta_{j}-\theta_{j}^{h}\right),
$$

where we have used that $a\left(\theta_{i}, \theta_{j}-\theta_{j}^{h}\right)=0$ because $\theta_{j}-\theta_{j}^{h} \in V_{00}$. Thus,

$$
\left|A_{i j}-A_{i j}^{h}\right| \leq N_{a}\left\|\theta_{i}-\theta_{i}^{h}\right\|_{W}\left\|\theta_{j}-\theta_{j}^{h}\right\|_{W} \leq c h^{2 p} .
$$

Summary and miniproject:

The problem can be approximated by

1. computing $\theta_{0}^{h}, \theta_{1}^{h}$ and θ_{2}^{h} by solving three standard problems with Dirichlet/Neumann conditions;
2. performing the six integrals $A_{i j}^{h}$ and b_{i}^{h};
3. solving $A^{h} \underline{z}^{h}=\underline{b}^{h}$ for T_{1}^{h} and T_{2}^{h};
4. collecting the results to get

$$
T^{h}=\theta_{0}^{h}+T_{1}^{h} \theta_{1}^{h}+T_{2}^{h} \theta_{2}^{h}
$$

The miniproject is to implement this procedure in FEniCS.

1.4 Variational formulations in 2D and 3D

The ideas are similar, but we need another integration by parts formula:
Lemma 1.18 Let $f: \Omega \rightarrow \mathbb{R}$ be an integrable function, with Ω a Lipschitz bounded open set in \mathbb{R}^{d} and $\partial_{i} f$ integrable over Ω, then

$$
\begin{equation*}
\int_{\Omega} \partial_{i} f d \Omega=\int_{\partial \Omega} f n_{i} d \Gamma \tag{1.64}
\end{equation*}
$$

Notice that this implies that

$$
\begin{equation*}
\int_{\Omega} \nabla \cdot \mathbf{v} d \Omega=\int_{\partial \Omega} \mathbf{v} \cdot \check{\mathbf{n}} d \Gamma \tag{1.65}
\end{equation*}
$$

and that

$$
\begin{equation*}
\int_{\Omega} v \nabla^{2} u d \Omega=\int_{\partial \Omega} v \nabla u \cdot \check{\mathbf{n}} d \Gamma-\int_{\Omega} \nabla v \cdot \nabla u d \Omega \tag{1.66}
\end{equation*}
$$

We will also introduce the notation
Def. 1.19 The Lebesgue space $L^{p}(\Omega)$, where $p \geq 1$, is the set of all functions such that their $L^{p}(\Omega)$-norm is finite,

$$
\begin{equation*}
\|w\|_{L^{p}(\Omega)} \stackrel{\text { def }}{=}\left[\int_{\Omega}|w(x)|^{p} d x\right]^{\frac{1}{p}} \tag{1.67}
\end{equation*}
$$

Exa. 1.20 (Poisson equation) Consider the $D F$

$$
\begin{equation*}
-\nabla^{2} u=f \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega \tag{1.68}
\end{equation*}
$$

where ∇ is the gradient operator and $\nabla^{2} u=\sum_{i=1}^{d} \partial_{i i}^{2} u$.
A suitable variational formulation is: Find $u \in V$ such that

$$
a(u, v)=\ell(v) \quad \forall v \in V
$$

where

$$
\begin{gather*}
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \Omega, \quad \ell(v)=\int_{\Omega} f v d \Omega \quad \text { and } \tag{1.69}\\
V=H_{0}^{1}(\Omega)=\left\{w \in L^{2}(\Omega), \partial_{i} w \in L^{2}(\Omega) \forall i=1, \ldots, d, w=0 \text { on } \partial \Omega\right\}
\end{gather*}
$$

which is a Hilbert space with the norm

$$
\begin{equation*}
\|w\|_{H^{1}}=\left(\|w\|_{L^{2}}^{2}+\|\nabla w\|_{L^{2}}^{2}\right)^{\frac{1}{2}} \tag{1.70}
\end{equation*}
$$

Exo. 1.25 Prove that if u is a solution of the DF, then it solves the VF.
Exo. 1.26 Prove that $a(\cdot, \cdot)$ is continuous in V. Prove that $\ell(\cdot)$ is continuous in V if $f \in L^{2}(\Omega)$. Is this last condition necessary?

Exo. 1.27 Determine the EF of the Poisson problem.
Exo. 1.28 Is $a(\cdot, \cdot)$ strongly coercive?
Exo. 1.29 Let Ω be the unit circle. Determine for which exponents γ is the function r^{γ} in $H^{1}(\Omega)$.
Exo. 1.30 Assume that the domain Ω is divided into subdomains Ω_{1} and Ω_{2} by a smooth internal boundary Γ. Let V consist of functions such that their restrictions to Ω_{i} belong to $H^{1}\left(\Omega_{i}\right)$ and that are continuous across Γ. Determine the VF corresponding to the following EF:Find $u \in V$ that minimizes

$$
J(w)=\int_{\Omega_{1}} \frac{w^{2}+\|\nabla w\|^{2}}{2} d \Omega+\int_{\Omega_{2}} \frac{3\|\nabla w\|^{2}}{2} d \Omega+\int_{\Gamma}\left(5 w^{2}-w\right) d \Gamma
$$

over V.
Exo. 1.31 Determine the DF that corresponds to the previous exercise.

2 Finite element spaces and interpolation

The basic reference for what follows is Ciarlet [5]. Basically, the idea is to define finite element spaces that are locally polynomial and that contain complete polynomials of degree k in the space variables. With a judicious choice of the nodes (degrees of freedom), these piecewise polynomial functions can be made continuous by construction (if needed).
In the previous chapter it was shown that if there exists $\beta>0$ such that, for all $w_{h} \in V_{h}$ and all $h>0$,

$$
\begin{equation*}
\sup _{v_{h} \in V_{h}} \frac{a\left(w_{h}, v_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq \beta\left\|w_{h}\right\|_{V} \tag{2.1}
\end{equation*}
$$

then there exists $C>0$ such that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V} \leq C \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V} \tag{2.2}
\end{equation*}
$$

Notice that (2.1) is automatically satisfied if the bilinear form $a(\cdot, \cdot)$ is strongly coercive.
Denoting by $\mathcal{I}_{h} u$ the element-wise Lagrange interpolant of $u \in V \cap C^{0}(\bar{\Omega})$, it is obvious from (2.2) that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V} \leq C\left\|u-\mathcal{I}_{h} u\right\|_{V} \tag{2.3}
\end{equation*}
$$

The goal of this section is to introduce estimates of the interpolation error $\left\|u-\mathcal{I}_{h} u\right\|_{V}$ for some spaces V that appear in the applications.

2.1 Basic definitions

Def. 2.1 A finite element in \mathbb{R}^{n} is a triplet $\left(K, P_{K}, \Sigma_{K}\right)$ where
(i) K is a closed (bounded) subset of \mathbb{R}^{n} with a nonempty interior and Lipschitz boundary;
(ii) P_{K} is a finite-dimensional space of functions defined in K, of dimension m;
(iii) Σ_{K} is a set of m linear forms $\left\{\sigma_{i}\right\}_{i=1, \ldots, m}$ which is P_{K}-unisolvent; i.e., if $p \in P_{K}$ then

$$
\sigma(p)=0 \quad \forall \sigma \in \Sigma_{K} \quad \Rightarrow \quad p=0
$$

It is implicitly assumed that the finite element is viewed with a larger function space $V(K)$ associated to it, in general a Sobolev space. Each $\sigma_{i} \in \Sigma_{K}$ is then assumed to be extended as an element of $V(K)^{\prime}$.

Prop. 2.2 There exists a basis $\left\{\mathcal{N}_{i}\right\}$ such that $\sigma_{i}\left(\mathcal{N}_{j}\right)=\delta_{i j}$.
Whenever needed, we will write $\sigma_{K, i}$ instead of σ_{i} and $\mathcal{N}_{K, i}$ instead of \mathcal{N}_{i} to make explicit the element K being considered.

Def. 2.3 If the degrees of freedom correspond to nodal values of the functions in $V(K)$ the element is called a Lagrange finite element. In this case, there exist X^{1}, \ldots, X^{m} in K such that $\sigma_{i}(v)=v\left(X^{i}\right)$ for all $i=1, \ldots, m$.

Exa. 2.4 P_{k} elements.
Finite elements are usually built by mapping a unique master element ($\widehat{K}, \widehat{P}, \widehat{\Sigma}$) onto (K, P_{K}, Σ_{K}) in a clever way. We denote by $\left\{\widehat{\sigma}_{i}\right\}$ the degrees of freedom of the master, and $\left\{\widehat{\mathcal{N}}_{i}\right\}$ the corresponding basis functions.
One begins by defining a linear bijective transformation

$$
\begin{equation*}
T_{K}: V(K) \rightarrow V(\widehat{K}), \tag{2.4}
\end{equation*}
$$

mapping functions defined on K onto functions defined on \widehat{K}. Its inverse, T_{K}^{-1} allows one to build P_{K}, i.e.,

$$
\begin{equation*}
P_{K}=\left\{T_{K}^{-1} \widehat{p}, \widehat{p} \in \widehat{P}\right\} . \tag{2.5}
\end{equation*}
$$

Exo. 2.1 Two elements \widehat{K}, K, are said to be affine equivalent if there exists a bijective mapping F_{K} : $\widehat{K} \rightarrow K$ of the form

$$
\begin{equation*}
F_{K}(\hat{x})=A_{K} \hat{x}+b . \tag{2.6}
\end{equation*}
$$

Show that if $\widehat{P}=\mathbb{P}_{k}$ and T_{K} is defined by

$$
\begin{equation*}
\left(T_{K} v\right)(\hat{x})=v\left(F_{K}(\hat{x})\right) \tag{2.7}
\end{equation*}
$$

then $P_{K}=\mathbb{P}_{k}$.
This preservation of polynomial spaces makes the analysis of affine-equivalent elements much easier, but if F_{K} is not affine one still uses (2.7) for the definition of P_{K} in Lagrange finite elements (P_{K} will not consist of polynomials).

Prop. 2.5 If $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ is a master finite element and $T_{K}: V(K) \rightarrow V(\widehat{K})$ is linear and bijective, then the triplet $\left(K, P_{K}, \Sigma_{K}\right)$ given by

$$
\begin{align*}
K & =F_{K}(\widehat{K}) \tag{2.8}\\
P_{K} & =T_{K}^{-1} \widehat{P} \tag{2.9}\\
\Sigma_{K} & =\left\{\sigma_{i} \mid \sigma_{i}(p)=\alpha_{i} \widehat{\sigma}_{i}\left(T_{K} p\right), \forall p \in P_{K}\right\} \tag{2.10}
\end{align*}
$$

(where all α_{i} are non-zero) is a finite element. Further, the basis functions on K are given by

$$
\begin{equation*}
\mathcal{N}_{i}=\frac{1}{\alpha_{i}} T_{K}^{-1} \widehat{\mathcal{N}}_{i} . \tag{2.11}
\end{equation*}
$$

In the case of Lagrange finite elements one takes $\alpha_{i}=1$ and obtains

$$
\begin{equation*}
X^{i}=F_{K}\left(\hat{X}^{i}\right), \quad \sigma_{i}(p)=p\left(X^{i}\right)=p\left(F_{K}\left(\hat{X}^{i}\right)\right), \quad \mathcal{N}_{i}\left(F_{K}(\hat{x})\right)=\widehat{\mathcal{N}}_{i}(\hat{x}) \tag{2.12}
\end{equation*}
$$

Exo. 2.2 Prove the previous proposition.
Hint: One has to assume that \widehat{K} has Lipschitz boundary and that F_{K} is regular enough for $F_{K}(\widehat{K})$ to have Lipschitz boundary too. Because T_{K} is linear bijective, P_{K} will be a vector space of the same dimension as \widehat{P}. It remains to show that Σ_{K} is unisolvent. Let $p \in P_{K}$ such that $\sigma_{i}(p)=0$ for all $i=1, \ldots, m$. Then $\widehat{\sigma}_{i}\left(T_{K} p\right)=0$ for all i and thus $T_{K} p=0$ because $\widehat{\Sigma}$ is unisolvent. The last assertion follows from $\sigma_{i}\left(\mathcal{N}_{j}\right)=\delta_{i j}$ and the case of Lagrange finite elements is a particular case of the former.

A case in which the scaling factors α_{i} in the previous proposition are needed is that of Hermite finite elements.

Exo. 2.3 Build a basis for a cubic 1D Hermite finite element. For this, let K be an interval $[a, b]$, let $V(K)=H^{2}(K), P_{K}=\mathbb{P}_{3}$ (cubic polynomials), and

$$
\begin{equation*}
\Sigma_{K}=\left\{\theta_{a}, \theta_{b}, \eta_{a}, \eta_{b}\right\}, \tag{2.13}
\end{equation*}
$$

where $\theta_{a}(v)=v(a), \theta_{b}(v)=v(b), \eta_{a}(v)=v^{\prime}(a)$ and $\eta_{b}(v)=v^{\prime}(b)$. Write down the basis functions. Now consider the master element $\widehat{K}=[-1,1]$ and the affine mapping

$$
\begin{equation*}
F_{K}(\hat{x})=a+\frac{b-a}{2}(x+1) . \tag{2.14}
\end{equation*}
$$

Defining T_{K} as in 2.7, find the factors $\left\{\alpha_{i}\right\}$ so that σ_{i} relates $\widehat{\sigma}_{i}$ according to 2.10. Write down the basis functions $\widehat{\mathcal{N}}$ and verify (2.11).

Raviart-Thomas finite element: The interpolation of vector fields in K with Lagrange finite elements is usually done one component at a time with the tools developed for scalar functions. A notable exception is the Raviart-Thomas element, very popular to approximate velocity fields in porous media. In this case $V(K)$ and P_{K} consist of vector fields and cannot be interpolated one component at a time.

