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Motivation

• For elliptic and parabolic problems, the most popular approximation method is the FEM.

• It is general, not restricted to linear problems, or to isotropic problems, or to any subclass of
mathematical problems.

• It is geometrically flexible, complex domains are quite easily treated, not requiring adaptations
of the method itself.

• It is easy to code, and the coding is quite problem-independent. Boundary conditions are much
easier to deal with than in other methods.

• It is robust, because in most cases the mathematical problem has an underlying variational structure
(energy minimization, for example).
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Overview

• Galerkin approximations: Differential, variational and extremal formulations of a simple 1D
boundary value problem. Well-posedness of variational formulations. Functional setting. Strong and
weak coercivity. Lax-Milgram lemma. Banach’s open mapping theorem. Céa’s best-approximation
property. Convergence under weak coercivity. (2 lectures)

• The spaces of FEM and their implementation: (3 lectures)

• Interpolation error and convergence: (2 lectures)

• Application to convection-diffusion-reaction problems: (2 lectures)

• Application to linear elasticity: (2 lectures)

• Mixed problems: (2 lectures)

• FEM for parabolic problems: (2 lectures)
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1 Galerkin approximations

1.1 Variational formulation of a simple 1D example

Let u be the solution of {
−u′′ + u = f in (0, 1)

u(0) = u(1) = 0
(1.1)

The differential formulation (DF) of the problem requires −u′′+u to be exactly equal to f in all points
x ∈ (0, 1).
Multiplying the equation by any function v and integrating by parts (recall that∫ 1

0

w′ z dx = w(1)z(1)− w(0)z(0)−
∫ 1

0

w z′ dx (1.2)

holds for all w and z that are regular enough) one obtains that u satisfies∫ 1

0

(u′ v′ + u v) dx− u′(1)v(1) + u′(0)v(0) =

∫ 1

0

f v dx ∀ v. (1.3)

• The requirement “for all x” of the DF has become “for all functions v”.

• Does equation (1.3) fully determine u?

• What happened with the boundary conditions?
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Consider the following problem in variational formulation (VF): “Determine u ∈ W , such that u(0) =
u(1) = 0 and that ∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx (1.4)

holds for all v ∈ W satisfying v(0) = v(1) = 0.”

Prop. 1.1 The solution u of the DF (eq. 1.1) is also a solution of the VF if W consists of continuous
functions of sufficient regularity. As a consequence, problem VF admits at least one solution whenever DF
does.

Proof. Following the steps that lead to the VF, it becomes clear that the only requirement for u to satisfy
(1.4) is that the integration by parts formula (1.2) be valid. �

Exo. 1.1 Show that the solution of {
−u′′ + u = f in (0, 1)

u(0) = 0, u′(1) = g ∈ R
(1.5)

is a solution to: “Find u ∈ W such that u(0) = 0 and that∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx + g v(1) (1.6)

holds for all v ∈ W satisfying v(0) = 0.”
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Consider the following problem in extremal formulation (EF): “Determine u ∈ W such that it minimizes
the function

J(w) =

∫ 1

0

(
1

2
w′(x)2 +

1

2
w(x)2 − f w

)
dx (1.7)

over the functions w ∈ W that satisfy w(0) = w(1) = 0.”

Prop. 1.2 The unique solution u of (1.1) is also a solution to EF. As a consequence, EF admits at least
one solution.

Proof. We need to show that J(w) ≥ J(u) for all w ∈ W0, where

W0 = {w ∈ W , w(0) = w(1) = 0}

Writing w = u+ αv and replacing in (1.7) one obtains

J(u+ α v) = J(u) + α

[∫ 1

0

(u′ v′ + u v − f v) dx

]
+ α2

∫ 1

0

(
1

2
v′(x)2 +

1

2
v(x)2

)
dx

The last term is not negative and the second one is zero. �

Exo. 1.2 Identify the EF of the previous exercise.
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Prop. 1.3 Let u be the solution of {
−u′′ + u = f in (0, 1)

u(0) = 1, u′(1) = g ∈ R
(1.8)

then u is also a solution of “Determine u ∈ W such that u(0) = 1 and that∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx + g v(1) (1.9)

holds for all v ∈ W satisfying v(0) = 0.”
Further, defining for any a ∈ R

Wa = {w ∈ W,w(0) = a},

u minimizes over W1 the function

J(w) =

∫ 1

0

(
1

2
w′(x)2 +

1

2
w(x)2 − f w

)
dx − g w(1). (1.10)

Exo. 1.3 Prove the last proposition.
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Let us define the bilinear and linear forms corresponding to problem (1.1):

a(v, w) =

∫ 1

0

(v′w′ + vw) dx `(v) =

∫ 1

0

f v dx (1.11)

and the function J(v) = 1
2
a(v, v) − `(v). Remember that W is a space of functions with some (yet

unspecified) regularity and let W0 = {w ∈ W, w(0) = w(1) = 0}.

The three formulations that we have presented up to now are, thus:

DF: Find a function u such that

−u′′(x) + u(x) = f(x) ∀x ∈ (0, 1), u(0) = u(1) = 0

VF: Find a function u ∈ W0 such that

a(u, v) = `(v) ∀ v ∈ W0

EF: Find a function u ∈ W0 such that

J(u) ≤ J(w) ∀w ∈ W0

and we know that the exact solution of DF is also a solution of VF and of EF.
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The logic of the construction is justified by the following

Theorem 1.4 If W is taken as

W = {w : (0, 1)→ R,
∫ 1

0

w(x)2 dx < +∞,
∫ 1

0

w′(x)2 dx < +∞} def
= H1(0, 1)

and if f is such that there exists C ∈ R for which∫ 1

0

f(x)w(x) dx ≤ C

√∫ 1

0

w′(x)2 dx ∀w ∈ W0 (1.12)

then problems (VF) and (EF) have one and only one solution, and their solutions coincide.

The proof will be given later, now let us consider its consequences:

• The differential equation has at most one solution in W .

• If the solution u to (VF)-(EF) is regular enough to be considered a solution to (DF), then u is
the solution to (DF).

• If the solution u to (VF)-(EF) is not regular enough to be considered a solution to (DF), then (DF)
has no solution.

⇒ (VF) is a generalization of (DF).
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Exo. 1.4 Show that W0 ⊂ C0(0, 1). Further, compute C ∈ R such that

max
x∈[0,1]

|w(x)| ≤ C

√∫ 1

0

w′(x)2 dx ∀w ∈ W0

Hint: You may assume that
∫ 1

0
f(x) g(x) dx ≤

√∫ 1

0
f(x)2 dx

√∫ 1

0
g(x)2 dx for any f and g (Cauchy-

Schwarz).

Exo. 1.5 Consider f(x) = |x− 1/2|γ. For which exponents γ is
∫ 1

0
f(x)w(x) dx < +∞ for all w ∈ W0?

Exo. 1.6 Consider as f the “Dirac delta function” at x = 1/2, that we will denote by δ1/2. It can be
considered as a “generalized” function defined by∫ 1

0

δ1/2(x)w(x) dx = w(1/2) ∀w ∈ C0(0, 1)

Prove that δ1/2 satisfies (1.12) and determine the analytical solution to (VF).