Exo. 2.4 Let K be a simplex (triangle in 2D, tetrahedron in 3D), and let the space P_{K} be defined as

$$
\begin{equation*}
P_{K}=\mathbb{R} \mathbb{T}_{0}=\left(\mathbb{P}_{0}\right)^{d} \oplus x \mathbb{P}_{0} \tag{2.15}
\end{equation*}
$$

which is of dimension $d+1$. Defining as degrees of freedom the fluxes across each face (edge in 2D),

$$
\begin{equation*}
\sigma_{i}(p)=\int_{F_{i}} p \cdot \check{n} \tag{2.16}
\end{equation*}
$$

prove that $\left(K, P_{K}, \Sigma_{K}=\left\{\sigma_{i}\right\}\right)$ is a finite element and that

$$
\begin{equation*}
\mathcal{N}_{i}(x)=\frac{1}{d \operatorname{meas}(K)}\left(x-a_{i}\right) \tag{2.17}
\end{equation*}
$$

where a_{i} is the vertex opposite to F_{i}.
The space V_{K} is in this case $H(\operatorname{div}, K)$ of vector fields in $L^{2}(K)^{d}$ with divergence in $L^{2}(K)$.
To obtain the RT0 element from a master element one needs a transformation $T_{K}: V(K) \rightarrow V(\hat{K})$ such that $P_{K}=T_{K}^{-1} \hat{P}$ and $\sigma_{i}(p)=\alpha_{i} \hat{\sigma}_{i}\left(T_{K} p\right)$ for all $p \in P_{K}$.
Let

$$
\begin{equation*}
\hat{\sigma}_{i}(\hat{p})=\int_{\hat{F}_{i}} \hat{p} \cdot \hat{n} \hat{d F} \tag{2.18}
\end{equation*}
$$

and define the Piola transformation

$$
\begin{equation*}
\hat{v}(\hat{x})=T_{K} v(\hat{x})=\operatorname{det}\left(A_{K}\right) A_{K}^{-1} v\left(F_{K}(\hat{x})\right) . \tag{2.19}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{\sigma}_{i}(\hat{p})=\operatorname{det}\left(A_{K}\right) \int_{\hat{F}_{i}}\left(A_{K}^{-1} p\left(F_{K}(\hat{x})\right)\right) \cdot \hat{n} \hat{d F}=\int_{\hat{F}_{i}} p\left(F_{K}(\hat{x})\right) \cdot\left(\operatorname{det}\left(A_{K}\right) A_{K}^{-T} \hat{n} \hat{d F}\right) \tag{2.20}
\end{equation*}
$$

It is well-known that $\hat{n} \hat{d F}$ transforms as

$$
\begin{equation*}
\check{n} d F=\operatorname{det}\left(A_{K}\right) A_{K}^{-T} \hat{n} \hat{d F}, \tag{2.21}
\end{equation*}
$$

so that, changing the integration variable to $x=F_{K}(\hat{x})$,

$$
\begin{equation*}
\hat{\sigma}_{i}(\hat{p})=\int_{F_{i}} p(x) \cdot \check{n} d F=\sigma_{i}(p) . \tag{2.22}
\end{equation*}
$$

The RT0 element is thus obtained from the master element using the Piola transformation as T_{K} and $\alpha_{i}=1$.

Def. 2.6 The local interpolation operator $\mathcal{I}_{K}: V(K) \rightarrow P_{K}$ is defined as

$$
\mathcal{I}_{K} v=\sum_{i=1}^{m} \sigma_{i}(v) \mathcal{N}_{i} \quad \forall v \in V(K)
$$

Exo. 2.5 This interpolation is indeed a projection:

$$
\begin{equation*}
\mathcal{I}_{K} p=p \quad \text { for all } p \in P_{K} \tag{2.23}
\end{equation*}
$$

Exo. 2.6 It is also preserved by composition with the T_{K} mapping:

$$
\begin{equation*}
\widehat{\mathcal{I}_{K} v}=T_{K} \mathcal{I}_{K} v=\mathcal{I}_{\widehat{K}} T_{K} v=\mathcal{I}_{\widehat{K}} \widehat{v}, \quad \text { for all } v \in V(K) \tag{2.24}
\end{equation*}
$$

We now turn to the problem of estimating the interpolation error, i.e., $v-\mathcal{I}_{K} v$.

2.2 Local $L^{\infty}(K)$ estimates for P_{1}-triangles

We begin by considering the case of P_{1}-simplices (triangles in 2D, tetrahedra in 3D). It is a good exercise in which the estimates can be derived explicitly. It is also a good excuse to introduce the multi-point Taylor formula.

Theorem 2.7 Let K be a P_{1}-element, h_{K} its diameter and ρ_{K} the radius of the largest ball contained in K. Then, for all $v \in C^{2}(K)$,
(a) $\left\|v-\mathcal{I}_{K} v\right\|_{L^{\infty}(K)} \leq \frac{d^{2} h_{K}^{2}}{2} \max _{|\alpha|=2}\left\|D^{\alpha} v\right\|_{L^{\infty}(K)}$
(b) $\max _{|\alpha|=1}\left\|D^{\alpha}\left(v-\mathcal{I}_{K} v\right)\right\|_{L^{\infty}(K)} \leq \frac{(d+1) d^{2} h_{K}^{2}}{2 \rho_{K}} \max _{|\alpha|=2}\left\|D^{\alpha} v\right\|_{L^{\infty}(K)}$

Proof. Let X^{j} be the position of the j-th node of the element, then

$$
\begin{equation*}
\mathcal{I}_{K} v(x)=\sum_{j=1}^{d+1} v\left(X^{j}\right) \mathcal{N}^{j}(x) \tag{2.25}
\end{equation*}
$$

We now perform a Taylor expansion around x, and evaluate it at X^{j}, obtaining

$$
\begin{equation*}
v\left(X^{j}\right)=v(x)+\sum_{k=1}^{d} \frac{\partial v}{\partial x_{k}}(x)\left(X_{k}^{j}-x_{k}\right)+\frac{1}{2} \sum_{k, \ell=1}^{d} \frac{\partial^{2} v}{\partial x_{k} \partial x_{\ell}}(\xi)\left(X_{k}^{j}-x_{k}\right) \quad\left(X_{\ell}^{j}-x_{\ell}\right) \tag{2.26}
\end{equation*}
$$

where $\xi=\eta X^{j}+(1-\eta) x$ for some $\eta \in[0,1]$. Let us denote by $p^{j}(x)$ the second term in the right-hand side of (2.26), and by $r^{j}(x)$ the third term. By direct inspection we notice that

$$
\left|r^{j}(x)\right| \leq \frac{d^{2} h_{K}^{2}}{2} \max _{|\alpha|=2}\left\|D^{\alpha} v\right\|_{L^{\infty}(K)}
$$

Let us now insert $v\left(X^{j}\right)$ from (2.26) into 2.25) to get

$$
\mathcal{I}_{K} v(x)=\sum_{j=1}^{d+1} v(x) \mathcal{N}^{j}(x)+\sum_{j=1}^{d+1} p^{j}(x) \mathcal{N}^{j}(x)+\sum_{j=1}^{d+1} r^{j}(x) \mathcal{N}^{j}(x)
$$

The first term on the right is equal to $v(x)$ because $\sum_{j} \mathcal{N}^{j}=1$. The second term vanishes, since

$$
\begin{gathered}
\sum_{j=1}^{d+1} \sum_{k=1}^{d} \frac{\partial v}{\partial x_{k}}(x)\left(X_{k}^{j}-x_{k}\right) \mathcal{N}^{j}(x)=\sum_{k=1}^{d} \frac{\partial v}{\partial x_{k}}(x)\left\{\sum_{j=1}^{d+1} X_{k}^{j} \mathcal{N}^{j}(x)-x_{k} \sum_{j=1}^{d+1} \mathcal{N}^{j}(x)\right\}= \\
=\sum_{k=1}^{d} \frac{\partial v}{\partial x_{k}}(x)\left\{x_{k}-x_{k}\right\}=0
\end{gathered}
$$

As a consequence, $v(x)-\mathcal{I}_{K} v(x)=\sum_{j=1}^{d+1} r^{j}(x) \mathcal{N}^{j}(x)$ and thus

$$
\left|v(x)-\mathcal{I}_{K} v(x)\right| \leq \max _{j}\left|r^{j}(x)\right| \sum_{j} \mathcal{N}^{j}(x)=\max _{j}\left|r^{j}(x)\right| \leq \frac{d^{2} h_{K}^{2}}{2} \max _{|\alpha|=2}\left\|D^{\alpha} v\right\|_{L^{\infty}(K)}
$$

implying assertion (a). Now, by differentiating (2.25) and using (2.26) as before, one obtains

$$
\frac{\partial \mathcal{I}_{K} v}{\partial x_{m}}(x)=\sum_{j} v(x) \frac{\partial \mathcal{N}^{j}}{\partial x_{m}}(x)+\sum_{j, k} \frac{\partial v}{\partial x_{k}}(x)\left(X_{k}^{j}-x_{k}\right) \frac{\partial \mathcal{N}^{j}}{\partial x_{m}}(x)+\sum_{j, k} r^{j}(x) \frac{\partial \mathcal{N}^{j}}{\partial x_{m}}(x)
$$

On the right-hand side above, the first term vanishes and the second term happens to be equal to $\frac{\partial v}{\partial x_{m}}(x)$, since

$$
\sum_{j, k} \frac{\partial v}{\partial x_{k}}(x)\left(X_{k}^{j}-x_{k}\right) \frac{\partial \mathcal{N}^{j}}{\partial x_{m}}(x)=\sum_{k} \frac{\partial v}{\partial x_{k}}(x)\left[\sum_{j} X_{k}^{j} \frac{\partial \mathcal{N}^{j}}{\partial x_{m}}(x)-x_{m} \sum_{j} \frac{\partial \mathcal{N}^{j}}{\partial x_{m}}(x)\right]=
$$

$$
=\sum_{k} \frac{\partial v}{\partial x_{k}}(x) \frac{\partial}{\partial x_{m}} \sum_{j} X_{k}^{j} \mathcal{N}^{j}(x)=\sum_{k} \frac{\partial v}{\partial x_{k}}(x) \frac{\partial x_{k}}{\partial x_{m}}=\frac{\partial v}{\partial x_{m}}(x)
$$

As a consequence

$$
\left|\frac{\partial \mathcal{I}_{K} v}{\partial x_{m}}(x)-\frac{\partial v}{\partial x_{m}}(x)\right|=\left|\sum_{j=1}^{d+1} r^{j}(x) \frac{\partial \mathcal{N}^{j}}{\partial x_{m}}(x)\right| \leq \max _{j}\left|r^{j}(x)\right| \sum_{j=1}^{d+1}\left|\frac{\partial \mathcal{N}^{j}}{\partial x_{m}}(x)\right|
$$

The reader can convince himself that the norm of the gradient of a P_{1} basis function, which equals one at one node and zero on the opposite side/face, can never be greater than $\frac{1}{\rho_{K}}$, which immediately leads to assertion (b).

2.3 Local estimates in Sobolev norms

The previous paragraph provides us with an interpolation estimate in the norm $L^{\infty}(K)$ for the function and its first derivatives. Most formulations studied so far, however, have $V=H^{1}(\Omega)$ and we need thus estimates of $u-\mathcal{I}_{K} u$ in the $H^{m}(K)$-norm.

2.3.1 First estimates

A simplistic approach to estimate $\left\|u-\mathcal{I}_{K} u\right\|_{L^{2}(K)}$ for P_{1} elements could be

$$
\left\|u-\mathcal{I}_{K} u\right\|_{L^{2}(K)}^{2}=\int_{K}\left(u-\mathcal{I}_{K} u\right)^{2} \leq|K|\left\|u-\mathcal{I}_{K} u\right\|_{L^{\infty}(K)}^{2} \leq 4|K| h_{K}^{4} \max _{|\alpha|=2}\left\|D^{\alpha} u\right\|_{L^{\infty}(K)}^{2}
$$

so that, with simplified notation,

$$
\begin{equation*}
\left\|u-\mathcal{I}_{K} u\right\|_{L^{2}(K)} \leq 2 \sqrt{|K|} h_{K}^{2}\left\|D^{2} u\right\|_{L^{\infty}(K)} \tag{2.27}
\end{equation*}
$$

Proceeding analogously, we obtain a first estimate for $\left\|\nabla u-\nabla\left(\mathcal{I}_{K} u\right)\right\|_{L^{2}(K)}$,

$$
\left\|\nabla u-\nabla\left(\mathcal{I}_{K} u\right)\right\|_{L^{2}(K)}^{2}=\int_{K} \sum_{i=1}^{d}\left[\frac{\partial\left(u-\mathcal{I}_{K} u\right)}{\partial x_{i}}\right]^{2} \leq|K| \sum_{i=1}^{d}\left\|\frac{\partial\left(u-\mathcal{I}_{K} u\right)}{\partial x_{i}}\right\|_{L^{\infty}(K)}^{2}
$$

which from Th. 2.7 implies

$$
\begin{equation*}
\left\|\nabla u-\nabla\left(\mathcal{I}_{K} u\right)\right\|_{L^{2}(K)} \leq \sqrt{|K|} \frac{6 d h_{K}^{2}}{\rho_{K}}\left\|D^{2} u\right\|_{L^{\infty}(K)} \tag{2.28}
\end{equation*}
$$

Notice that these estimates require $u \in W^{2, \infty}(K)$, which is "too much" regularity.
Exo. 2.7 Consider the function $u(x)=|x|$ and its P_{1} interpolant in the $1 D$ simplex $K=(-h / 2, h / 2)$. Compute $\left\|u-\mathcal{I}_{K} u\right\|_{L^{2}(K)}$ and $\left\|u^{\prime}-\left(\mathcal{I}_{K} u\right)^{\prime}\right\|_{L^{2}(K)}$, compare to the previous estimates, and discuss briefly.

2.3.2 Local interpolation estimates for Lagrange finite elements

Lagrange interpolation implies that the function being interpolated is at least in $C^{0}(K)$, since otherwise its nodal values would not be well defined.
Sobolev's imbedding theorems state that, for bounded convex domain $K, W^{m, p}(K) \subset C^{0}(K)$ if $m p>d$. Taking $p=2$ (Hilbert spaces), m needs to be at least 1 in 1 D and at least 2 in 2D/3D for $H^{m}(K)$ to consist of continuous functions.

Theorem 2.8 Let $\left(K, P_{K}, \Sigma_{K}\right)$ be a Lagrange finite element such that (a) P_{K} contains all polynomials of degree $\leq k$, and (b) it is affine-equivalent to the "master element" ($\widehat{K}, \widehat{P}, \widehat{\Sigma})$. Then, the Lagrange interpolant $\mathcal{I}_{K} u(x)=\sum_{j} u\left(X^{j}\right) \mathcal{N}^{j}(x)$ satisfies

$$
\begin{equation*}
\left\|u-\mathcal{I}_{K} u\right\|_{L^{2}(K)} \leq C h_{K}^{\ell+1}\left\|D^{\ell+1} u\right\|_{L^{2}(K)} \tag{2.29}
\end{equation*}
$$

for all $\ell \leq k$, with C depending on ℓ but not on h_{K} or u.
Similarly,

$$
\begin{equation*}
\left|u-\mathcal{I}_{K} u\right|_{H^{1}(K)}=\left\|\nabla u-\nabla\left(\mathcal{I}_{K} u\right)\right\|_{L^{2}(K)} \leq C \frac{h_{K}^{\ell+1}}{\rho_{K}}\left\|D^{\ell+1} u\right\|_{L^{2}(K)} \tag{2.30}
\end{equation*}
$$

The proof of this theorem is somewhat involved. The interested reader may refer to Ciarlet [5] or to Ern-Guermond [7.