Exo. 1.7 Determine the DF and the EF corresponding to the following VF: “Find u ∈ W = H1(0, 1),
u(0) = 1, such that ∫ 1

0

(u′w′ + uw) dx = w(1/2) ∀w ∈ W0 (1.13)

where W0 = {w ∈ W,w(0) = 0}.”
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1.2 Variational formulations in general

Let V be a Hilbert space with norm ‖ · ‖V . Let a(·, ·) and `(·) be bilinear and linear forms on V satisfying
(continuity), for all v, w ∈ V ,

a(v, w) ≤ Na ‖v‖V ‖w‖V , `(v) ≤ N` ‖v‖V (1.14)

This last inequality means that ` ∈ V ′, the (topological) dual of V . The minimum N` that satisfies this
inequality is called the norm of ` in V ′, i.e.

‖`‖V ′
def
= sup

06=v∈V

`(v)

‖v‖V
(1.15)

The abstract VF we consider here is:

“Find u ∈ V such that a(u, v) = `(v) ∀ v ∈ V ” (1.16)

Exo. 1.8 Assume that V is finite dimensional, of dimension n, and let {φ1, φ2, . . . , φn} be a basis. Show
that (1.16) is then equivalent to

V T AU = V T L ∀V ∈ Rn , (1.17)

which in turn is equivalent to the linear system

A U = L ; (1.18)

where
Aij

def
= a(φj, φi), Li

def
= `(φi) (1.19)

and U is the coefficient column vector of the expansion of u, i.e.,

u =
n∑
i=1

Ui φ
i (1.20)
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Def. 1.5 The bilinear form a(·, ·) is said to be strongly coercive if there exists α > 0 such that

a(v, v) ≥ α‖v‖2
V ∀ v ∈ V (1.21)

Def. 1.6 The bilinear form a(·, ·) is said to be weakly coercive (or to satisfy an inf-sup condition) if
there exists β > 0 such that

sup
06=w∈V

a(v, w)

‖w‖V
≥ β‖v‖V ∀ v ∈ V (1.22)

and

sup
0 6=v∈V

a(v, w)

‖v‖V
≥ β‖w‖V ∀w ∈ V (1.23)

Exo. 1.9 Prove that strong coercivity implies weak coercivity.

Exo. 1.10 Prove that, if V is finite dimensional, then (i) a(·, ·) is strongly coercive iff A is positive definite

(XT A X > 0 ∀X ∈ Rn), and (ii) a(·, ·) is weakly coercive iff A is invertible.

Exo. 1.11 Prove that, if a(·, ·) is weakly coercive, then the solution u of (1.16) depends continuously on
the forcing `(·). Specifically, prove that

‖u‖V ≤
1

β
‖`‖V ′ (1.24)
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Theorem 1.7 Assuming V to be a Hilbert space, problem (1.16) is well posed for any ` ∈ V ′ if and only
if (i) a(·, ·) is continuous, and (ii) a(·, ·) is weakly coercive.

A simpler version of this result is known as Lax-Milgram lemma:

Theorem 1.8 Assuming V to be a Hilbert space, if a(·, ·) is continuous and strongly coercive then problem
(1.16) is well posed for any ` ∈ V ′.

Proof. This proof uses the so-called “Galerkin method”, which will be useful to introduce. . . the Galerkin
method!
Let {φi} be a basis of V . Denoting VN = span(φ1, . . . , φN) we can define uN ∈ VN as the unique solution
of a(uN , v) = `(v) for all v ∈ VN . This generates a sequence {uN}N=1,2,... in V . Further, this sequence is
bounded, because

‖uN‖2
V ≤

1

α
a(uN , uN) =

1

α
`(uN) ≤ ‖`‖V

′

α
‖uN‖V ⇒ ‖uN‖V ≤

‖`‖V ′

α
, ∀N

Recalling the weak compactness of bounded sets in Hilbert spaces, there exists u ∈ V such that a sub-
sequence of {uN} (still denoted by {uN} for simplicity) converges to u weakly. It remains to prove that
a(u, v) = `(v) for all v ∈ V . To see this, notice that

a(u, φi) = a(lim
N
uN , φ

i) = lim
N
a(uN , φ

i) = `(φi)

where the last equality holds because a(uN , φ
i) = `(φi) whenever N ≥ i. Uniqueness is left as an exercise.

�

Exo. 1.12 Prove uniqueness in the previous theorem (bounded sequences may have several accumulation
points).

13



Remark 1.9 The space L2(a, b) (also denoted by H0(a, b)) is the Hilbert space of functions f : (a, b)→ R
such that

∫ b
a
f 2(x) dx < +∞.

The scalar product is

(f, g)L2(a,b) =

∫ b

a

f(x)g(x) dx (1.25)

and accordingly

‖f‖L2(a,b) = (f, f)
1/2

L2(a,b) =

√∫ b

a

f 2(x) dx . (1.26)

Also of frequent use are the Hilbert spaces H1(a, b) and H2(a, b):

H1(a, b) = {f ∈ L2(a, b) | f ′ ∈ L2(a, b)} (1.27)

|f |H1(a,b) = ‖f ′‖L2(a,b) (1.28)

‖f‖H1(a,b) = ‖f‖L2(a,b) + |f |H1(a,b) (1.29)

H2(a, b) = {f ∈ H1(a, b) | f ′′ ∈ L2(a, b)} (1.30)

|f |H2(a,b) = ‖f ′′‖L2(a,b) (1.31)

‖f‖H2(a,b) = ‖f‖H1(a,b) + |f |H2(a,b) (1.32)

Exo. 1.13 Other equivalent norms can be defined in H1(a, b), e.g.,

1. |||f |||H1(a,b) =
(
‖f‖2

L2(a,b) + |f |2H1(a,b)

)1/2

2. |||f |||H1(a,b) = max
(
‖f‖L2(a,b), |f |H1(a,b)

)
3. |||f |||H1(a,b) = ‖f‖L2(a,b) + ‖` f ′‖L2(a,b), where ` : (a, b) → R satisfies 0 < `min ≤ `(x) ≤ `max for all

x ∈ (a, b). Notice that if `(x) has dimensions of length then this norm is unit-consistent.
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Find the constants c and C such that c‖f‖ ≤ |||f ||| ≤ C‖f‖.

Remark 1.10 For the spaces H1(a, b) and H2(a, b) to be complete, one needs a weaker definition of the
derivative. For this purpose, one first introduces the space

D(a, b) = C∞0 (a, b) = {ϕ ∈ C∞(a, b) | ϕ has compact support in (a, b)} . (1.33)

Given a function f : (a, b)→ R, if there exists g : (a, b)→ R such that∫ b

a

g(x)ϕ(x) dx = −
∫ b

a

f(x)ϕ′(x) dx , ∀ϕ ∈ D(a, b) , (1.34)

then we say that f ′ exists in a weak sense, and that f ′ = g.

Exo. 1.14 Show that the function

φ(x) =

{
exp (1/(|x|2 − 1)) if |x| < 1

0 if |x| ≥ 1
(1.35)

belongs to D(R). By suitably shifting and scaling the argument of φ show that D(a, b) has infinite dimension
for all a < b. (Hint: See Brenner-Scott, p. 27)

Exo. 1.15 Consider f(x) = 1− |x| in the domain (−1, 1). Prove that its weak derivative is given by

f ′(x) =

{
1 if x < 0

−1 if x > 0
. (1.36)

Prove also that f ′′ does not exist. (Hint: See Brenner-Scott, p. 28)

Exo. 1.16 Let f ∈ L2(a, b), and let V = H1(a, b). Show that `(v) =
∫ b
a
f(x) v(x) dx belongs to V ′ and

that ‖`‖V ′ ≤ ‖f‖L2(a,b).
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Summary and suggested exercises:

1. The Differential, Variational and Extremal formulations are equivalent in a sense that can be made
precise with suitable spaces and definitions of derivatives.

2. Be sure to understand how to deduce the DF (including boundary conditions) from the VF or from
the EF, and viceversa.

3. If the bilinear form of the VF is weakly stable, then all three formulations have a unique solution.

4. Consider the following problem: We want to compute the solution to a steady heat conduction
problem, −(ku′)′ = 0 for a slab of thickness a, i.e., having as domain the interval (0, a). The
boundary conditions are u(0) = 0, u(a) = U . Between x = 1/3 and x = 1/2 there is a layer of high
conductivity material, which makes that the temperature is assume constant there. Write down the
DF, VF and EF of this problem, considering the restriction imposed over the possible temperature
fields.
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1.3 Galerkin approximations

The previous proof suggests a numerical method, the Galerkin method, to approximate the solution of a
variational problem and thus of an elliptic PDE. The idea is simply to restrict the variational problem to
a subspace of V that we will denote by Vh.

Discrete variational problem (Galerkin): Find uh ∈ Vh such that

a(uh, vh) = `(vh) ∀ vh ∈ Vh (1.37)

When the bilinear form a(·, ·) is symmetric and strongly coercive, this discrete probleme is equivalent to

Discrete extremal problem (Galerkin): Find uh ∈ Vh which minimizes over Vh the function

J(w) =
1

2
a(w,w) − `(w) (1.38)

Exo. 1.17 Prove this last assertion.

The natural questions that arise are:

• Does uh exist? Is it unique?

• Does uh approximate u (the exact solution)?

• How difficult is it to compute uh?
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Does uh exist? Is it unique?

Case 1) Strong coercivity of the form a(·, ·) over V

If a(·, ·) is strongly coercive over V , then

inf
06=w∈V

a(w,w)

‖w‖2
V

= α > 0.

If Vh ⊂ V , then a(·, ·) is strongly coercive over Vh (because the infimum is taken over a smaller set). Then
uh exists and is unique as a consequence of Exo. 1.10.

Case 2) Weak coercivity of the form a(·, ·) over V

If a(·, ·) is just weakly coercive over V , then it may or may not be weakly coercive over Vh. Compare the
two following conditions

(A) inf
w∈V

sup
v∈V

a(w, v)

‖w‖V ‖v‖V
= β > 0, (B) inf

w∈Vh
sup
v∈Vh

a(w, v)

‖w‖V ‖v‖V
= βh > 0.

It is not true that (A)⇒(B) because the sup in (B) is taken over a smaller set. In this case the weak coercivity
of the discrete problem must be proven independently, it is not inherited from the weak coercivity over the
whole space V .
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Does uh approximate u?

Case 1) Strong coercivity of the form a(·, ·) over V

Lemma 1.11 (J. Céa) If a(·, ·) and `(·) are continuous in V and a(·, ·) is strongly coercive, then

‖u− uh‖V ≤
Na

α
‖u− vh‖V ∀ vh ∈ Vh (1.39)

Proof. Notice the so-called Galerkin orthogonality:

a(u− uh, vh) = 0 ∀ vh ∈ Vh (1.40)

which implies that a(u− uh, u− uh) = a(u− uh, u− vh) for all vh ∈ Vh. Using this,

‖u− uh‖2
V ≤

1

α
a(u− uh, u− uh) =

1

α
a(u− uh, u− vh) ≤

Na

α
‖u− uh‖V ‖u− vh‖V ∀vh ∈ Vh

In other words, ‖u− uh‖V ≤ C infvh∈Vh ‖u− vh‖V . �

Let h be a real parameter, typically a “mesh size”. We say that a family {Vh}h>0 ⊂ V satisfies the
approximability property if:

lim
h→0

dist(u, Vh) = lim
h→0

inf
v ∈Vh

‖u− v‖V = 0 (1.41)

Corollary 1.12 If a(·, ·) and `(·) are continuous in V , a(·, ·) is strongly coercive, and the family {Vh}h>0 ⊂
V satisfies (1.41), then

lim
h→0

uh = u

in the sense of the norm ‖ · ‖V .
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If the strongly coercive bilinear form is symmetric, then a(·, ·) is a scalar product over V . In this case,
Galerkin orthogonality corresponds to: The Galerkin solution uh is the orthogonal projection of u
onto Vh.
Further, the energy norm can be defined

‖v‖a =
√
a(v, v) , (1.42)

which satisfies the equivalence

α
1
2 ‖v‖V ≤ ‖v‖a ≤ N

1
2
a ‖v‖V . (1.43)

Exo. 1.18 Show that the Galerkin approximation is optimal in the energy norm,

‖u− uh‖a ≤ ‖u− vh‖a , ∀ vh ∈ Vh , (1.44)

without the constants that appear in Céa’s lemma. Further show that the following sharper estimate holds:

‖u− uh‖V ≤
(
Na

α

) 1
2

‖u− vh‖V , ∀ vh ∈ Vh . (1.45)
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Case 2) Weak coercivity of the form a(·, ·) over Vh
Assume now that the weak coercivity constant βh is positive for all h > 0, so that uh exists and is unique.
Notice that Galerkin orthogonality still holds.

Lemma 1.13 If a(·, ·) and `(·) are continuous in V , and a(·, ·) is weakly coercive in Vh with constant
βh > 0, then

‖u− uh‖V ≤
(

1 +
Na

βh

)
‖u− vh‖V ∀ vh ∈ Vh (1.46)

Proof. One begins by decomposing the error as follows (we omit the subindex V in the norm)

‖u− uh‖ ≤ ‖u− vh‖+ ‖uh − vh‖ ∀ vh ∈ Vh (1.47)

and then using the weak coercivity

‖uh − vh‖ ≤
1

βh
sup
wh∈Vh

a(uh − vh, wh)
‖wh‖

=
1

βh
sup
wh∈Vh

a(u− vh, wh)
‖wh‖

≤ Na

βh
‖u− vh‖

Substituting this into (1.47) one proves the claim. �

Corollary 1.14 Under the hypotheses of Lemma 1.13, if there exists β0 > 0 such that βh > β0 for all h
and the family {Vh}h>0 ⊂ V satisfies (1.41), then

lim
h→0

uh = u

in the sense of the norm ‖ · ‖V .
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How difficult is it to compute uh?

Let us go back to our problem −u′′+u = f in (0, 1) with u(0) = u(1) = 0, which in VF requires to compute
u ∈ H1(0, 1) satisfying the boundary conditions and such that∫ 1

0

[u′(x) v′(x) + u(x) v(x)] dx =

∫ 1

0

f(x) v(x) dx (1.48)

Suitable spaces for the Galerkin approximation are, for example,

• Pk: The polynomials of degree up to k.

• Fk: The space generated by the functions φm(x) = sin(mπ x), m = 1, 2, . . . , k.

Exo. 1.19 Show that a(·, ·) is continuous and strongly coercive over V = H1(0, 1) with the norm

‖w‖V
def
=

[∫ 1

0

[
w′(x)2 + w(x)2

]
dx

] 1
2

Exo. 1.20 Build a small program in Matlab or Octave (or something else) that solves the Galerkin ap-
proximation of problem (1.48) considering f = δ1/4 and the spaces Pk and/or Fk, for some values of k.
Compare the results to the analytical solution building plots of u and uh. Also, build graphs of ‖u− uh‖ vs
k.

In general, however, the construction of spaces of global basis functions, as the ones above, is not practical
because it leads to dense matrices. In the next chapter we will introduce the spaces of the FEM, which
are characterized by having bases with small support and thus lead to sparse matrices.
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Exercises

Reading assignment: Read Chapter 1 of Duran’s notes (all of it).