2.4 Global interpolation error

The obtention of global interpolation estimates is quite straightforward, but needs a few definitions.

2.4.1 Considerations about meshes

A mesh \mathcal{T}_{h} of a domain Ω in \mathbb{R}^{d} is a collection of compacts (elements) $K_{i}, i=1, \ldots, N_{e}$, such that

$$
\begin{equation*}
\bar{\Omega}=\bigcup_{i=1}^{N_{e}} K_{i}, \quad \dot{K}_{i} \cap \dot{K}_{j}=\emptyset \text { if } i \neq j, \quad \partial \Omega \subset \bigcup_{i=1}^{N_{e}} \partial K_{i} \tag{2.31}
\end{equation*}
$$

Def. 2.9 The global interpolation operator $\mathcal{I}_{h}: W \rightarrow W_{h}$, where

$$
W=\left\{w \in L^{1}(\Omega),\left.w\right|_{K} \in V(K), \forall K \in \mathcal{T}_{h}\right\}
$$

$$
W_{h}=\left\{w \in L^{1}(\Omega), w \mid K \in P_{K}, \forall K \in \mathcal{T}_{h}\right\}
$$

by

$$
\begin{equation*}
\mathcal{I}_{h} v=\sum_{K \in \mathcal{T}_{h}} \sum_{i} \sigma_{K, i}\left(\left.v\right|_{K}\right) \mathcal{N}_{K, i} \tag{2.32}
\end{equation*}
$$

Notice that, depending on the definition of the degrees of freedom, $\mathcal{I}_{h} v$ may be multiple-valued at element boundaries. The mesh is said to be conforming when $\mathcal{I}_{h} v$ belongs to the Sobolev space W in which the variational problem is posed.

The subscript h refers to the mesh size. In fact, in error estimates one has to consider not a single mesh but a family of meshes indexed by h, and study the error as $h \rightarrow 0$. The geometrical properties of the mesh refinement enter thus into consideration. Generally, the mesh-size parameter h is defined as

$$
\begin{equation*}
h=\max _{K \in \mathcal{T}_{h}} h_{K} \tag{2.33}
\end{equation*}
$$

For global estimates in $H^{m}(\Omega)$ with $m \geq 1$ the ratio $s_{K}=\frac{h_{K}}{\rho_{K}}$ will appear. This motivates the definition of shape-regular (or, simply, regular) meshes:

Def. 2.10 A family of meshes \mathcal{T}_{h}, parameterized by the parameter $h \in H$ (where H is some subset of \mathbb{R}), is said to be shape-regular if there exists $S \in \mathbb{R}$ such that

$$
\begin{equation*}
s_{K}=\frac{h_{K}}{\rho_{K}} \leq S \quad \forall K \in \mathcal{T}_{h}, \quad \forall h \in H \tag{2.34}
\end{equation*}
$$

A shape-regular mesh (rigorously speaking, family of meshes) cannot contain needle-like elements. If the elements are triangles, no angle can tend to zero, the so-called "minimum angle condition". This condition is known not to be necessary for the convergence of the finite element interpolant in $H^{1}(\Omega)$, the necessary one being that no angle in the triangulation tend to π (the so-called "maximum angle condition").

2.4.2 From local to global

The local estimates already obtained can be turned global by simply collecting the contributions from all elements in the mesh.
Consider the estimate of Thm. 2.7(a), to begin with. One can build an $L^{\infty}(\Omega)$ as follows:

$$
\left\|u-\mathcal{I}_{h} u\right\|_{L^{\infty}(\Omega)}=\max _{K}\left\|u-\mathcal{I}_{K} u\right\|_{L^{\infty}(K)} \leq \frac{d^{2}}{2} \max _{K}\left\{h_{K}^{2}\left\|D^{2} u\right\|_{L^{\infty}(K)}\right\} \leq \frac{d^{2}}{2} h^{2}\left\|D^{2} u\right\|_{L^{\infty}(\Omega)}
$$

which holds without any assumption on the mesh.
Similar estimates based on local to global reasonings are left as exercises.
Exo. 2.8 Starting from Thm. 2.7(b), prove that

$$
\left\|\nabla u-\nabla\left(\mathcal{I}_{h} u\right)\right\|_{L^{\infty}(\Omega)} \leq \frac{(d+1) d^{2} S}{2} h\left\|D^{2} u\right\|_{L^{\infty}(\Omega)}
$$

where S is the shape-regularity constant of the mesh. Notice that it is necessary that $\nabla\left(\mathcal{I}_{h} u\right)$ belongs to $L^{\infty}(\Omega)$, which requires a conforming mesh.

Exo. 2.9 Starting from 2.30) prove that, if the family of (conforming) meshes is shape-regular and the function u smooth, then

$$
\begin{equation*}
\left|u-\mathcal{I}_{h} u\right|_{H^{1}(\Omega)} \leq C S h^{k}\left\|D^{k+1} u\right\|_{L^{2}(\Omega)} \tag{2.35}
\end{equation*}
$$

where S is the shape-regularity constant of the mesh.

Exo. 2.10 Assume that there exists a straight line Γ (or planar surface in $3 D$) in the domain Ω, at which there is a sudden change in material properties. As a consequence, $u \in H^{2}(\Omega \backslash \Gamma) \cap C^{0}(\Omega)$, but $u \notin H^{2}(\Omega)$. Discuss the interpolation estimate for such a function u, showing the advantages of using an "interfacefitting mesh"; i.e., a mesh such that Γ coincides with inter-element boundaries and thus does not cut any element.

2.4.3 Global estimate

Let us state a global estimate more general than the one we have been building up to now.

Theorem 2.11 Let $\mathcal{T}_{h}, h>0$, be a family of shape-regular meshes of a domain $\Omega \subset \mathbb{R}^{n}$. Let $(\widehat{K}, \widehat{P}, \widehat{\Sigma})$ be the (Lagrange) reference element of the mesh, all the mappings $F_{K}: \widehat{K} \rightarrow K$ being affine. Let \mathcal{I}_{h} be the global interpolation operator corresponding to \mathcal{T}_{h}. Assume further that $\mathbb{P}_{k} \subset \widehat{P}$ (i.e.; that the finite elements are "of degree k "). Then, for each $1 \leq p<+\infty$, and for each $0 \leq \ell \leq k$, there exists C such that for all h and all $v \in W^{\ell+1, p}(\Omega)$,

$$
\begin{equation*}
\left\|v-\mathcal{I}_{h} v\right\|_{L^{p}(\Omega)}+\sum_{m=1}^{\ell+1} h^{m}\left(\sum_{K \in \mathcal{T}_{h}}\left|v-\mathcal{I}_{h} v\right|_{W^{m, p}(K)}^{p}\right)^{\frac{1}{p}} \leq C h^{\ell+1}|v|_{W^{\ell+1, p}(\Omega)} \tag{2.36}
\end{equation*}
$$

If $p=+\infty$,

$$
\begin{equation*}
\left\|v-\mathcal{I}_{h} v\right\|_{L^{\infty}(\Omega)}+\sum_{m=1}^{\ell+1} h^{m}\left(\max _{K \in \mathcal{T}_{h}}\left|v-\mathcal{I}_{h} v\right|_{W^{m, \infty}(K)}^{p}\right)^{\frac{1}{p}} \leq C h^{\ell+1}|v|_{W^{\ell+1, \infty}(\Omega)} \tag{2.37}
\end{equation*}
$$

Proof. See Ern-Guermond [7], p. 61.
Notice that the previous theorem holds not just for simplicial elements but also for affine-equivalent quadrilaterals, hexahedra, etc.

Exo. 2.11 Deduce from the theorem that, for P_{k} and Q_{k} elements,

$$
\left\|v-\mathcal{I}_{h} v\right\|_{H^{1}(\Omega)} \leq C h^{k}, \quad\left\|v-\mathcal{I}_{h} v\right\|_{L^{2}(\Omega)} \leq C h^{k+1}
$$

and explain on what quantities depend the constant C.
The previous theorem establishes, in particular, that the family of spaces $\left\{W_{h}\right\}$ satisfies the approximability property.

Prop. 2.12 For any $v \in L^{p}(\Omega), p<+\infty$,

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left(\inf _{v_{h} \in V_{h}}\left\|v-v_{h}\right\|_{L^{p}(\Omega)}\right)=0 \tag{2.38}
\end{equation*}
$$

Exo. 2.12 Prove the previous proposition. Hint: One cannot interpolate a generic function in $L^{p}(\Omega)$ because it is not continuous. Fortunately, smooth functions are dense in $L^{p}(\Omega)$ for all $p<+\infty$, so that for any $\epsilon>0$ one can find $v^{\epsilon} \in H^{2}(\Omega)$ such that $\left\|v-v^{\epsilon}\right\|_{L^{p}(\Omega)}<\epsilon$. The interpolant $\mathcal{I}_{h} v^{\epsilon}$ is well defined and Theorem 2.11 can be applied.

2.5 Inverse inequalities

Inverse inequalities are often useful in the convergence analysis of finite element methods. They provide bounds on operators that are unbounded in $H^{m}(\Omega)$, with $m>0$, but bounded in V_{h} due to its finitedimensionality. Intuitively, in a shape-regular mesh for a derivative $\partial u_{h} / \partial x_{i}$ to be "very large" the nodal values of the u_{h} must also be "very large".
Let ($\hat{K}, \widehat{P}, \widehat{\Sigma}$) be the "reference" or "master" element. Let K be an element that is affine-equivalent to \widehat{K}, as defined before, with $F_{K}: \widehat{K} \rightarrow K$ the corresponding linear mapping:

$$
F_{K}(x)=A_{K} x+b_{K} .
$$

In this section we only consider finite elements for which

$$
T_{K} v(\hat{x})=v\left(F_{K}(\hat{x})\right),
$$

such as Lagrange finite elements. In such a setting, we have

Lemma 2.13

(a)

$$
\left|\operatorname{det} A_{K}\right|=\frac{|K|}{|\widehat{K}|}, \quad\left\|A_{K}\right\| \leq \frac{h_{K}}{\rho_{\widehat{K}}}, \quad\left\|A_{K}^{-1}\right\| \leq \frac{h_{\widehat{K}}}{\rho_{K}}
$$

(b) There exists C, depending on s and p but independent of K, such that for all $v \in W^{s, p}(K)$,

$$
\begin{align*}
& |\widehat{v}|_{W^{s, p}(\widehat{K})} \leq C\left\|A_{K}\right\|^{s}\left|\operatorname{det} A_{K}\right|^{-\frac{1}{p}}|v|_{W^{s, p}(K)} \tag{2.39}\\
& |v|_{W^{s, p}(K)} \leq C\left\|A_{K}^{-1}\right\|^{s}\left|\operatorname{det} A_{K}\right|^{\frac{1}{p}}|\widehat{v}|_{W^{s, p}(\widehat{K})} \tag{2.40}
\end{align*}
$$

Proof. See, e.g., Ciarlet [5], p. 122.
Let us show how to take advantage of this result to prove some simple estimates.
Prop. 2.14 There exists $C>0$, independent of K, such that

$$
\begin{equation*}
\left\|\nabla v_{h}\right\|_{L^{2}(K)} \leq \frac{C}{\rho_{K}}\left\|v_{h}\right\|_{L^{2}(K)} \tag{2.41}
\end{equation*}
$$

for any $v_{h} \in P_{K}$.
Proof. This proof uses the so-called scaling argument. From 2.40 we have, taking $s=1$ and $p=2$,

$$
\begin{equation*}
\left\|\nabla v_{h}\right\|_{L^{2}(K)} \leq C\left\|A_{K}^{-1}\right\|\left|\operatorname{det} A_{K}\right|^{\frac{1}{2}}\left\|\nabla \widehat{v_{h}}\right\|_{L^{2}(\widehat{K})} \tag{2.42}
\end{equation*}
$$

Now let us show that there exists a constant \widehat{C} such that

$$
\begin{equation*}
\left\|\nabla \widehat{v_{h}}\right\|_{L^{2}(\widehat{K})} \leq \widehat{C}\left\|\widehat{v_{h}}\right\|_{L^{2}(\widehat{K})} \tag{2.43}
\end{equation*}
$$

For this, consider the set $\mathcal{S}=\left\{w \in P_{K} \mid\|\widehat{w}\|_{L^{2}(\widehat{K})}=1\right\}$, which is bounded and closed in the finitedimensional space P_{K}. Let \widehat{C} be the maximum that the continuous function $\|\nabla \widehat{w}\|_{L^{2}(\widehat{K})}$ attains in \mathcal{S}.
Then, denoting by

$$
\widehat{z_{h}}=\frac{1}{\left\|\widehat{v_{h}}\right\|_{L^{2}(\widehat{K})}} \widehat{v_{h}}
$$

and noticing that $\widehat{z_{h}} \in \mathcal{S}$, we have that

$$
\left\|\nabla \widehat{z_{h}}\right\|_{L^{2}(\widehat{K})} \leq \widehat{C}
$$

and thus (2.43) is proved. Inserting it into (2.42) and using (2.39) one gets

$$
\left\|\nabla v_{h}\right\|_{L^{2}(K)} \leq C \widehat{C}\left\|A_{K}^{-1}\right\|\left|\operatorname{det} A_{K}\right|^{\frac{1}{2}}\left\|\widehat{v_{h}}\right\|_{L^{2}(\widehat{K})} \leq C^{2} \widehat{C}\left\|A_{K}^{-1}\right\|\left|\operatorname{det} A_{K}\right|^{\frac{1}{2}}\left|\operatorname{det} A_{K}\right|^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(K)} \leq
$$

$$
\leq \frac{\left(C^{2} \widehat{C} h_{\widehat{K}}\right)}{\rho_{K}}\left\|v_{h}\right\|_{L^{2}(K)}
$$

and the proof ends noticing that the product inside the parentheses is a constant independent of K and v_{h}.
Notice that there does not exist a constant C that makes

$$
\begin{equation*}
\|\nabla v\|_{L^{2}(K)} \leq \frac{C}{\rho_{K}}\|v\|_{L^{2}(K)} \tag{2.44}
\end{equation*}
$$

in the infinite dimensional case, i.e., for any v in $H^{1}(K)$.
Exo. 2.13 Let K be the unit interval $(0,1)$ in $1 D$. Build a sequence $\left\{\varphi_{n}\right\}$ of functions such that $\left\|\varphi_{n}\right\|_{L^{2}(K)}=$ 1 and $\left\|\nabla \varphi_{n}\right\|_{L^{2}(K)}=n$.
Argue that the existence of such a sequence is a counterexample to (2.44).
With a scaling argument one can prove the following discrete trace estimate.
Prop. 2.15 There exists $C>0$, independent of K, such that

$$
\begin{equation*}
\left\|v_{h}\right\|_{L^{2}(F)} \leq C h_{K}^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(K)} \quad \forall v_{h} \in P_{K} \tag{2.45}
\end{equation*}
$$

where F is an edge (face in 3D) of K.
The proof is left as an optional exercise. Notice that, again, there is no chance of 2.45) holding for all v in an infinite-dimensional space, such as $C^{\infty}(K)$ for example (build a sequence that shows this!).
Several other inverse inequalities can be extracted as particular cases of the following theorem (see, e.g., [7] p. 75).