Exo. 1.21 Carry out the “easy computation” that shows that A is the tridiagonal matrix such that the diagonal
elements are 2/h+ 2h/3 and the extra-diagonal elements are −1/h+ h/6 (Durán, page 3).

Exo. 1.22 Can a symmetric bilinear form be weakly coercive but not strongly coercive?

Exo. 1.23 To what variational formulation and what differential formulation corresponds the following extremal
formulation?
Find u ∈ V , V consisting of functions that are smooth in (0, 1/2) and (1/2, 1) but can exhibit a (bounded)
discontinuity at x = 1/2, that minimizes the function

J(w) =

∫ 1

0
[w′(x)2 + 2w(x)2] dx+ 4 [w(1/2+)− w(1/2−)]2 −

∫ 1/2

0
7 w(x) dx− 9w(0) (1.49)

where w(1/2±) represent the values on each side of the discontinuity. Notice that the space V (is it a vector space
really?) has no boundary condition imposed. What are the boundary conditions of the DF at x = 0 and x = 1?

Exo. 1.24 Consider the bilinear form

a(u, v) =

∫ 1

0
u′(x) v′(x) dx.

Prove that this form is not strongly coercive in H1(0, 1) considering the norm

‖w‖H1
def
=

{∫ 1

0

[
u′(x)2 + u(x)2

]
dx

} 1
2

and that it is, with the same norm, in

H1
0 (0, 1)

def
= {w ∈ H1(0, 1) , w(0) = w(1) = 0}.
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Worked example

Let us consider a heat transfer problem within a wall of cross-section S × 0 ⊂ R3, which has one face (ΓL)
at temperature TL, the opposite face (ΓR) at TR and the remaining faces ΓA adiabatical (no heat flux).
Inside the wall the material satisfies

−∇ · (α∇T ) = f (1.50)

where f is a source (which could come from radiation heating for example). Two rods of highly conductive
material (conductivity � α), which define internal boundaries Γ1 and Γ2, have been inserted in the wall
to improve the temperature distribution. The problem is assumed symmetrical along x3, rendering it 2D.
The domain Ω of (1.50) thus consists of S minus the cross sections of the rods, its boundary ∂Ω is the
union of ΓL, ΓR, ΓA, Γ1 and Γ2.
Some of the boundary conditions are clear:

T |ΓL
= TL, T |ΓR

= TR, α∇T · n|ΓA
= 0. (1.51)

Those on Γ1 and Γ2 not so much. Because of the high conductivity of the rods we can assume that

T |Γ1 = T1 ∈ R, T |Γ2 = T2 ∈ R, (1.52)

but we do not know a priori the values of T1 and T2. Because of the symmetry along x3, we can assume
that there is no net heat flux across Γ1 or Γ2, i.e.,∫

Γi

α∇T · n = 0, i = 1, 2. (1.53)

That is all we can say about the boundary conditions at Γ1 and Γ2 (can you think of anything else?).
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We now introduce an affine space which only incorporates the Dirichlet conditions of the problem,

VD = {v ∈ H1(Ω), v|ΓL
= TL, v|ΓR

= TR, v|Γ1 = T1, v|Γ2 = T2, where TL, TR are given and T1, T2 ∈ R},
(1.54)

and consider the following optimization problem:

Find T that minimizes, over VD, the function

J(v) =
1

2

∫
Ω

α∇v · ∇v −
∫

Ω

fv. (1.55)

Prop. 1.15 There exists a unique minimum T of J in VD. Further,

• it satisfies the differential equation (1.50) and the boundary conditions (1.51)-(1.53),

• it satisfies the variational formulation

a(T,w) = `(w) ∀w ∈ V0, (1.56)

where a(v, w) =
∫

Ω
α∇v · ∇w, `(w) =

∫
Ω
fw and

V0 = {v ∈ H1(Ω), v|ΓL
= 0, v|ΓR

= 0, v|Γ1 = T1, v|Γ2 = T2, where TL, TR are given and T1, T2 ∈ R},
(1.57)
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Proof of the proposition: We first establish (1.56). For this, from T being a minimizer we know that

J(T ) ≤ J(T + εw) (1.58)

whenever T + εw is in VD. It is not difficult to see that this happens iff w ∈ V0, ε being an arbitrary
real number. By taking v = T + εw in (1.55) and expanding the product we arrive at

J(T + εw) = J(T ) + ε(a(T,w)− `(w)) +
1

2
ε2a(w,w)

which satisfies (1.58) iff the claim (1.56) holds true.
Next, we verify that a(·, ·) is a bilinear form that is continuous in H1(Ω) and and strongly coercive in
V0 ⊂ H1(Ω). For the latter, we use Poincaré’s inequality

‖w‖L2(Ω) ≤ c ‖∇w‖L2(Ω), ∀w ∈ H1(Ω), w|ΓL∪ΓR
= 0.

This tells us that the solution of both the optimization problem and the variational problem exists and is
unique.
To prove the first claim, we begin by noticing that, since T ∈ VD, there exist two numbers T1 and T2 that
make (1.52) to hold. Integration by parts of (1.56) then leads us to∫

Ω

[−∇ · (α∇T )− f ] w +

∫
ΓA

[α∇T · n] w +

∫
Γ1

[α∇T · n] w +

∫
Γ2

[α∇T · n] w = 0.

From the first term we conclude (1.50) by taking arbitrary w in D(Ω). From T ∈ VD and the second
term we conclude (1.51) noticing that for any ϕ ∈ D(ΓA) there exists w ∈ V0 such that w|ΓA

= ϕ,
w|Γ1 = w|Γ2 = 0. On the other hand, we cannot conclude that α∇T · n is zero on Γ1 (or Γ2), because w is
constant there. The constant is however arbitrary, allowing us to conclude (1.53). �
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Let us now exploit the linearity of the problem. We define three functions θ0, θ1 and θ2 as the unique
solutions of

• θ0 ∈ VD0 such that a(θ0, w) = `(w), ∀w ∈ V00, where

VD0 = {w ∈ VD, w|Γi
= 0, i = 1, 2}, V00 = {w ∈ V0, w|Γi

= 0, i = 1, 2}.

• θi ∈ Vi, i = 1, 2 such that a(θi, w) = 0, ∀w ∈ V00, where

Vi = {w ∈ V0, w|Γi
= 1 and w|Γj

= 0 if j 6= i}.

Notice that all θi’s are solutions of standard problems, with Dirichlet conditions on ΓL ∪ ΓR ∪ Γ1 ∪ Γ2 and
Neumann conditions on ΓA.
We remark that any w ∈ V0 can be uniquely written as

w = w0 +W1φ1 +W2φ2 (1.59)

where w0 ∈ V00, Wi ∈ R and φi is a fixed, arbitrary element of Vi.

Prop. 1.16 The solution T of the problem satisfies

T = θ0 + T1θ1 + T2θ2 ,

where T1 and T2 are the solution to the linear system

a(θ1, φ1)T1 + a(θ2, φ1)T2 = `(φ1)− a(θ0, φ1) , (1.60)

a(θ1, φ2)T1 + a(θ2, φ2)T2 = `(φ2)− a(θ0, φ2) . (1.61)

Further, the coefficients of this system are independent of the particular choice of φ1 and φ2
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Proof of the proposition:

Plugging T̃ (T1, T2) = θ0 + T1θ1 + T2θ2 into the variational formulation we see that a(T̃ (T1, T2), w) = `(w)
for all w ∈ V00 irrespective of the values T1, T2. It only remains to show that the same holds for w = φ1

and w = φ2, which happens iff the linear system in the proposition holds true. The independence of φi is
proved noticing that any other choice φ̃i ∈ Vi leads to coefficients a(θj, φ̃i) that satisfy

a(θj, φ̃i) = a(θj, φi) + a(θj, φ̃i − φi)

and the second term on the right is zero because φ̃i − φi ∈ V00. �

Computation of the coefficients of the linear system:

Notice that −∇ · (α∇θ0) = f , and that −∇ · (α∇θj) = 0, j = 1, 2.

Aij = a(θj, φi) =

∫
Ω

α∇θj · ∇φi =

∫
∂Ω

α∇θj · nφi =

∫
Γi

α∇θj · n ,

bi =

∫
Ω

fφi −
∫

Ω

α∇θ0 · ∇φi = −
∫

Γi

α∇θ0 · n .

The arbitrariness of φi is evident in the rightmost expressions.
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Galerkin approximation: Let us now consider a finite element space W h ⊂ H1(Ω). We can thus define
V h
D = VD∩W h (assuming TL and TR to be simple enough, or taking interpolations of them), V h

0 = V0∩W h,
V h
D0 = VD0 ∩W h, V h

00 = V00 ∩W h, V h
i = Vi ∩W h. Then the discrete solution T h ∈ V h

D exists, is unique
(continuity and strong coercivity are inherited by the subspaces), satisfies a(T h, w) = `(w) for all w ∈ V h

0

and can be written as
T h = θh0 + T h1 θ

h
1 + T h2 θ

h
2

where θh0 ∈ V D0h, θhi ∈ V h
i , i = 1, 2, satisfy

a(θh0 , w) = `(w), a(θhi , w) = 0, ∀w ∈ V h
00.

The linear system to compute T h1 and T h2 is the discrete version of (1.60)-(1.61), putting the superscript h
appropriately.
Notice that in this case

Ahij = a(θhj , φ
h
i ) =

∫
Ω

α∇θhj · ∇φhi 6=
∫

Γi

α∇θhj · n = Ãhij ,

bhi =

∫
Ω

fφhi −
∫

Ω

α∇θh0 · ∇φhi 6= −
∫

Γi

α∇θh0 · n = b̃hi ,

but the arbitrariness of φhi ∈ V h
i still holds.
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Convergence of the Galerkin approximation:

From Cea’s lemma we know that

‖θ0 − θh0‖W ≤ C min
vh∈V h

D0

‖θ0 − vh‖W ,

‖θj − θhj ‖W ≤ C min
vh∈V h

i

‖θj − vh‖W ,

where W = H1(Ω). The minima above can be shown to be ≤ Chp, with p the polynomial degree of the
FE space.
Then, if T h1 and T h2 approximate T1 and T2 one has convergence of T h to T . Denoting z = (T1, T2)T and
zh = (T h1 , T

h
2 )T we have

z − zh = A−1 b− (Ah)−1 bh = A−1 (b− bh) +
[
A−1 − (Ah)−1

]
bh ≤ c

[
‖A− Ah‖+ ‖b− bh‖

]
(constant c not the same as before, but independent of h!). What this inequality tells us is that the values
of T1 and T2 will be approximated with the same order that the coefficients of the linear system are.

Prop. 1.17 The coefficients Ahij and bhi satisfy

|Aij − Ahij| ≤ c h2p , (1.62)

|bi − bhi | ≤ c h2p . (1.63)

and thus |T1 − T h1 | ≤ c h2p and |T2 − T h2 | ≤ c h2p.

Proof: We take φi = θhi ∈ V h
i ⊂ Vi.

Aij − Ahij = a(θj − θhj , θhi ) = a(θhi , θj − θhj ) = −a(θi − θhi , θj − θhj ),

where we have used that a(θi, θj − θhj ) = 0 because θj − θhj ∈ V00. Thus,

|Aij − Ahij| ≤ Na ‖θi − θhi ‖W ‖θj − θhj ‖W ≤ c h2p. �
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Summary and miniproject:

The problem can be approximated by

1. computing θh0 , θh1 and θh2 by solving three standard problems with Dirichlet/Neumann conditions;

2. performing the six integrals Ahij and bhi ;

3. solving Ahzh = bh for T h1 and T h2 ;

4. collecting the results to get
T h = θh0 + T h1 θ

h
1 + T h2 θ

h
2 .

The miniproject is to implement this procedure in FEniCS.
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1.4 Variational formulations in 2D and 3D

The ideas are similar, but we need another integration by parts formula:

Lemma 1.18 Let f : Ω → R be an integrable function, with Ω a Lipschitz bounded open set in Rd and
∂if integrable over Ω, then ∫

Ω

∂if dΩ =

∫
∂Ω

f ni dΓ (1.64)

Notice that this implies that ∫
Ω

∇ · v dΩ =

∫
∂Ω

v · ň dΓ (1.65)

and that ∫
Ω

v∇2u dΩ =

∫
∂Ω

v∇u · ň dΓ−
∫

Ω

∇v · ∇u dΩ (1.66)

We will also introduce the notation

Def. 1.19 The Lebesgue space Lp(Ω), where p ≥ 1, is the set of all functions such that their Lp(Ω)-norm
is finite,

‖w‖Lp(Ω)
def
=

[∫
Ω

|w(x)|p dx
] 1

p

(1.67)
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Exa. 1.20 (Poisson equation) Consider the DF

−∇2u = f in Ω, u = 0 on ∂Ω (1.68)

where ∇ is the gradient operator and ∇2u =
∑d

i=1 ∂
2
iiu.

A suitable variational formulation is: Find u ∈ V such that

a(u, v) = `(v) ∀ v ∈ V

where

a(u, v) =

∫
Ω

∇u · ∇v dΩ, `(v) =

∫
Ω

f v dΩ and (1.69)

V = H1
0 (Ω) = {w ∈ L2(Ω), ∂iw ∈ L2(Ω)∀i = 1, . . . , d , w = 0 on ∂Ω}

which is a Hilbert space with the norm

‖w‖H1 =
(
‖w‖2

L2 + ‖∇w‖2
L2

) 1
2 (1.70)
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Exo. 1.25 Prove that if u is a solution of the DF, then it solves the VF.

Exo. 1.26 Prove that a(·, ·) is continuous in V . Prove that `(·) is continuous in V if f ∈ L2(Ω). Is this
last condition necessary?

Exo. 1.27 Determine the EF of the Poisson problem.

Exo. 1.28 Is a(·, ·) strongly coercive?

Exo. 1.29 Let Ω be the unit circle. Determine for which exponents γ is the function rγ in H1(Ω).

Exo. 1.30 Assume that the domain Ω is divided into subdomains Ω1 and Ω2 by a smooth internal boundary
Γ. Let V consist of functions such that their restrictions to Ωi belong to H1(Ωi) and that are continuous
across Γ. Determine the VF corresponding to the following EF:Find u ∈ V that minimizes

J(w) =

∫
Ω1

w2 + ‖∇w‖2

2
dΩ +

∫
Ω2

3‖∇w‖2

2
dΩ +

∫
Γ

(5w2 − w) dΓ

over V .