Theorem 2.16 Let \mathcal{T}_{h} be a shape-regular family of meshes in $\Omega \subset \mathbb{R}^{d}$. Then, for $0 \leq m \leq \ell$ and $1 \leq p, q \leq \infty$, there exists a constant C such that, for all $h>0$ and all $K \in \mathcal{T}_{h}$,

$$
\begin{equation*}
\|v\|_{W^{\ell, p}(K)} \leq C h_{K}^{m-\ell+d\left(\frac{1}{p}-\frac{1}{q}\right)}\|v\|_{W^{m, q}(K)} \tag{2.46}
\end{equation*}
$$

for all $v \in P_{K}$.

This local estimate, to be made global, puts the restriction on the family of meshes that, as $h \rightarrow 0$ the diameter ratio between the largest and smaller h_{K} in \mathcal{T}_{h} remain bounded.

Def. 2.17 A family of meshes $\left\{\mathcal{T}_{h}\right\}_{h>0}$ is said to be quasi-uniform if it is shape-regular and there exists c such that

$$
\begin{equation*}
\forall h, \quad \forall K \in \mathcal{T}_{h}, \quad h_{K} \geq c h \tag{2.47}
\end{equation*}
$$

Exo. 2.14 Does the quasi-uniformity of the mesh imply the existence of $C>0$ such that

$$
\begin{equation*}
\left\|\nabla v_{h}\right\|_{L^{2}(\Omega)} \leq C h^{-1}\left\|v_{h}\right\|_{L^{2}(\Omega)} \quad \forall v_{h} \in V_{h} ? \tag{2.48}
\end{equation*}
$$

Exo. 2.15 Does the quasi-uniformity of the mesh imply the existence of $C>0$ such that

$$
\begin{equation*}
\left\|v_{h}\right\|_{L^{2}(\partial \Omega)} \leq C h^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(\Omega)} \quad \forall v_{h} \in V_{h} ? \tag{2.49}
\end{equation*}
$$

Let us now give a try at the easy part of the proof of Theorem 2.29.
The point of departure is the following proposition, in which the carets are inserted to remind that it is to be applied on the master element:
Prop. 2.18 Let $\mathbb{P}_{k} \subset \widehat{P}, k \geq 1$, then there exists $\widehat{C}>0$ such that

$$
\begin{equation*}
\left\|\hat{u}-\mathcal{I}_{\widehat{K}} \hat{u}\right\|_{L^{2}(\widehat{K})}+\left\|\nabla \hat{u}-\nabla \mathcal{I}_{\widehat{K}} \hat{u}\right\|_{L^{2}(\widehat{K})} \leq \widehat{C}\left\|D^{k+1} \hat{u}\right\|_{L^{2}(\widehat{K})} \quad \forall u \in H^{k+1}(\widehat{K}) \tag{2.50}
\end{equation*}
$$

Exo. 2.16 Taking Proposition 2.18 as established, prove Theorem 2.29. The strategy is a scaling argument analogous to that used in the proof of Prop. 2.14.

Now, how to prove Prop. 2.18. Leaving the details to be read from the literature, let us just put forward the main conceptual ingredient:

Theorem 2.19 (Bramble-Hilbert lemma) Let $F: H^{k+1}(\omega) \rightarrow \mathbb{R}$ be a continuous linear functional, satisfying

$$
\begin{equation*}
F(p)=0, \quad \forall p \in \mathbb{P}_{k} . \tag{2.51}
\end{equation*}
$$

Assuming $\omega \subset \mathbb{R}^{d}$ to be convex and bounded, with Lipschitz boundary, there exists $C(\omega)>0$ such that

$$
\begin{equation*}
|F(v)| \leq C(\omega)\left\|D^{k+1} v\right\|_{L^{2}(\omega)}, \quad \forall v \in H^{k+1}(\omega) \tag{2.52}
\end{equation*}
$$

2.6 Interpolation in $H(\operatorname{div}, \Omega)$

The Raviart-Thomas element introduced in Exo. 2.4 has constant normal component on each face of K, leading to

$$
\begin{equation*}
\sigma_{i}\left(\left.v_{h}\right|_{K}\right)=\operatorname{meas}\left(F_{i}\right)\left(v_{h} \cdot \check{n}\right)\left(F_{i}\right) . \tag{2.53}
\end{equation*}
$$

Because $\left(v_{h} \cdot \check{n}\right)\left(F_{i}\right)$ is single-valued for the two elements sharing face F_{i}, the global space W_{h} generated by $R T_{0}$ elements is a subspace of $H(\operatorname{div}, \Omega)$.
The interpolant $\mathcal{I}_{h}^{R T}: H(\operatorname{div}, \Omega) \rightarrow W_{h}$ is built using the local-to-global construction as before.
With the same ingredients as before (Bramble-Hilbert lemma, scaling arguments) it is possible to prove the following approximation result:

Theorem 2.20 Let \mathcal{T}_{h} be a shape-regular family of triangulations. There exists $c>0$ such that, for all h and for all $v \in H^{1}(\Omega)^{d}$ with $\nabla \cdot v \in H^{1}(\Omega)$,

$$
\begin{equation*}
\left\|v-\mathcal{I}_{h}^{R T} v\right\|_{L^{2}(\Omega)}+\left\|\nabla \cdot\left(v-\mathcal{I}_{h}^{R T} v\right)\right\|_{L^{2}(\Omega)} \leq c h\left(\left\|v-\mathcal{I}_{h}^{R T} v\right\|_{H^{1}(\Omega)}+\left\|\nabla \cdot\left(v-\mathcal{I}_{h}^{R T} v\right)\right\|_{H^{1}(\Omega)}\right) \tag{2.54}
\end{equation*}
$$

2.7 Interpolation of non-smooth functions

As already mentioned, Lagrange interpolation is not defined for arbitrary functions in $L^{p}(\Omega)$, not even for $H^{1}(\Omega)$ if $d>1$. In applications that will be discussed later on, it is important that there exists an interpolation operator $\overline{\mathcal{I}}_{h}: H^{1}(\Omega) \rightarrow W_{h}$ with some useful properties:

- Stability: The exists $c>0$ such that

$$
\begin{array}{ll}
\forall h, \forall v \in L^{2}(\Omega), & \left\|\overline{\mathcal{I}}_{h} v\right\|_{L^{2}(\Omega)} \leq c\|v\|_{L^{2}(\Omega)} . \\
\forall h, \forall v \in H^{1}(\Omega), & \left\|\overline{\mathcal{I}}_{h} v\right\|_{H^{1}(\Omega)} \leq c\|v\|_{H^{1}(\Omega)} . \tag{2.56}
\end{array}
$$

- Approximation: The exists $c>0$ such that

$$
\begin{equation*}
\forall h, \forall K \in \mathcal{T}_{h}, \forall v \in H^{1}\left(\omega_{K}\right), \quad\left\|v-\overline{\mathcal{I}}_{h} v\right\|_{L^{2}(K)} \leq c h\|v\|_{H^{1}\left(\omega_{K}\right)} \tag{2.57}
\end{equation*}
$$

where ω_{K} consists of all elementens sharing at least a node with K.

- Preservation of boundary conditions: If $\left.v\right|_{\partial \Omega}=0$, then $\left.\left(\overline{\mathcal{I}}_{h} v\right)\right|_{\partial \Omega}=0$.
- Being a projection: $\overline{\mathcal{I}}_{h} v=v$ for all $v \in W_{h}$.

The Clément interpolation operator satisfies the first two properties, while the Scott-Zhang interpolation operator satisfies all four.

Exo. 2.17 Read the construction of the Clément and Scott-Zhang interpolation operators, for example in Ern 8 Guermond, p. 68-71.

3 Galerkin treatment of elliptic second-order problems

3.1 The continuous problem

We consider the following problem:

$$
\begin{align*}
-\operatorname{div}(K \nabla u)+\beta \cdot \nabla u+\sigma u & =f & & \text { in } \Omega \tag{3.1}\\
u & =g & & \text { on } \Gamma_{D} \tag{3.2}\\
(K \nabla u) \cdot \mathbf{n} & =H & & \text { on } \Gamma_{N} \tag{3.3}
\end{align*}
$$

where Γ_{D} and Γ_{N} are disjoint parts of $\partial \Omega$, and $\overline{\Gamma_{D} \cup \Gamma_{N}}=\partial \Omega$.
Notice that, since $K(x)$ is a $n \times n$ symmetric matrix and $\beta(x)$ is an n-vector, the problem above is a general second-order partial differential equation.
Integrating formally by parts we get

$$
\int_{\Omega}(\nabla v \cdot(K \nabla u)+v \beta \cdot \nabla u+\sigma u v) d \Omega=\int_{\Omega} f v d \Omega+\int_{\partial \Omega} v \mathbf{n} \cdot(K \nabla u) d \Gamma
$$

We thus consider the bilinear form

$$
\begin{equation*}
a(u, v)=\int_{\Omega}(\nabla v \cdot(K \nabla u)+v \beta \cdot \nabla u+\sigma u v) d \Omega \tag{3.4}
\end{equation*}
$$

Prop. 3.1 If $K \in\left(L^{\infty}(\Omega)\right)^{n \times n}, \beta \in\left(L^{\infty}(\Omega)\right)^{n}$ and $\sigma \in L^{\infty}(\Omega)$, then $a(\cdot, \cdot)$ is continuous on $H^{1}(\Omega)$.

Exo. 3.1 Prove the proposition.
It is clear that, for the problem to admit a solution, the data g and Γ_{D} must be regular enough for a function $u_{g} \in H^{1}(\Omega)$ to exist satisfying $u_{g}=g$ on Γ_{D}. Such a function is called a "lifting" function, and if it exists one says that g belongs to a "trace space".
We now change the unknown to $w=u-u_{g}$, so that

$$
a(w, v)=\int_{\Omega} f v d \Omega+\int_{\partial \Omega} v \mathbf{n} \cdot(K \nabla u) d \Gamma-a\left(u_{g}, v\right)
$$

and $w=0$ on Γ_{D}. This leads us to consider the following problem: Find $w \in H_{D 0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(w, v)=\int_{\Omega} f v d \Omega+\int_{\Gamma_{N}} H v d \Gamma-a\left(u_{g}, v\right) \stackrel{\operatorname{def}}{=} \ell(v) \tag{3.5}
\end{equation*}
$$

where $H_{D 0}^{1}=\left\{v \in H^{1}(\Omega), v=0\right.$ on $\left.\Gamma_{D}\right\}$.

Prop. 3.2 Assume the data f, g, H, Γ_{N} and Γ_{D} are regular enough for the right-hand side of (3.5) to be a continuous linear functional on $H_{D 0}^{1}(\Omega)$. Assume further that the hypotheses of Prop. 3.1 hold, and that

$$
\begin{align*}
\operatorname{div} \beta \in L^{\infty}(\Omega), & \beta(x) \cdot n(x)>0 \quad \text { a.e. on } \Gamma_{N} \tag{3.6}\\
\xi \cdot(K(x) \xi) \geq K_{0}|\xi|^{2} & \forall \xi \in \mathbb{R}^{n} ; \text { a.e. in } \Omega \tag{3.7}\\
\sigma(x)-\frac{1}{2} \operatorname{div} \beta(x) \geq s_{\text {min }} & \text { a.e. in } \Omega \tag{3.8}
\end{align*}
$$

where K_{0} and $s_{\text {min }}$ are strictly positive constants. Then (3.5) is well-posed.

Proof. Notice first that $H_{D 0}^{1}(\Omega)$ is a closed subspace of $H^{1}(\Omega)$. To see this, consider the applications $\gamma_{0}: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ (the boundary trace operator, which is continuous as proved for example in Adams, Brenner-Scott, etc.) and $r_{D}: L^{2}(\partial \Omega) \rightarrow L^{2}\left(\Gamma_{D}\right)$, the restriction to Γ_{D} of a function in $L^{2}(\Omega)$, which is also continuous. The value of any function $f \in H^{1}(\Omega)$ on Γ_{D} is, then, $\gamma_{0 D}(f)=r_{D}\left(\gamma_{0}(f)\right)$. The subspace $H_{D 0}^{1}(\Omega)$ is the pre-image of zero by $\gamma_{0 D}$, and is thus closed.
To conclude the proof, it remains to show that $a(\cdot, \cdot)$ is weakly coercive. In fact, a direct calculation shows that $a(\cdot, \cdot)$ is strongly coercive and thus Lax-Milgram lemma guarantees well-posedness.
The condition

$$
\xi \cdot(K(x) \xi) \geq K_{0}|\xi|^{2}>0, \quad \forall \xi \in \mathbb{R}^{n} ; \text { a.e. in } \Omega
$$

is essential to the previous well-posedness result, as it applies only for elliptic second-order PDEs (not hyperbolic, not parabolic). The condition $s_{\min }>0$ is not essential, in the sense that if $s_{\min } \leq 0$ what may happen is that the homogeneous problem defined by $f=g=H=0$ admits non-trivial solutions. It may also happen that for certain data the solution does not exist, in much the same way as a linear system

$$
\underline{\underline{A}} \underline{x}=\underline{b}
$$

with $\operatorname{det}(\underline{\underline{A}})=0$ either does not have a solution, or has infinitely many (the solution is determined only up to the addition of an arbitrary element of $\operatorname{Ker}(\underline{\underline{A}})$).

Exa. 3.3 The simplest and very important case that is not covered by Prop. 3.2 is the purely diffusive problem with Neumann data, corresponding to

$$
\begin{equation*}
\beta=0(\text { no convection }), \quad \sigma=0 \text { (no reaction), } \quad \Gamma_{N}=\partial \Omega \text { (no Dirichlet boundary). } \tag{3.9}
\end{equation*}
$$

The differential formulation is

$$
\begin{equation*}
-\operatorname{div}(K \nabla u)=f \quad \text { in } \Omega, \quad(K \nabla u) \cdot \mathbf{n}=H \quad \text { on } \partial \Omega \tag{3.10}
\end{equation*}
$$

which only admits a solution if

$$
\int_{\Omega} f+\int_{\partial \Omega} H=0
$$

and, in this case, the solution is determined up to an additive constant. Notice that the constant functions are indeed solutions of the homogeneous problem $(f=H=0)$, and in fact the only solutions if Ω is connected.