Exo. 1.31 Determine the DF that corresponds to the previous exercise.
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2 Finite element spaces and interpolation

The basic reference for what follows is Ciarlet [5]. Basically, the idea is to define finite element spaces that
are locally polynomial and that contain complete polynomials of degree k in the space variables. With
a judicious choice of the nodes (degrees of freedom), these piecewise polynomial functions can be made
continuous by construction (if needed).
In the previous chapter it was shown that if there exists β > 0 such that, for all wh ∈ Vh and all h > 0,

sup
vh ∈Vh

a(wh, vh)

‖vh‖V
≥ β ‖wh‖V (2.1)

then there exists C > 0 such that

‖u− uh‖V ≤ C inf
vh ∈Vh

‖u− vh‖V (2.2)

Notice that (2.1) is automatically satisfied if the bilinear form a(·, ·) is strongly coercive.
Denoting by Ihu the element-wise Lagrange interpolant of u ∈ V ∩ C0(Ω), it is obvious from (2.2) that

‖u− uh‖V ≤ C ‖u− Ihu‖V (2.3)

The goal of this section is to introduce estimates of the interpolation error ‖u− Ihu‖V for some spaces V
that appear in the applications.

2.1 Basic definitions

Def. 2.1 A finite element in Rn is a triplet (K,PK ,ΣK) where

(i) K is a closed (bounded) subset of Rn with a nonempty interior and Lipschitz boundary;

(ii) PK is a finite-dimensional space of functions defined in K, of dimension m;
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(iii) ΣK is a set of m linear forms {σi}i=1,...,m which is PK-unisolvent; i.e., if p ∈ PK then

σ(p) = 0 ∀σ ∈ ΣK ⇒ p = 0

It is implicitly assumed that the finite element is viewed with a larger function space V (K) associated to
it, in general a Sobolev space. Each σi ∈ ΣK is then assumed to be extended as an element of V (K)′.

Prop. 2.2 There exists a basis {Ni} such that σi(Nj) = δij.

Whenever needed, we will write σK,i instead of σi and NK,i instead of Ni to make explicit the element K
being considered.

Def. 2.3 If the degrees of freedom correspond to nodal values of the functions in V (K) the element is
called a Lagrange finite element. In this case, there exist X1, . . ., Xm in K such that σi(v) = v(X i) for
all i = 1, . . ., m.

Exa. 2.4 Pk elements.

Finite elements are usually built by mapping a unique master element (K̂, P̂ , Σ̂) onto (K,PK ,ΣK) in a

clever way. We denote by {σ̂i} the degrees of freedom of the master, and {N̂i} the corresponding basis
functions.
One begins by defining a linear bijective transformation

TK : V (K)→ V (K̂) , (2.4)

mapping functions defined on K onto functions defined on K̂. Its inverse, T−1
K allows one to build PK , i.e.,

PK = {T−1
K p̂, p̂ ∈ P̂} . (2.5)
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Exo. 2.1 Two elements K̂, K, are said to be affine equivalent if there exists a bijective mapping FK :
K̂ → K of the form

FK(x̂) = AK x̂ + b . (2.6)

Show that if P̂ = Pk and TK is defined by

(TKv)(x̂) = v(FK(x̂)) (2.7)

then PK = Pk.

This preservation of polynomial spaces makes the analysis of affine-equivalent elements much easier, but if
FK is not affine one still uses (2.7) for the definition of PK in Lagrange finite elements (PK will not consist
of polynomials).

Prop. 2.5 If (K̂, P̂ , Σ̂) is a master finite element and TK : V (K) → V (K̂) is linear and bijective, then
the triplet (K,PK ,ΣK) given by

K = FK(K̂) (2.8)

PK = T−1
K P̂ (2.9)

ΣK = {σi | σi(p) = αi σ̂i(TKp), ∀ p ∈ PK } (2.10)

(where all αi are non-zero) is a finite element. Further, the basis functions on K are given by

Ni =
1

αi
T−1
K N̂i . (2.11)

In the case of Lagrange finite elements one takes αi = 1 and obtains

X i = FK(X̂ i) , σi(p) = p(X i) = p(FK(X̂ i)) , Ni(FK(x̂)) = N̂i(x̂) . (2.12)
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Exo. 2.2 Prove the previous proposition.
Hint: One has to assume that K̂ has Lipschitz boundary and that FK is regular enough for FK(K̂) to have
Lipschitz boundary too. Because TK is linear bijective, PK will be a vector space of the same dimension
as P̂ . It remains to show that ΣK is unisolvent. Let p ∈ PK such that σi(p) = 0 for all i = 1, . . . ,m.

Then σ̂i(TKp) = 0 for all i and thus TKp = 0 because Σ̂ is unisolvent. The last assertion follows from
σi(Nj) = δij and the case of Lagrange finite elements is a particular case of the former.
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A case in which the scaling factors αi in the previous proposition are needed is that of Hermite finite
elements.

Exo. 2.3 Build a basis for a cubic 1D Hermite finite element. For this, let K be an interval [a, b], let
V (K) = H2(K), PK = P3 (cubic polynomials), and

ΣK = {θa, θb, ηa, ηb} , (2.13)

where θa(v) = v(a), θb(v) = v(b), ηa(v) = v′(a) and ηb(v) = v′(b). Write down the basis functions.

Now consider the master element K̂ = [−1, 1] and the affine mapping

FK(x̂) = a+
b− a

2
(x+ 1) . (2.14)

Defining TK as in (2.7), find the factors {αi} so that σi relates σ̂i according to (2.10). Write down the

basis functions N̂i and verify (2.11).
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Raviart-Thomas finite element: The interpolation of vector fields in K with Lagrange finite elements
is usually done one component at a time with the tools developed for scalar functions. A notable exception
is the Raviart-Thomas element, very popular to approximate velocity fields in porous media. In this case
V (K) and PK consist of vector fields and cannot be interpolated one component at a time.

Exo. 2.4 Let K be a simplex (triangle in 2D, tetrahedron in 3D), and let the space PK be defined as

PK = RT0 = (P0)d ⊕ xP0 , (2.15)

which is of dimension d+ 1. Defining as degrees of freedom the fluxes across each face (edge in 2D),

σi(p) =

∫
Fi

p · ň , (2.16)

prove that (K,PK ,ΣK = {σi}) is a finite element and that

Ni(x) =
1

dmeas(K)
(x− ai) , (2.17)

where ai is the vertex opposite to Fi.

The space VK is in this case H(div, K) of vector fields in L2(K)d with divergence in L2(K).

To obtain the RT0 element from a master element one needs a transformation TK : V (K) → V (K̂) such
that PK = T−1

K P̂ and σi(p) = αi σ̂i(TKp) for all p ∈ PK .
Let

σ̂i(p̂) =

∫
F̂i

p̂ · n̂ d̂F , (2.18)
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and define the Piola transformation

v̂(x̂) = TKv(x̂) = det(AK)A−1
K v(FK(x̂)) . (2.19)

Then

σ̂i(p̂) = det(AK)

∫
F̂i

(
A−1
K p(FK(x̂))

)
· n̂ d̂F =

∫
F̂i

p(FK(x̂)) ·
(

det(AK)A−TK n̂ d̂F
)

(2.20)

It is well-known that n̂ d̂F transforms as

ň dF = det(AK)A−TK n̂ d̂F , (2.21)

so that, changing the integration variable to x = FK(x̂),

σ̂i(p̂) =

∫
Fi

p(x) · ň dF = σi(p) . (2.22)

The RT0 element is thus obtained from the master element using the Piola transformation as TK and
αi = 1.
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Def. 2.6 The local interpolation operator IK : V (K)→ PK is defined as

IKv =
m∑
i=1

σi(v)Ni ∀ v ∈ V (K)

Exo. 2.5 This interpolation is indeed a projection:

IKp = p for all p ∈ PK . (2.23)

Exo. 2.6 It is also preserved by composition with the TK mapping:

ÎKv = TKIKv = IK̂TKv = IK̂ v̂, for all v ∈ V (K) . (2.24)

We now turn to the problem of estimating the interpolation error, i.e., v − IKv.
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2.2 Local L∞(K) estimates for P1-triangles

We begin by considering the case of P1-simplices (triangles in 2D, tetrahedra in 3D). It is a good exercise in
which the estimates can be derived explicitly. It is also a good excuse to introduce the multi-point Taylor
formula.

Theorem 2.7 Let K be a P1-element, hK its diameter and ρK the radius of the largest ball contained
in K. Then, for all v ∈ C2(K),

(a) ‖v − IKv‖L∞(K) ≤
d2 h2K

2
max|α|=2 ‖Dαv‖L∞(K)

(b) max|α|=1 ‖Dα(v − IKv)‖L∞(K) ≤
(d+1) d2 h2K

2 ρK
max|α|=2 ‖Dαv‖L∞(K)

Proof. Let Xj be the position of the j-th node of the element, then

IKv(x) =
d+1∑
j=1

v(Xj)N j(x) (2.25)

We now perform a Taylor expansion around x, and evaluate it at Xj, obtaining

v(Xj) = v(x) +
d∑

k=1

∂v

∂xk
(x)
(
Xj
k − xk

)
+

1

2

d∑
k,`=1

∂2v

∂xk∂x`
(ξ)
(
Xj
k − xk

) (
Xj
` − x`

)
(2.26)

where ξ = ηXj + (1 − η)x for some η ∈ [0, 1]. Let us denote by pj(x) the second term in the right-hand
side of (2.26), and by rj(x) the third term. By direct inspection we notice that

|rj(x)| ≤ d2 h2
K

2
max
|α|=2
‖Dαv‖L∞(K)
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Let us now insert v(Xj) from (2.26) into (2.25) to get

IKv(x) =
d+1∑
j=1

v(x)N j(x) +
d+1∑
j=1

pj(x)N j(x) +
d+1∑
j=1

rj(x)N j(x)

The first term on the right is equal to v(x) because
∑

j N j = 1. The second term vanishes, since

d+1∑
j=1

d∑
k=1

∂v

∂xk
(x)
(
Xj
k − xk

)
N j(x) =

d∑
k=1

∂v

∂xk
(x)

{
d+1∑
j=1

Xj
kN

j(x)− xk
d+1∑
j=1

N j(x)

}
=

=
d∑

k=1

∂v

∂xk
(x) {xk − xk} = 0

As a consequence, v(x)− IKv(x) =
∑d+1

j=1 r
j(x)N j(x) and thus

|v(x)− IKv(x)| ≤ max
j
|rj(x)|

∑
j

N j(x) = max
j
|rj(x)| ≤ d2 h2

K

2
max
|α|=2
‖Dαv‖L∞(K)

implying assertion (a). Now, by differentiating (2.25) and using (2.26) as before, one obtains

∂IKv
∂xm

(x) =
∑
j

v(x)
∂N j

∂xm
(x) +

∑
j,k

∂v

∂xk
(x)
(
Xj
k − xk

) ∂N j

∂xm
(x) +

∑
j,k

rj(x)
∂N j

∂xm
(x)

On the right-hand side above, the first term vanishes and the second term happens to be equal to ∂v
∂xm

(x),
since ∑

j,k

∂v

∂xk
(x)
(
Xj
k − xk

) ∂N j

∂xm
(x) =

∑
k

∂v

∂xk
(x)

[∑
j

Xj
k

∂N j

∂xm
(x)− xm

∑
j

∂N j

∂xm
(x)

]
=
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=
∑
k

∂v

∂xk
(x)

∂

∂xm

∑
j

Xj
kN

j(x) =
∑
k

∂v

∂xk
(x)

∂xk
∂xm

=
∂v

∂xm
(x)

As a consequence∣∣∣∣∂IKv∂xm
(x)− ∂v

∂xm
(x)

∣∣∣∣ =

∣∣∣∣∣
d+1∑
j=1

rj(x)
∂N j

∂xm
(x)

∣∣∣∣∣ ≤ max
j
|rj(x)|

d+1∑
j=1

∣∣∣∣∂N j

∂xm
(x)

∣∣∣∣
The reader can convince himself that the norm of the gradient of a P1 basis function, which equals one at
one node and zero on the opposite side/face, can never be greater than 1

ρK
, which immediately leads to

assertion (b). �

2.3 Local estimates in Sobolev norms

The previous paragraph provides us with an interpolation estimate in the norm L∞(K) for the function
and its first derivatives. Most formulations studied so far, however, have V = H1(Ω) and we need thus
estimates of u− IKu in the Hm(K)-norm.

2.3.1 First estimates

A simplistic approach to estimate ‖u− IKu‖L2(K) for P1 elements could be

‖u− IKu‖2
L2(K) =

∫
K

(u− IKu)2 ≤ |K| ‖u− IKu‖2
L∞(K) ≤ 4|K|h4

K max
|α|=2
‖Dαu‖2

L∞(K)

so that, with simplified notation,
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‖u− IKu‖L2(K) ≤ 2
√
|K|h2

K ‖D2u‖L∞(K) (2.27)

Proceeding analogously, we obtain a first estimate for ‖∇u−∇(IKu)‖L2(K),

‖∇u−∇(IKu)‖2
L2(K) =

∫
K

d∑
i=1

[
∂(u− IKu)

∂xi

]2

≤ |K|
d∑
i=1

∥∥∥∥∂(u− IKu)

∂xi

∥∥∥∥2

L∞(K)

which from Th. 2.7 implies

‖∇u−∇(IKu)‖L2(K) ≤
√
|K| 6 d h

2
K

ρK
‖D2u‖L∞(K) (2.28)

Notice that these estimates require u ∈ W 2,∞(K), which is “too much” regularity.

Exo. 2.7 Consider the function u(x) = |x| and its P1 interpolant in the 1D simplex K = (−h/2, h/2).
Compute ‖u− IKu‖L2(K) and ‖u′ − (IKu)′‖L2(K), compare to the previous estimates, and discuss briefly.

2.3.2 Local interpolation estimates for Lagrange finite elements

Lagrange interpolation implies that the function being interpolated is at least in C0(K), since otherwise
its nodal values would not be well defined.
Sobolev’s imbedding theorems state that, for bounded convex domain K, Wm,p(K) ⊂ C0(K) if mp > d.
Taking p = 2 (Hilbert spaces), m needs to be at least 1 in 1D and at least 2 in 2D/3D for Hm(K) to
consist of continuous functions.
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Theorem 2.8 Let (K,PK ,ΣK) be a Lagrange finite element such that (a) PK contains all polynomials

of degree ≤ k, and (b) it is affine-equivalent to the “master element” (K̂, P̂ , Σ̂). Then, the Lagrange
interpolant IKu(x) =

∑
j u(Xj)N j(x) satisfies

‖u− IKu‖L2(K) ≤ C h`+1
K ‖D`+1u‖L2(K) (2.29)

for all ` ≤ k, with C depending on ` but not on hK or u.
Similarly,

|u− IKu|H1(K) = ‖∇u−∇(IKu)‖L2(K) ≤ C
h`+1
K

ρK
‖D`+1u‖L2(K) (2.30)

The proof of this theorem is somewhat involved. The interested reader may refer to Ciarlet [5] or to
Ern-Guermond [7].

2.4 Global interpolation error

The obtention of global interpolation estimates is quite straightforward, but needs a few definitions.