Exo. 3.2 Show that under the hypotheses of Prop. 3.2 the bilinear form $a(\cdot, \cdot)$ is indeed strongly coercive (as claimed) and provide an estimate of the coercivity constant α.

Let now $H_{D g}^{1}(\Omega)=\left\{v \in H^{1}(\Omega) ; v=g\right.$ a.e. on $\left.\Gamma_{D}\right\}$. Setting $u=u_{g}+w$ it is clear that u solves the following problem: Find $u \in H_{D g}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=\int_{\Omega} f v d \Omega+\int_{\Gamma_{N}} H v d \Gamma \tag{3.11}
\end{equation*}
$$

for all $v \in H_{D 0}^{1}(\Omega)$.
Further, if u belongs to $H^{2}(\Omega)$ integration by parts shows that the partial differential equation holds almost everywhere in Ω and that the Neumann boundary condition is satisfied on Γ_{N}.
Notice that the Neumann boundary condition enters the right-hand side of (3.11), it is a natural condition for this formulation, while the Dirichlet condition has to be imposed to the space in which the solution is sought, it is an essential boundary condition. One could wonder whether the Neumann boundary condition could also be imposed as an essential condition: The answer is that the set of functions in $H^{1}(\Omega)$ which satisfy $\mathbf{n} \cdot(K \nabla u)=H$ on Γ_{N} is not closed in $H^{1}(\Omega)$, implying that the tools we use to prove existence (the Banach and Hahn-Banach theorems in the general case, the Lax-Milgram lemma in the strongly coercive, Hilbertian case) do not apply.

Exo. 3.3 Let $\Omega=(0,1)$. Let $\varphi(x)=x$. Show a sequence $\left\{\varphi_{n}\right\} \subset H^{1}(\Omega)$ such that $\varphi_{n}^{\prime}(0)=0$ for all n and such that $\varphi_{n} \rightarrow \varphi$ strongly in $H^{1}(\Omega)$.
Hint: For $1 / n=\epsilon>0$ consider the "trimmed" function

$$
T_{\epsilon} \varphi(x)= \begin{cases}\varphi(\epsilon) & \text { if } x<\epsilon \\ \varphi(x) & \text { if } x \geq \epsilon\end{cases}
$$

3.2 Ritz-Galerkin approximation

Let $V_{h}(\Omega)$ be a finite element space contained in $H^{1}(\Omega)$, and let $V_{h 0}(\Omega)$ be the subspace of $V_{h}(\Omega)$ obtained by putting to zero all degrees of freedom corresponding to values on Γ_{D}. Analogously, $V_{h g}(\Omega)$ is defined as the (linear) subset of $V_{h}(\Omega)$ consisting of functions that coincide with some given interpolation $I_{h} g$ of g on Γ_{D}. The Ritz-Galerkin approximation of u in $V_{h}(\Omega)$ then solves:

Find $u_{h} \in V_{h g}(\Omega)$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h} d \Omega+\int_{\partial \Omega} H v_{h} d \Gamma \tag{3.12}
\end{equation*}
$$

for all $v_{h} \in V_{h 0}(\Omega)$.

Applying Lax-Milgram lemma to the discrete problem immediately implies that it is well-posed. By Céa's lemma (Lemma 1.39),

$$
\left\|u-u_{h}\right\|_{1} \leq \frac{N_{a}}{\alpha} \inf _{v_{h} \in V_{h g}(\Omega)}\left\|u-v_{h}\right\|_{1} \leq \frac{N_{a}}{\alpha}\left\|u-\mathcal{I}_{h} u\right\|_{1}
$$

Thus, if the local space P_{K} on each element K of the mesh \mathcal{T}_{h} contains all polynomials up to degree k and the solution is smooth enough,

$$
\left\|u-u_{h}\right\|_{1} \leq C h^{k}|u|_{k+1}
$$

3.3 Aubin-Nitsche's duality argument

The error bound in the $H^{1}(\Omega)$-norm, as shown before, is naturally obtained in the Ritz-Galerkin formulation of second-order PDEs. A first estimate in the $L^{2}(\Omega)$-norm follows from the continuous injection of $H^{1}(\Omega)$ into $L^{2}(\Omega)$, yielding

$$
\left\|u-u_{h}\right\|_{0} \leq C h^{k}|u|_{k+1}
$$

This estimate, however, is not optimal, since the interpolant of u (with u smooth) approximates u with order h^{k+1} in the $L^{2}(\Omega)$-norm. It is possible to obtain optimal-order estimates using a duality argument. Let us show how it works in the simpler case $\beta=0, g=0, \Gamma_{D}=\partial \Omega$. Let

$$
\mathcal{L} u=-\operatorname{div}(K \nabla u)+\sigma u
$$

and assume that the domain is regular enough for \mathcal{L} to have a smoothing property, namely that the continuous problem

$$
\mathcal{L} w=\mathcal{F}, \quad w=0 \quad \text { on } \partial \Omega
$$

satisfies

$$
\begin{equation*}
\|w\|_{H^{2}(\Omega)} \leq C_{s}\|\mathcal{F}\|_{L^{2}(\Omega)} \tag{3.13}
\end{equation*}
$$

This latter inequality is sometimes called a regularity estimate.
Exo. 3.4 Prove the smoothing property in 1D. More specifically, consider the problem

$$
\begin{equation*}
-\left(k u^{\prime}\right)^{\prime}+\sigma u=f \quad \text { in } \Omega=(0,1) \tag{3.14}
\end{equation*}
$$

with $u(0)=u(1)=0, k, \sigma \in L^{\infty}(\Omega)$ satisfying $k(x) \geq \gamma>0$ for all x and $\sigma(x) \geq 0$ for all x. Further, assume that $k^{\prime} \in L^{\infty}(\Omega), f \in L^{2}(\Omega)$. Notice that $k^{\prime}(x)$ must be bounded. Show that then there exists $C>0$ such that $\left\|u^{\prime \prime}\right\|_{L^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}$ and provide an estimate for C. Show how this implies (3.13).
Remark 3.4 The smoothing property (3.13) holds in $2 D / 3 D$ if the boundary is very regular, of class C^{2}, or if it is a convex polygon/polyhedron.

Prop. 3.5 Under the above hypotheses, there exists $C>0$ such that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{0} \leq C h\left\|u-u_{h}\right\|_{1} \tag{3.15}
\end{equation*}
$$

Proof. Let w be the unique solution of

$$
\mathcal{L} w=u-u_{h}, \quad w=0 \quad \text { on } \partial \Omega
$$

where we have used the error $e=u-u_{h}$ as source term. The corresponding variational formulation is

$$
a(w, v)=(e, v)_{0} \quad \forall v \in H_{0}^{1}(\Omega)
$$

Taking $v=e$ we see that $a(w, e)=\|e\|_{0}^{2}$, but also, since the bilinear form is symmetric (otherwise one needs a smoothing property for the adjoint differential operator, but the proof is essentially the same),

$$
a(w, e)=a(e, w)=a\left(u-u_{h}, w\right)=a\left(u-u_{h}, w-\mathcal{I}_{h} w\right)
$$

where we have introduced the interpolant of w and used the "orthogonality" property of the Galerkin approximation ($a\left(u-u_{h}, v_{h}\right)=0$ for all v_{h}). Finally

$$
\left\|u-u_{h}\right\|_{0}^{2}=a\left(e, w-\mathcal{I}_{h} w\right) \leq N_{a}\|e\|_{1}\left\|w-\mathcal{I}_{h} w\right\|_{1} \leq N_{a}\|e\|_{1} h\|w\|_{2}
$$

where the last inequality follows from an interpolation estimate for w. Combining with (3.13),

$$
\left\|u-u_{h}\right\|_{0}^{2} \leq C_{s} N_{a} h\|e\|_{1}\|e\|_{0}
$$

Exo. 3.5 Let $F(v)=\int_{\Omega} \psi(x) v(x) d \Omega$, where ψ is a function in $L^{2}(\Omega)$. For example, if $\psi=1$ then $F(v)$ is simply the integral of v. How does $F\left(u_{h}\right)$ converge to $F(u)$ when V_{h} contains all piecewise polynomials of degree k and $\left\|u-u_{h}\right\|_{1} \leq C h^{k}$?
Hint: Use a variant of Nitsche's trick. Let w be the solution of

$$
a(w, v)=F(v) \quad \forall v \in V=H_{0}^{1}(\Omega)
$$

which is the weak form of

$$
\mathcal{L} w=\psi \quad \text { in } \Omega, \quad w=0 \quad \text { on } \partial \Omega
$$

so that, from the smoothing property, $\|w\|_{H^{2}(\Omega)} \leq C\|\psi\|_{L^{2}(\Omega)}$. Then use the following calculation

$$
F\left(u-u_{h}\right)=a\left(w, u-u_{h}\right)=a\left(w-\mathcal{I}_{h} w, u-u_{h}\right) \leq N_{a}\left\|w-\mathcal{I}_{h} w\right\|_{1}\left\|u-u_{h}\right\|_{1}
$$

to prove that, if ψ is smooth (at least as smooth as f), then $\left|F(u)-F\left(u_{h}\right)\right| \leq \widetilde{C} h^{2 k}$.
Another question: What is the expected order of convergence for $F(u)=\int_{\omega} u d \Omega$, with ω a region of the domain? (Answer: h^{k+1}, why?).

3.4 The case $s_{\min }=0$. Poincaré inequality.

In the case $s_{\text {min }}=0$ we have to prove strong coercivity without counting on the reaction term, so that we start from the estimate

$$
a(v, v) \geq \int_{\Omega} \nabla v \cdot(K \nabla v) d \Omega \quad \forall v \in H_{D 0}^{1}(\Omega)
$$

which in turn implies

$$
a(v, v) \geq K_{0} \int_{\Omega}|\nabla v|^{2} d \Omega=K_{0}|v|_{1}^{2}
$$

Essentially, we need an estimate of the form $|v|_{1} \geq c\|v\|_{1}$ for some $c>0$. This is provided by PoincaréFriedrichs inequality:

Lemma 3.6 (Poincaré-Friedrichs inequality) In a connected bounded domain, if meas $\left(\Gamma_{D}\right)>0$ then there exists a constant $c_{P}>0$ such that $\|\nabla v\|_{0} \geq c_{P}\|v\|_{0}$ for all $v \in H_{D 0}^{1}(\Omega)$.
Proof. We will prove it in the case $\Gamma_{D}=\partial \Omega$. We show it first for $\varphi \in \mathcal{D}(\Omega)$ and then extend it to $H_{0}^{1}(\Omega)$ by a density argument. We consider φ extended by zero to \mathbb{R}^{n} and assume that the domain is contained in the strip $a \leq x_{1} \leq b$ (in other words, $a \leq x_{1} \leq b$ for all $x \in \Omega$). Then, since

$$
\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\int_{a}^{x_{1}} \frac{\partial \varphi}{\partial x_{1}}\left(t, x_{2}, \ldots, x_{n}\right) d t
$$

we have, using Cauchy-Schwarz inequality,

$$
\varphi^{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq\left|x_{1}-a\right| \int_{a}^{x_{1}}\left|\frac{\partial \varphi}{\partial x_{1}}\left(t, x_{2}, \ldots, x_{n}\right)\right|^{2} d t
$$

integration over x_{2} to x_{n} gives

$$
\int \varphi^{2} d x_{2} \ldots d x_{n} \leq\left|x_{1}-a\right| \int_{a}^{x_{1}} \ldots \int\left|\frac{\partial \varphi}{\partial x_{1}}\right|^{2} d t d x_{2} \ldots d x_{n} \leq\left|x_{1}-a\right| \int_{\Omega}\left|\frac{\partial \varphi}{\partial x_{1}}\right|^{2} d \Omega
$$

A final integration over x_{1} yields

$$
\int_{\Omega} \varphi^{2} d \Omega \leq \frac{(b-a)^{2}}{2} \int_{\Omega}\left|\frac{\partial \varphi}{\partial x_{1}}\right|^{2} d \Omega
$$

proving that $c_{P} \geq \frac{\sqrt{2}}{b-a}$. Now we consider $v \in H_{0}^{1}(\Omega)$ and $\varphi_{n} \rightarrow v$, then

$$
\begin{gathered}
\|v\|_{0} \leq\left\|\varphi_{n}\right\|_{0}+\left\|v-\varphi_{n}\right\|_{0} \leq \frac{1}{c_{P}}\left\|\nabla \varphi_{n}\right\|_{0}+\left\|v-\varphi_{n}\right\|_{0} \leq \\
\frac{1}{c_{P}}\|\nabla v\|_{0}+\left\|v-\varphi_{n}\right\|_{0}++\frac{1}{c_{P}}\left\|\nabla v-\nabla \varphi_{n}\right\|_{0} \leq \frac{1}{c_{P}}\|\nabla v\|_{0}+\min \left\{1, \frac{1}{c_{P}}\right\}\left\|v-\varphi_{n}\right\|_{1}
\end{gathered}
$$

and since $\left\|v-\varphi_{n}\right\|_{1}$ can be made arbitrarily small, the claim is proved.

Remark 3.7 Using Poincaré-Friedrichs inequality, it is easily shown that the bilinear form

$$
\begin{equation*}
a(v, w)=\int_{\Omega}[\nabla v \cdot(K \nabla w)+v \beta \cdot \nabla w+\sigma v w] d \Omega \tag{3.16}
\end{equation*}
$$

is strongly coercive in $H_{D 0}^{1}(\Omega)$ whenever meas $\left(\Gamma_{D}\right)>0, \beta(x) \cdot \mathbf{n}(x)>0$ a.e. on $\Gamma_{N}, K_{0}>0$ and $s_{\min } \geq 0$.
Exo. 3.6 Prove the previous remark in detail.

4 Finite elements for linear elasticity

4.1 Introduction and differential formulation

We recall the usual notations for the Cauchy stress tensor $\boldsymbol{\sigma}$ and the linearized strain tensor

$$
\begin{equation*}
\boldsymbol{\epsilon}(u)=\frac{1}{2}\left(\nabla u+\nabla u^{T}\right) \tag{4.1}
\end{equation*}
$$

where u in this case is a vector field corresponding to the displacement of the body. We also recall the elastic constitutive law for small deformations,

$$
\begin{equation*}
\boldsymbol{\sigma}=\lambda \operatorname{tr}(\boldsymbol{\epsilon}(u)) \mathbf{I}+2 \mu \boldsymbol{\epsilon}(u)=\lambda \operatorname{div} u \mathbf{I}+\mu\left(\nabla u+\nabla u^{T}\right) \tag{4.2}
\end{equation*}
$$

where λ and μ are the Lamé coefficients, which in general depend on the point x and by thermodynamic reasons are constrained to satisfy, for almost all x,

$$
\begin{equation*}
\mu(x)>0 ; \quad \lambda(x)+\frac{2}{3} \mu(x) \geq 0 \tag{4.3}
\end{equation*}
$$

Differential Formulation: The governing equation follows from the static equilibrium balance, which reads

$$
\begin{equation*}
\operatorname{div} \boldsymbol{\sigma}+f=0 \tag{4.4}
\end{equation*}
$$

where f is a vector field of applied forces. Replacing the expression of $\boldsymbol{\sigma}$ in terms of u one obtains an equation for the displacement field. This problem admits both Dirichlet and Neumann boundary conditions on u :

$$
\begin{equation*}
u=g \quad \text { on } \Gamma_{D} ; \quad \sigma \cdot \mathbf{n}=\mathcal{F} \quad \text { on } \Gamma_{N} \tag{4.5}
\end{equation*}
$$

where \mathcal{F} is a field of surface forces applied on $\Gamma_{N}, \Gamma_{N} \cap \Gamma_{D}=\emptyset$ and $\overline{\Gamma_{N} \cup \Gamma_{D}}=\partial \Omega$. The domain Ω corresponds to the region of space occupied by the body under consideration, both before and after the application of the forces since just problems with small displacements are being considered.

Exo. 4.1 Let u_{1}, u_{2} be the components of u in a planar elasticity case in which the domain is the unit square. The boundary conditions are: zero displacement on the bottom boundary ($x_{2}=0$), and a normal force equal to P on the rest of $\partial \Omega$. Write down the system of two equations and two unknowns for u_{1} and u_{2} considering λ and μ independent of x_{1} and x_{2}.
Hint: Equation (4.4), written in Cartesian indices, becomes

$$
\sum_{j=1}^{d} \partial_{j} \sigma_{i j}+f_{i}=0 \quad \forall i=1, \ldots, d
$$

and (4.2) becomes,

$$
\sigma_{i j}=\lambda\left(\partial_{1} u_{1}+\partial_{2} u_{2}\right) \delta_{i j}+\mu\left(\partial_{j} u_{i}+\partial_{i} u_{j}\right) .
$$

It remains to replace the latter into the former. For the boundary force we have that, if $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \partial \Omega$ then at \mathbf{x} we have

$$
\begin{aligned}
& (\boldsymbol{\sigma} \cdot \mathbf{n})_{1}=\left[(\lambda+2 \mu) \partial_{1} u_{1}+\lambda \partial_{2} u_{2}\right] n_{1}+\mu\left(\partial_{2} u_{1}+\partial_{1} u_{2}\right) n_{2}=-P n_{1} \\
& (\boldsymbol{\sigma} \cdot \mathbf{n})_{2}=\left[\lambda \partial_{1} u_{1}+(\lambda+2 \mu) \partial_{2} u_{2}\right] n_{2}+\mu\left(\partial_{2} u_{1}+\partial_{1} u_{2}\right) n_{1}=-P n_{2}
\end{aligned}
$$

As a consequence, along $x_{1}=0$ (left boundary), the boundary conditions are

$$
(\lambda+2 \mu) \partial_{1} u_{1}+\lambda \partial_{2} u_{2}=-P, \quad \partial_{2} u_{1}+\partial_{1} u_{2}=0
$$

the conditions at the other boundaries are analogous.

4.2 Variational Formulation

The variational formulation of this problem can be obtained from the corresponding PDE by integration by parts. In Mechanics, however, it is considered a fundamental principle: The Principle of Virtual Work (or of Virtual Power)

Principle of Virtual Power: The internal virtual power of the stresses $\left(\int_{\Omega} \boldsymbol{\sigma}: \boldsymbol{\epsilon}(v)\right)$ plus the virtual power of the acceleration $\left(\int_{\Omega} \rho a \cdot v\right)$ equals the virtual power of the applied forces. This holds for all virtual velocity fields, that is, all vector fields v that are kinematically admissible variations of the body motion.

$$
\begin{equation*}
\int_{\Omega} \boldsymbol{\sigma}: \boldsymbol{\epsilon}(v)+\int_{\Omega} \rho a \cdot v=\int_{\Omega} f \cdot v+\int_{\Gamma_{N}} \mathcal{F} \cdot v \quad \forall v \in \mathrm{VAR} \tag{4.6}
\end{equation*}
$$

The kinematically admissible motions must belong to

$$
\begin{equation*}
\mathrm{KIN}=V_{D g}=\left\{v \in\left[H^{1}(\Omega)\right]^{n} ; v=g \text { on } \Gamma_{D}\right\} \tag{4.7}
\end{equation*}
$$

so that their variations must belong to

$$
\begin{equation*}
\operatorname{VAR}=V_{D 0}=\left\{v \in\left[H^{1}(\Omega)\right]^{n} ; v=0 \text { on } \Gamma_{D}\right\} \tag{4.8}
\end{equation*}
$$

The variational formulation of linear elastostatics then reads:
"Find $u \in V_{D g}$ such that

$$
\begin{equation*}
a(u, v)=\int_{\Omega} f \cdot v d \Omega+\int_{\Gamma_{N}} \mathcal{F} \cdot v d \Gamma=: \ell(v) \tag{4.9}
\end{equation*}
$$

for all $v \in V_{D 0}$ ", where

$$
\begin{equation*}
a(u, v)=\int_{\Omega} \boldsymbol{\sigma}(\boldsymbol{u}): \boldsymbol{\epsilon}(v) d \Omega=\int_{\Omega}[\lambda \operatorname{div} u \operatorname{div} v+2 \mu \boldsymbol{\epsilon}(u): \boldsymbol{\epsilon}(v)] d \Omega \tag{4.10}
\end{equation*}
$$

4.3 Well-posedness and Galerkin approximation

Theorem 4.1 (Korn's inequality) Let Ω be a domain in \mathbb{R}^{n}. There exists $C_{K}>0$ such that

$$
\begin{equation*}
\|v\|_{1} \leq C_{K}\|\boldsymbol{\epsilon}(v)\|_{0} \quad \forall v \in H_{0}^{1}(\Omega)^{n} \tag{4.11}
\end{equation*}
$$

It is not necessary that v be zero on the whole of $\partial \Omega$, the same result holds if meas $\left(\Gamma_{D}\right)>0$ (in connected domains), so that we have strong coercivity of the bilinear form on V. This gives the result below.

Theorem 4.2 Let Ω be a regular connected domain on which the elasticity problem (4.9) is posed with meas $\left(\Gamma_{D}\right)>0, f \in L^{2}(\Omega)^{n}$ and $\mathcal{F} \in L^{2}\left(\Gamma_{N}\right)^{n}$. We assume that the Lamé coefficients are bounded and satisfy (4.3). Then there exists a unique solution u, and there exists $c>0$ such that

$$
\begin{equation*}
\|u\|_{1} \leq c\left(\|f\|_{0}+\|\mathcal{F}\|_{0, \Gamma_{N}}\right) \tag{4.12}
\end{equation*}
$$

Proof. $V=V_{D 0}$ is a Hilbert space, the bilinear form is continuous with

$$
a(u, v) \leq c \max \left\{\lambda_{\max }, \mu_{\max }\right\} \quad\|\nabla u\|_{0}\|\nabla v\|_{0}
$$

From Korn's inequality we also have

$$
a(v, v)=\int_{\Omega}\left[\lambda(\operatorname{div} v)^{2}+2 \mu \boldsymbol{\epsilon}(v): \boldsymbol{\epsilon}(v)\right] d \Omega \geq c \mu_{\min }\|v\|_{1}^{2}
$$

It only remains to apply Lax-Milgram lemma.
Let

$$
\begin{equation*}
V_{h}=\left\{v_{h} \in C^{0}(\bar{\Omega})^{n},\left.v_{h}\right|_{K} \in\left(P_{K}\right)^{n}, v_{h}=0 \text { on } \Gamma_{D}\right\} . \tag{4.13}
\end{equation*}
$$

Since $V_{h} \subset V$, we have well-posedness and convergence of the discrete problem.
Prop. 4.3 The solution $u_{h} \in V_{h g}$ satisfying

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=\ell\left(v_{h}\right) \quad \forall v_{h} \in V_{h 0} \tag{4.14}
\end{equation*}
$$

exists and is unique. It satisfies $\lim _{h \rightarrow 0}\left\|u-u_{h}\right\|_{1}=0$. If $u \in H^{\ell+1}(\Omega)^{n}$ for some $\ell \leq k$, with k such that $P_{k}(K) \subset P_{K}$, then there exists $c>0$ such that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{1} \leq c h^{\ell}|u|_{\ell+1} \tag{4.15}
\end{equation*}
$$

Exo. 4.2 Build an extremal formulation of the linear elasticity problem.
Hint: Consider

$$
\begin{equation*}
J(w)=\int_{\Omega}\left[\frac{\lambda}{2}(\operatorname{div} w)^{2}+\mu \boldsymbol{\epsilon}(w): \boldsymbol{\epsilon}(w)\right] d \Omega-\int_{\Omega} f \cdot w d \Omega-\int_{\Gamma_{N}} \mathcal{F} \cdot w d \Gamma \tag{4.16}
\end{equation*}
$$

where the first integral is the "strain energy" of the body. The solution u is the displacement field that minimizes J over $V_{D g}$,

$$
\begin{equation*}
J(u)=\inf _{w \in V_{D g}} J(w) \tag{4.17}
\end{equation*}
$$

Exo. 4.3 Assume that you are initiating a project which involves the solution by finite elements of linear elastic problems. Formulate the first four "common sense" mathematical questions that you would ask, and try to answer them, at least partially, with the content discussed in this lecture.
Example: What are the equations and boundary conditions, and which are the unknowns (both in the exact and in the discrete cases)?

4.4 Implementation aspects

A significant difference between the elastostatics problem and the convection-diffusion-reaction problem discussed earlier is that the elasticity unknown is a vector field.
Let $\left\{\mathcal{N}^{j}\right\}(j=1, \ldots, M)$ be the scalar basis functions associated to a mesh \mathcal{T}_{h}. The space V_{h} is now of dimension $n \times M$, as to each node j correspond n basis functions:

$$
\begin{equation*}
\mathbf{N}^{j, 1}(x)=\mathcal{N}^{j}(x) \check{\mathbf{e}}^{1}=\left(\mathcal{N}^{j}(x), 0\right) \quad \ldots \quad \mathbf{N}^{j, n}(x)=\mathcal{N}^{j}(x) \check{\mathbf{e}}^{n}=\left(0, \mathcal{N}^{j}(x)\right) \tag{4.18}
\end{equation*}
$$

where we have chosen the local basis $\left\{\check{\mathbf{e}}^{\alpha}\right\}$ equal to the canonical basis $\left(\check{e}_{\beta}^{\alpha}=\delta_{\alpha \beta}\right)$, but any other can be chosen and sometimes is.

Exo. 4.4 Compute the following in terms of the scalar basis $\left\{\mathcal{N}^{j}\right\}$:

- $\operatorname{div}\left(\mathbf{N}^{j, \alpha}\right) \quad\left(\right.$ Answer: $\left.=\partial_{\alpha} \mathcal{N}^{j}\right)$
- $\boldsymbol{\epsilon}\left(\mathbf{N}^{j, \alpha}\right)$
- $\int_{K} \operatorname{div}\left(\mathbf{N}^{j, \alpha}\right) \operatorname{div}\left(\mathbf{N}^{k, \beta}\right)$
- $\int_{K} \boldsymbol{\epsilon}\left(\mathbf{N}^{j, \alpha}\right): \boldsymbol{\epsilon}\left(\mathbf{N}^{k, \beta}\right)$

Exa. 4.4 Assume that, at a given node j, the vector basis is chosen as

$$
\mathbf{g}_{\beta}^{(j) \alpha}=R_{\alpha \beta}^{(j)}
$$

or, equivalently $\mathbf{g}^{(j) \alpha}=R_{\alpha \beta}^{(j)}$ e $^{\beta}$, for some non-singular matrix $R^{(j)}$. Then the basis functions corresponding to that node, which have two indices (j for the node and α that runs from 1 to number of space dimensions), are given by

$$
\mathbf{N}^{j, \alpha}(x)=\mathcal{N}^{j}(x) \mathbf{g}^{(j) \alpha}=\mathcal{N}^{j}(x) R_{\alpha \beta}^{(j)} \check{e}^{\beta}
$$

Then, for example,

$$
\frac{\partial \mathbf{N}_{m}^{j, \alpha}}{\partial x_{n}}=\frac{\partial \mathcal{N}^{j}}{\partial x_{n}} R_{\alpha m}^{(j)}
$$

5 Incompressible elasticity and the Stokes problem

5.1 Incompressible elasticity

There exist elastic materials which behave as incompressible, in the sense that they preserve their volume in every deformation. Under the hypothesis of small deformations, the preservation of volume is equivalent to the deformation field having zero divergence,

$$
\begin{equation*}
\operatorname{div} u=0 \quad \text { a.e. in } \Omega \tag{5.1}
\end{equation*}
$$

Considering the elastic energy functional seen in the previous section (where λ is assumed independent of x for simplicity and $\left.\|\boldsymbol{\epsilon}(v)\|^{2}=\boldsymbol{\epsilon}(v): \boldsymbol{\epsilon}(v)\right)$

$$
\begin{equation*}
J(v)=\frac{\lambda}{2} \int_{\Omega}(\operatorname{div} v)^{2} d \Omega+\int_{\Omega} \mu\|\boldsymbol{\epsilon}(v)\|^{2} d \Omega-\int_{\Omega} f \cdot v d \Omega-\int_{\Gamma_{N}} \mathcal{F} \cdot v d \Gamma \tag{5.2}
\end{equation*}
$$

one can view the first term as a penalization (with coefficient λ) of the incompressibility constraint. As a consequence, totally incompressible behavior corresponds to $\lambda \rightarrow+\infty$ in theory, and to λ very large, much larger than the shear modulus μ, in practice.
For the Primal Formulation, which is the one we have been studying up to now, the divergence-free constraint is treated as an essential constraint, just like the Dirichlet constraints, and is incorporated into the set of admissible displacement fields,

$$
\begin{equation*}
Z_{D g} \stackrel{\text { def }}{=}\left\{v \in V_{D g} \mid \operatorname{div} v=0 \text { a.e. in } \Omega\right\} \tag{5.3}
\end{equation*}
$$

Inside $Z_{D g}$ the first term of J becomes irrelevant, so that defining

$$
\begin{equation*}
\widetilde{J}(v)=\int_{\Omega} \mu\|\boldsymbol{\epsilon}(v)\|^{2} d \Omega-\int_{\Omega} f \cdot v d \Omega-\int_{\Gamma_{N}} \mathcal{F} \cdot v d \Gamma \tag{5.4}
\end{equation*}
$$

we have the Primal Extremal Formulation of incompressible elasticity.

Primal Extremal Formulation of incompressible elasticity: Find $u \in Z_{D g}$ that minimizes \widetilde{J} over $Z_{D g}$, i.e.,

$$
\begin{equation*}
\widetilde{J}(u) \leq \widetilde{J}(v) \quad \forall v \in Z_{D g} \tag{5.5}
\end{equation*}
$$

Defining now

$$
\begin{equation*}
\widetilde{a}(u, v)=\int_{\Omega} 2 \mu \boldsymbol{\epsilon}(u): \boldsymbol{\epsilon}(v) d \Omega, \quad \text { and } \quad \ell(v)=\int_{\Omega} f \cdot v d \Omega+\int_{\Gamma_{N}} \mathcal{F} \cdot v d \Gamma \tag{5.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\widetilde{J}(v)=\frac{1}{2} \widetilde{a}(v, v)-\ell(v) \tag{5.7}
\end{equation*}
$$

and also the

Primal Variational Formulation of incompressible elasticity: Find $u \in Z_{D g}$ such that

$$
\begin{equation*}
\widetilde{a}(u, v)=\ell(v) \quad \forall v \in Z_{D 0} \tag{5.8}
\end{equation*}
$$

It can be shown that problem (5.8) is indeed well posed, so that a unique solution u exists. However, the imposition of the zero-divergence constraint on the space creates several difficulties for the finite element discretization.
It is thus convenient to replace the Primal Extremal Formulation by the following equivalent one:
$\underline{\text { Mixed Extremal Formulation of incompressible elasticity: Defining } b(\cdot, \cdot): H^{1}(\Omega)^{d} \times L^{2}(\Omega) \rightarrow \mathbb{R} \text { by }}$

$$
\begin{equation*}
b(v, q)=\int_{\Omega} q \operatorname{div} v d \Omega \tag{5.9}
\end{equation*}
$$

and the Lagrangian $\mathcal{L}: H^{1}(\Omega)^{d} \times L^{2}(\Omega) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\mathcal{L}(v, q)=\widetilde{J}(v)-b(v, q)=\frac{1}{2} \widetilde{a}(v, v)-\ell(v)-b(v, q), \tag{5.10}
\end{equation*}
$$

problem (5.5) becomes equivalent to "Find $(u, p) \in V_{D g} \times L^{2}(\Omega)$ that is an extremal point (saddle point) of $\overline{\mathcal{L}}^{\prime \prime}$, or, in other words,

$$
\begin{equation*}
\mathcal{L}(u, p)=\widetilde{J}(u)=\inf _{v \in Z_{D g}} \widetilde{J}(v)=\inf _{v \in V_{D g}} \sup _{q \in L^{2}(\Omega)} \mathcal{L}(v, q) \tag{5.11}
\end{equation*}
$$

The extremality conditions for \mathcal{L} are

$$
\begin{array}{ll}
d \mathcal{L}(v, 0)=\lim _{t \rightarrow 0} \frac{\mathcal{L}(u+t v, p)-\mathcal{L}(u, p)}{t}=0 & \forall v \in V_{D 0} \\
d \mathcal{L}(0, q)=\lim _{t \rightarrow 0} \frac{\mathcal{L}(u, p+t q)-\mathcal{L}(u, p)}{t}=0 & \forall q \in L^{2}(\Omega) \tag{5.13}
\end{array}
$$

and lead to the mixed variational formulation.

Mixed Variational Formulation of incompressible elasticity: Find $(u, p) \in V_{D g} \times L^{2}(\Omega)$ such that

$$
\begin{align*}
\widetilde{a}(u, v)-b(v, p) & =\ell(v) \quad \forall v \in V_{D 0} \tag{5.14}\\
b(u, q) & =0 \quad \forall q \in L^{2}(\Omega) \tag{5.15}
\end{align*}
$$

The enforcement of incompressibility in this formulation is not built in the space for u, which is $V_{D g}$ and not $Z_{D g}$. Instead, it appears explicitly in equation (5.15), because

$$
\begin{equation*}
b(u, q)=\int_{\Omega} q \operatorname{div} u d \Omega=0 \quad \forall q \in L^{2}(\Omega) \quad \Leftrightarrow \quad \operatorname{div} u=0 \quad \text { a.e. in } \Omega . \tag{5.16}
\end{equation*}
$$

Integrating by parts the left-hand side of (5.14) one arrives at the

Differential Formulation of incompressible elasticity:

$$
\begin{align*}
-\operatorname{div} \tilde{\boldsymbol{\sigma}}(u)+\nabla p & =f, & & \text { where } \tilde{\boldsymbol{\sigma}}(u)=2 \mu \boldsymbol{\epsilon}(u) \tag{5.17}\\
\operatorname{div} u & =0 & & \tag{5.18}\\
u & =g & & \text { on } \Gamma_{D} \tag{5.19}\\
(-p \mathbf{I}+\tilde{\boldsymbol{\sigma}}) \cdot \mathbf{n} & =\mathcal{F} & & \text { on } \Gamma_{N} \tag{5.20}
\end{align*}
$$

It is important to notice that the incompressibility constraint "materializes" in the equilibrium equation (5.17) as the gradient of the unknown pressure p, and at the force boundary as a normal contribution $-p \mathbf{n}$. In mechanical terms, this means that the Cauchy stress tensor of an incompressible elastic material is

$$
\begin{equation*}
\boldsymbol{\sigma}=-p \mathbf{I}+\tilde{\boldsymbol{\sigma}}=-p \mathbf{I}+2 \mu \boldsymbol{\epsilon}(u) \tag{5.21}
\end{equation*}
$$

Exo. 5.1 Show that the extremality conditions (5.12)-(5.13) are equivalent to the mixed formulation equations (5.14)-(5.15).

Exo. 5.2 Show that, with sufficient regularity of u and p, (5.14) implies (5.17) and (5.20).

5.2 Abstract mixed formulation

Generalizing the previous examples, one considers the problem

Abstract Mixed Problem: Find $(u, p) \in V \times Q$ such that

$$
\begin{align*}
a(u, v)-b(v, p) & =\ell(v) & & \forall v \in V \tag{5.22}\\
b(u, q) & =g(q) & & \forall q \in Q \tag{5.23}
\end{align*}
$$

where $a: V \times V \rightarrow \mathbb{R}, b: V \times Q \rightarrow \mathbb{R}$ are continuous bilinear forms, $\ell \in V^{\prime}, g \in Q^{\prime}$. When $a(\cdot, \cdot)$ is symmetric, it is equivalent to the extremization of

$$
\begin{equation*}
J(v)=\frac{1}{2} a(v, v)-\ell(v) \tag{5.24}
\end{equation*}
$$

over the (constrained) set

$$
\begin{equation*}
Z_{g}=\{v \in V \mid b(v, q)=g(q) \quad \forall q \in Q\} \tag{5.25}
\end{equation*}
$$

and to the extremization over $V \times Q$ (i.e., unconstrained) of the Lagrangian

$$
\begin{equation*}
\mathcal{L}(v, q)=J(v)-b(v, q)+g(q) \tag{5.26}
\end{equation*}
$$

The first logical question is whether $(5.22)-(5.23)$ is well-posed. We consider both the cases where V and Q are infinite-dimensional (the continuous case) and finite-dimensional (the discrete case).

Theorem 5.1 If $a(\cdot, \cdot)$ is strongly coercive on Z_{0},

$$
\begin{equation*}
a(v, v) \geq \alpha\|v\|_{V}^{2} \quad \forall v \in Z_{0} \tag{5.27}
\end{equation*}
$$

with $\alpha>0$, and if

$$
\begin{equation*}
\inf _{q \in Q} \sup _{v \in V} \frac{b(v, q)}{\|q\|_{Q}\|v\|_{V}}=\gamma>0 \tag{5.28}
\end{equation*}
$$

then (5.22)-(5.23) is well-posed.

The proof of this result relies on applying Thm. 1.7 to the setting defined by the product space $W=V \times Q$, the bilinear form $B: W \times W \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
B((u, p),(v, q))=a(u, v)-b(v, p)-b(u, q) \tag{5.29}
\end{equation*}
$$

and the linear form $S \in W^{\prime}$ defined by

$$
\begin{equation*}
S(v, q)=\ell(v)-g(q) . \tag{5.30}
\end{equation*}
$$

Exo. 5.3 The Abstract Mixed Problem (5.22)-(5.23) is equivalent to the problem: Find $(u, p) \in W$ such that

$$
\begin{equation*}
B((u, p),(v, q))=S(v, q) \quad \forall(v, q) \in W \tag{5.31}
\end{equation*}
$$

Now it only remains to prove that,

Theorem 5.2 (Brezzi) Under hypotheses (5.27) and (5.28), the bilinear form $B(\cdot, \cdot)$ is weakly coercive on $V \times Q$.

Proof. To simplify things, assume that (5.27) holds $\forall v \in V$ and that $a(\cdot, \cdot)$ is symmetric. Taking (u, p) arbitrary in $V \times Q$, choose $w \in V$ such that $\|w\|_{V}=\|p\|_{Q}$ and $-b(w, p) \geq \gamma\|p\|^{2}$. Then, taking $\eta=\alpha \gamma / N_{a}^{2}$, one gets

$$
B((u, p),(u+\eta w, p)) \geq \frac{\alpha}{2} \min \left\{1, \frac{\gamma^{2}}{N_{a}^{2}}\right\}\|(u, p)\|_{V \times Q}^{2}
$$

Besides,

$$
\|(u+\eta w, p)\|_{V \times Q} \leq\left(1+\frac{\alpha \gamma}{N_{a}^{2}}\right)\|(u, p)\|_{V \times Q}
$$

so that

$$
\inf _{(u, p)} \sup _{(v, q)} \frac{B((u, p),(v, q))}{\|(u, p)\|\|(v, q)\|} \geq \inf _{(u, p)} \frac{B((u, p),(u+\eta w, p))}{\|(u, p)\|\|(u+\eta w, p)\|} \geq \frac{\frac{\alpha}{2} \min \left\{1, \frac{\gamma^{2}}{N_{a}^{2}}\right\}}{1+\frac{\alpha \gamma}{N_{a}^{2}}}>0
$$

and condition (1.22) is satisfied. Since B is symmetric, the proof is complete. As a by-product, we observe that the coercivity constant of $B(\cdot, \cdot)$ can be chosen as

$$
\begin{equation*}
\beta=\frac{\frac{\alpha}{2} \min \left\{1, \frac{\gamma^{2}}{N_{a}^{2}}\right\}}{1+\frac{\alpha \gamma}{N_{a}^{2}}} \tag{5.32}
\end{equation*}
$$

Exo. 5.4 Prove that, for all (u, p) and (v, q) in $V \times Q$,

$$
\begin{equation*}
B((u, p),(v, q)) \leq\left(N_{a}+2 N_{b}\right)\|(u, p)\|_{V \times Q}\|(v, q)\|_{V \times Q} \tag{5.33}
\end{equation*}
$$

Exo. 5.5 Write down the abstract conditions (5.27) and (5.28) for the specific case of incompressible elastic solids or, equivalently, for incompressible viscous fluids. Sketch a proof of them in the exact case.

Hint: Consider periodic boundary conditions to simplify things. Show that proving (5.28) is equivalent to proving that, for any $q \in L_{0}^{2}(\Omega)$ (functions with zero mean), there exists $v \in H_{\mathrm{per}}^{1}(\Omega)$ satisfying

$$
\begin{align*}
\int_{\Omega} q \operatorname{div} v & \geq c\|q\|_{0}^{2} \tag{5.34}\\
\|v\|_{1} & \leq C\|q\|_{0} \tag{5.35}
\end{align*}
$$

where c and C do not depend on q. Then define φ as the solution of $\nabla^{2} \varphi=q$ and choose $v=\nabla \varphi$. Show that the two conditions above are satisfied.

5.3 Abstract approximation

Now we consider the following abstract setting, in which $V_{h} \subset V$ and $Q_{h} \subset Q$:
H1 Let $(u, p) \in V \times Q$ satisfy

$$
\begin{equation*}
B\left((u, p),\left(v_{h}, q_{h}\right)\right)=S\left(v_{h}, q_{h}\right) \quad \forall\left(v_{h}, q_{h}\right) \in V_{h} \times Q_{h} \tag{5.36}
\end{equation*}
$$

with the definitions (5.29)-(5.30), assuming all linear and bilinear forms involved are bounded.
Notice that we do not assume that $B(\cdot, \cdot)$ coincides with that of the exact mixed formulation on $V \times Q$. The analysis thus includes non-Galerkin approximations. B could depend on the mesh.

H2 The subspaces V_{h} and Q_{h} are such that

$$
\begin{equation*}
\inf _{q_{h} \in Q_{h}} \sup _{v_{h} \in V_{h}} \frac{b\left(v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}\left\|q_{h}\right\|_{Q}}=\gamma_{h}>0 \tag{5.37}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(v_{h}, v_{h}\right) \geq \alpha_{h}\left\|v_{h}\right\|_{V}^{2} \quad \forall v_{h} \in Z_{h 0} \tag{5.38}
\end{equation*}
$$

with $\alpha_{h}>0$ and

$$
\begin{equation*}
Z_{h 0}=\left\{v_{h} \in V_{h} \mid b\left(v_{h}, q_{h}\right)=0 \quad \forall q_{h} \in Q_{h}\right\} . \tag{5.39}
\end{equation*}
$$

Theorem 5.3 Under the hypotheses $\mathbf{H} 1$ and $\mathbf{H} 2$ above, the approximation $\left(u_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ defined by

$$
\begin{equation*}
B\left(\left(u_{h}, p_{h}\right),\left(v_{h}, q_{h}\right)\right)=S\left(v_{h}, q_{h}\right) \quad \forall\left(v_{h}, q_{h}\right) \in V_{h} \times Q_{h} \tag{5.40}
\end{equation*}
$$

exists and is unique. Further, there exists $C=C\left(N_{a}, N_{b}, \alpha_{h}, \gamma_{h}\right)$ such that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V}+\left\|p-p_{h}\right\|_{Q} \leq C\left(\inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{V}+\inf _{q_{h} \in Q_{h}}\left\|p-q_{h}\right\|_{Q}\right) \tag{5.41}
\end{equation*}
$$

Exo. 5.6 Prove the previous theorem. Hint: Use Lemma 1.13. The hypothesis H2, together with 5.32 applied to the discrete problem and 5.33 allow to estimate

$$
\begin{equation*}
C=1+\frac{N_{a}+2 N_{b}}{\beta_{h}}=1+\frac{2\left(N_{a}+2 N_{b}\right)\left(1+\frac{\alpha_{h} \gamma_{h}}{N_{a}^{2}}\right)}{\alpha_{h} \min \left\{1, \frac{\gamma_{h}^{2}}{N_{a}^{2}}\right\}} \tag{5.42}
\end{equation*}
$$

Exo. 5.7 Show that u_{h} that solves (5.40) also solves: Find $u_{h} \in Z_{h g}$ such that

$$
\begin{equation*}
a\left(u_{h}, v_{h}\right)=B\left(\left(u_{h}, 0\right),\left(v_{h}, 0\right)\right)=S\left(v_{h}, 0\right)=\ell\left(v_{h}\right) \quad \forall v_{h} \in Z_{h 0} \tag{5.43}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{h g}=\left\{v_{h} \in V_{h} \mid b\left(v_{h}, q_{h}\right)=g\left(q_{h}\right) \forall q_{h} \in Q_{h}\right\} \tag{5.44}
\end{equation*}
$$

- Optimal approximation properties are obtained for the mixed problem on the unconstrained space V_{h}.
- The space Q_{h} needs to be chosen such that the inf-sup condition is satisfied, and such that $\left\|p-\mathcal{I}_{h} p\right\|_{Q}$ is sufficiently small to not degrade the approximation of u. The norm $\|\cdot\|_{Q}$ is usually weaker than $\|\cdot\|_{V}$, allowing Q_{h} to be coarser, or of lower order, than V_{h}.
- Estimate (5.42) shows that if there exist $\alpha_{0}>0$ and $\gamma_{0}>0$ such that $\alpha_{h} \geq \alpha_{0}$ and $\gamma_{h} \geq \gamma_{0}$ for all h, then C in (5.41) can be taken independent of h.

5.4 Application to incompressible elasticity and to Stokes flow

The mixed variational formulation of incompressible elasticity is: Find $(u, p) \in V_{D g} \times L^{2}(\Omega)$ such that

$$
\begin{align*}
\int_{\Omega} 2 \mu \boldsymbol{\epsilon}(u): \boldsymbol{\epsilon}(v) d \Omega-\int_{\Omega} p \operatorname{div} v d \Omega & =\int_{\Omega} f \cdot v d \Omega+\int_{\Gamma_{N}} \mathcal{F} \cdot v d \Gamma & & \forall v \in V_{D 0} \tag{5.45}\\
& \int_{\Omega} q \operatorname{div} u d \Omega & =0 & \tag{5.46}
\end{align*}
$$

which fits nicely in the framework (5.22)-5.23). This exact same mathematical problem corresponds to Stokes flow, in which u is the velocity field of an incompressible Newtonian fluid of viscosity μ. Stokes flow models fluid flow in conditions in which inertial effects are negligible, as happens for example in microfluidics.
We identify the components of the abstract mixed formulation:

$$
\begin{align*}
a(u, v) & =\int_{\Omega} 2 \mu \boldsymbol{\epsilon}(u): \boldsymbol{\epsilon}(v) d \Omega \tag{5.47}\\
b(v, q) & =\int_{\Omega} q \operatorname{div} v d \Omega \tag{5.48}\\
Z_{0} & =\left\{v \in V_{D 0} \mid \int_{\Omega} q \operatorname{div} v d \Omega=0 \quad \forall q \in L^{2}(\Omega)\right\}=\left\{v \in V_{D 0} \mid \operatorname{div} v=0\right\} \tag{5.49}
\end{align*}
$$

and we observe that $a(\cdot, \cdot)$ is strongly coercive on $V=V_{D 0}$ as a consequence of Korn's inequality. The mixed formulation is well-posed because

$$
\begin{equation*}
\inf _{q \in L^{2}(\Omega)} \sup _{v \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} q \operatorname{div} v d \Omega}{\|v\|_{1}\|q\|_{0}}>0 \tag{5.50}
\end{equation*}
$$

an inequality that was proved by Ladyzhenskaya. But notice that our abstract approximation results do not depend on stability estimates such as 5.50, which correspond to the exact problem. Only the boundedness of the exact problem and the stability (coercivity) of the discrete problem matters.

Turning now to the mixed Galerkin approximation, which reads just as 5.45-5.46 replacing all exact spaces by $V_{h g}, V_{h 0}$ and Q_{h}, the following comments are in order:

- Whichever Q_{h}, the mixed Galerkin formulation admits a unique solution u_{h} belonging to

$$
\begin{equation*}
Z_{h g}=\left\{v_{h} \in V_{h g} \mid \int_{\Omega} q_{h} \operatorname{div} v_{h} d \Omega=0 \forall q_{h} \in Q_{h}\right\} \tag{5.51}
\end{equation*}
$$

and satisfying

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V} \leq C \inf _{v_{h} \in Z_{h g}}\left\|u-v_{h}\right\|_{V} \tag{5.52}
\end{equation*}
$$

- If Q_{h} is too large the approximation ability of $Z_{h g}$ may be much poorer than that of $V_{h g}$. This lack of approximability is known as "locking". It manifests as largely inaccurate u_{h} even for very fine meshes.
- If Q_{h} is "balanced" with $V_{h 0}$, in the sense that

$$
\begin{equation*}
\inf _{q_{h} \in Q_{h}} \sup _{v_{h} \in V_{h 0}} \frac{\int_{\Omega} q_{h} \operatorname{div} v_{h} d \Omega}{\left\|q_{h}\right\|_{Q}\left\|v_{h}\right\|_{V}}=\gamma_{h}>0 \tag{5.53}
\end{equation*}
$$

then there exists a unique $p_{h} \in Q_{h}$ such that $\left(u_{h}, p_{h}\right)$ satisfies the mixed Galerkin formulation and

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{V}+\left\|p-p_{h}\right\|_{Q} \leq \frac{c}{\gamma_{h}^{2}}\left(\inf _{v_{h} \in V_{h g}}\left\|u-v_{h}\right\|_{V}+\inf _{q_{h} \in Q_{h}}\left\|p-q_{h}\right\|_{Q}\right) \tag{5.54}
\end{equation*}
$$

with c independent of h for h small.

- If $\gamma_{h}=0$, then p_{h} is not uniquely defined. This implies in particular that the system matrix of the mixed Galerkin formulation is singular.
- Though condition (5.53) is cumbersome to satisfy and check, there exists a vast collection of combinations $V_{h}-Q_{h}$ for which (5.53) holds uniformly in h (i.e., with $\gamma_{h} \geq \gamma_{0}>0$ for all h). These combinations are called stable mixed elements.
- Equal-order elements are not stable. They can be handled with stabilized formulations. The convergence is proved using Theorem 5.3, though replacing H2 with a weak coercivity condition on B.

5.5 Project: A FEniCS microswimmer solver

5.5.1 Introduction

In this project we consider swimmers which have n degrees of freedom, more specifically that the swimmers position and configuration at time t is given by $\mathbf{q}(t) \in \mathbb{R}^{n}$.
The degrees of freedom decompose as $\mathbf{q}=(\mathbf{p}, \boldsymbol{\xi})$, where $\mathbf{p} \in \mathbb{R}^{n_{p}}$ are the positional degrees of freedom (global position of the swimmer, orientation) and $\boldsymbol{\xi} \in \mathbb{R}^{n_{c}}$ the configurational degrees of freedom (length of extensible parts, angles of joints, etc.).
The swimmer moves in a viscous fluid acted upon just by the forces the fluid exerts on it. The swimmer has internal mechanisms to change its configurational variables along time, in particular we assume that it is possible to specify $\boldsymbol{\xi}(t)$ to be any piecewise-differentiable continuous function with bounded derivative.

The swimming problem consists in, given $\boldsymbol{\xi}(t)$ for $0 \leq t \leq T$ and the initial position $\mathbf{p}(0)$, finding $\mathbf{p}(t)$ for $0<t \leq T$.

5.5.2 Equations

- Consider a swimmer that can only move along the x_{1} axis, and choose any of its material points P as reference. The only positional degree of freedom is thus $\mathbf{p}=p=\left(p_{1}\right)$, the position of the material point P. The configurational variables $\boldsymbol{\xi}$, on the other hand, can be many.
- The force F that the fluid exerts on the swimmer is a function of \mathbf{q} and $\dot{\mathbf{q}}$.
- If the fluid is Newtonian and inertialess the linearity of the Stokes problem implies that

$$
\begin{equation*}
F(\mathbf{q}, \dot{\mathbf{q}})=R(\mathbf{q}) \dot{\mathbf{q}}=A(\mathbf{p}, \boldsymbol{\xi}) \dot{\mathbf{p}}+B(p, \boldsymbol{\xi}) \dot{\boldsymbol{\xi}} . \tag{5.55}
\end{equation*}
$$

- Notice that in the one-dimensional case A is the coefficient that relates de drag force to the velocity when the swimmer is moved by an external agent with its configuration fixed (i.e., when $\dot{\boldsymbol{\xi}}=0$).
- Because the only force on the swimmer is that exerted by the fluid, $F=0$, thus the fundamental equation is

$$
\begin{equation*}
\frac{d p}{d t}=C(p, \boldsymbol{\xi}) \frac{d \boldsymbol{\xi}}{d t}, \tag{5.56}
\end{equation*}
$$

where $C=-A^{-1} B$.

- In an infinite medium, A, B and C does not depend on p.
- Notice that B and C are row matrices with n_{c} entries, while A is a (negative) number, for each $\boldsymbol{\xi}$.
- To compute $A(\mathbf{q})$ and $B(\mathbf{q})$ we follow the steps:

1. Generate a mesh with the geometry corresponding to \mathbf{q}.
2. Impose the velocities at the swimmer's boundary corresponding to ridig-body translation with speed 1 along x_{1} (i.e., $\dot{p}=1, \dot{\boldsymbol{\xi}}=0$). From the solution, extract the force (along x_{1}) that the fluid exerts on the swimmer. This value is $A(\mathbf{q})$.
3. For $j=1, \ldots, n_{c}$, impose the velocities at the swimmer's boundary corresponding to $\dot{p}=0$ and $\dot{\xi}_{j}=1$, and $\dot{\xi}_{i}=0$ if $i \neq j$. Extract the force (along x_{1}) that the fluid exerts on the swimmer. This value is $B_{j}(\mathbf{q})$.

- Library FEniCS will be used to discretize the solution of the Stokes problems with a mesh \mathcal{T}_{h}, so as to obtain approximations of $A(\mathbf{q})$ and $B(\mathbf{q})$ which lead to

$$
C_{h}(\mathbf{q}) \simeq C(\mathbf{q}) .
$$

We thus obtain the ODE

$$
\begin{equation*}
\frac{d p_{h}}{d t}(t)=C_{h}\left(p_{h}(t), \boldsymbol{\xi}(t)\right) \boldsymbol{\xi}^{\prime}(t) \tag{5.57}
\end{equation*}
$$

- One can discretize (5.56) in time with different schemes, the simplest one being

$$
p_{h}^{n+1}=p_{h}^{n}+\delta t C_{h}\left(p_{h}^{n}, \boldsymbol{\xi}\left(t_{n}\right)\right) \boldsymbol{\xi}^{\prime}\left(t_{n}\right) .
$$

- Notice that in an infinite medium C does not depend on p, because of translational symmetry. One can build an approximate atlas \tilde{C}_{h} by computing C_{h} for a set of values of ξ and then use interpolation in ξ to get C_{h} at values that have not been computed.

5.5.3 Tasks of the miniproject

1. Consider a rectilinear swimmer consisting of three link bodies inside an infinite medium. The geometries of the bodies will be circular of diameter D, or square of edgelength D. The positional dof is $p=p_{1}$, the center of the leftmost body. The configurational degrees of freedom will be $\xi_{1}=\ell_{1}$ and $\xi_{2}=\ell_{2}$, the lengths of the links. These links are restricted to take values between $\ell_{\min }$ and $\ell_{\max }$.
2. We will adopt the values $D=1, \ell_{\min }=1.5, \ell_{\max }=4$. Notice that C is independent of the fluid's viscosity, so there are no other parameters in the problem.
3. Compute $C_{h}(\boldsymbol{\xi})$ at the four corners $\left\{\boldsymbol{\xi}^{(k)}\right\}(k=1, \ldots, 4)$ of the square $S=\left[\ell_{\min }, \ell_{\max }\right] \times\left[\ell_{\min }, \ell_{\max }\right]$. By refining the mesh, estimate the convergence order (in h) for $C_{h}\left(\boldsymbol{\xi}^{(k)}\right) \rightarrow C\left(\boldsymbol{\xi}^{(k)}\right)$. For this task and the ones below, one group will use P_{2} / P_{1}-Galerkin formulation and the other the P_{1} / P_{1}-stabilized formulation.
4. Based on the results of the previous item, select a mesh of adequate precision for each of the swimmers (circular and square). Then build an atlas \tilde{C}_{h} on S, by sampling C_{h} at $n \times n$ points of S. The outcome of this task is a function that, for each $\left(\xi_{1}, \xi_{2}\right)$ returns the interpolated value of the 2-vector $\tilde{C}_{h}\left(\xi_{1}, \xi_{2}\right)$. Plot this vector field.
5. Solve 5.57) from $t=0$ to $t=2 \pi$ using a first or second order scheme in time, depending on the group. For this, impose

$$
\begin{equation*}
\xi_{1}(t)=\alpha+\beta \cos (t), \xi_{2}(t)=\alpha+\beta \cos (t+\phi), \tag{5.58}
\end{equation*}
$$

with $\alpha=2.5, \beta=1, \phi=\pi / 2$. Check the convergence of the scheme as $\delta t \rightarrow 0$. Notice that $p_{h}(2 \pi)$ is the net displacement after one stroke if the proposed $\boldsymbol{\xi}(t)$ is repeated periodically.
6. Solve 5.57 replacing C_{h} by the atlas \tilde{C}_{h} calculated previously. Discuss the error introduced by interpolating C_{h}.
7. Using the plot of \tilde{C}_{h} and the previous results, try to find another periodic motion that is more efficient to propel the swimmer than the one studied in the previous items.

Thank you for your attention in class
and your dedication throughout the course.
Happy holidays!!

References

[1] R. Adams. Sobolev spaces. Academic Press. 1975.
[2] S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, 1994.
[3] H. Brezis. Analyse fonctionnelle. Théorie et applications. Masson. 1983.
[4] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991.
[5] P. Ciarlet. Basic error estimates for elliptic problems. Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part 1). Edited by P. Ciarlet and J.L. Lions. Elsevier. 1991.
[6] R. Durán. Galerkin approximations and finite element methods. Lecture notes (available at the author's website).
[7] A. Ern and J.-L. Guermond. Theory and practice of finite elements. Applied Mathematical Sciences 159. Springer. 2004.
[8] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. Grundlehren der mathematischen Wissenschaften 224. Second edition. Springer-Verlag. 1983.
[9] O. Ladyzenskaja and N. Uralceva, Equations aux dérivées partielles de type elliptique. Dunod, Paris, 1968.
[10] M. Renardy and R. Rogers. An introduction to partial differential equations. Texts in Applied Mathematics 13. Springer. 1993.