2.4.1 Considerations about meshes

A mesh Th of a domain Ω in Rd is a collection of compacts (elements) Ki, i = 1, . . . , Ne, such that

Ω =
Ne⋃
i=1

Ki, K̇i ∩ K̇j = ∅ if i 6= j, ∂Ω ⊂
Ne⋃
i=1

∂Ki (2.31)

Def. 2.9 The global interpolation operator Ih : W → Wh, where

W = {w ∈ L1(Ω), w|K ∈ V (K), ∀K ∈ Th}
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Wh = {w ∈ L1(Ω), w|K ∈ PK , ∀K ∈ Th}

by

Ihv =
∑
K∈Th

∑
i

σK,i(v|K)NK,i (2.32)

Notice that, depending on the definition of the degrees of freedom, Ihv may be multiple-valued at element
boundaries. The mesh is said to be conforming when Ihv belongs to the Sobolev space W in which the
variational problem is posed.

The subscript h refers to the mesh size. In fact, in error estimates one has to consider not a single mesh
but a family of meshes indexed by h, and study the error as h → 0. The geometrical properties of the
mesh refinement enter thus into consideration. Generally, the mesh-size parameter h is defined as

h = max
K∈Th

hK (2.33)

For global estimates in Hm(Ω) with m ≥ 1 the ratio sK = hK
ρK

will appear. This motivates the definition

of shape-regular (or, simply, regular) meshes:

Def. 2.10 A family of meshes Th, parameterized by the parameter h ∈ H (where H is some subset of R),
is said to be shape-regular if there exists S ∈ R such that

sK =
hK
ρK
≤ S ∀K ∈ Th, ∀h ∈ H (2.34)

A shape-regular mesh (rigorously speaking, family of meshes) cannot contain needle-like elements. If the
elements are triangles, no angle can tend to zero, the so-called “minimum angle condition”. This condition
is known not to be necessary for the convergence of the finite element interpolant in H1(Ω), the necessary
one being that no angle in the triangulation tend to π (the so-called “maximum angle condition”).
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2.4.2 From local to global

The local estimates already obtained can be turned global by simply collecting the contributions from all
elements in the mesh.
Consider the estimate of Thm. 2.7(a), to begin with. One can build an L∞(Ω) as follows:

‖u− Ihu‖L∞(Ω) = max
K
‖u− IKu‖L∞(K) ≤

d2

2
max
K

{
h2
K‖D2u‖L∞(K)

}
≤ d2

2
h2 ‖D2u‖L∞(Ω)

which holds without any assumption on the mesh.
Similar estimates based on local to global reasonings are left as exercises.

Exo. 2.8 Starting from Thm. 2.7(b), prove that

‖∇u−∇(Ihu)‖L∞(Ω) ≤
(d+ 1)d2S

2
h ‖D2u‖L∞(Ω)

where S is the shape-regularity constant of the mesh. Notice that it is necessary that ∇(Ihu) belongs to
L∞(Ω), which requires a conforming mesh.

Exo. 2.9 Starting from (2.30) prove that, if the family of (conforming) meshes is shape-regular and the
function u smooth, then

|u− Ihu|H1(Ω) ≤ C S hk ‖Dk+1u‖L2(Ω) (2.35)

where S is the shape-regularity constant of the mesh.

Exo. 2.10 Assume that there exists a straight line Γ (or planar surface in 3D) in the domain Ω, at which
there is a sudden change in material properties. As a consequence, u ∈ H2(Ω\Γ)∩C0(Ω), but u 6∈ H2(Ω).
Discuss the interpolation estimate for such a function u, showing the advantages of using an “interface-
fitting mesh”; i.e., a mesh such that Γ coincides with inter-element boundaries and thus does not cut any
element.
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2.4.3 Global estimate

Let us state a global estimate more general than the one we have been building up to now.

Theorem 2.11 Let Th, h > 0, be a family of shape-regular meshes of a domain Ω ⊂ Rn. Let (K̂, P̂ , Σ̂)

be the (Lagrange) reference element of the mesh, all the mappings FK : K̂ → K being affine. Let Ih be

the global interpolation operator corresponding to Th. Assume further that Pk ⊂ P̂ (i.e.; that the finite
elements are “of degree k”). Then, for each 1 ≤ p < +∞, and for each 0 ≤ ` ≤ k, there exists C such
that for all h and all v ∈ W `+1,p(Ω),

‖v − Ihv‖Lp(Ω) +
`+1∑
m=1

hm

( ∑
K ∈Th

|v − Ihv|pWm,p(K)

) 1
p

≤ C h`+1|v|W `+1,p(Ω) (2.36)

If p = +∞,

‖v − Ihv‖L∞(Ω) +
`+1∑
m=1

hm
(

max
K ∈Th

|v − Ihv|pWm,∞(K)

) 1
p

≤ C h`+1|v|W `+1,∞(Ω) (2.37)

Proof. See Ern-Guermond [7], p. 61. �
Notice that the previous theorem holds not just for simplicial elements but also for affine-equivalent quadri-
laterals, hexahedra, etc.

Exo. 2.11 Deduce from the theorem that, for Pk and Qk elements,

‖v − Ihv‖H1(Ω) ≤ C hk, ‖v − Ihv‖L2(Ω) ≤ C hk+1
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and explain on what quantities depend the constant C.

The previous theorem establishes, in particular, that the family of spaces {Wh} satisfies the approxima-
bility property.

Prop. 2.12 For any v ∈ Lp(Ω), p < +∞,

lim
h→0

(
inf

vh ∈Vh
‖v − vh‖Lp(Ω)

)
= 0 (2.38)

Exo. 2.12 Prove the previous proposition. Hint: One cannot interpolate a generic function in Lp(Ω)
because it is not continuous. Fortunately, smooth functions are dense in Lp(Ω) for all p < +∞, so
that for any ε > 0 one can find vε ∈ H2(Ω) such that ‖v − vε‖Lp(Ω) < ε. The interpolant Ihvε is well
defined and Theorem 2.11 can be applied.
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2.5 Inverse inequalities

Inverse inequalities are often useful in the convergence analysis of finite element methods. They provide
bounds on operators that are unbounded in Hm(Ω), with m > 0, but bounded in Vh due to its finite-
dimensionality. Intuitively, in a shape-regular mesh for a derivative ∂uh/∂xi to be “very large” the nodal
values of the uh must also be “very large”.
Let (K̂, P̂ , Σ̂) be the “reference” or “master” element. Let K be an element that is affine-equivalent to K̂,

as defined before, with FK : K̂ → K the corresponding linear mapping:

FK(x) = AK x+ bK .

In this section we only consider finite elements for which

TKv(x̂) = v(FK(x̂)) ,

such as Lagrange finite elements. In such a setting, we have

Lemma 2.13

(a)

|detAK | =
|K|
|K̂|

, ‖AK‖ ≤
hK
ρK̂

, ‖A−1
K ‖ ≤

hK̂
ρK

(b) There exists C, depending on s and p but independent of K, such that for all v ∈ W s,p(K),

|v̂|W s,p(K̂) ≤ C‖AK‖s |detAK |−
1
p |v|W s,p(K) (2.39)

|v|W s,p(K) ≤ C‖A−1
K ‖

s |detAK |
1
p |v̂|W s,p(K̂) (2.40)
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Proof. See, e.g., Ciarlet [5], p. 122. �
Let us show how to take advantage of this result to prove some simple estimates.

Prop. 2.14 There exists C > 0, independent of K, such that

‖∇vh‖L2(K) ≤
C

ρK
‖vh‖L2(K) (2.41)

for any vh ∈ PK.

Proof. This proof uses the so-called scaling argument. From (2.40) we have, taking s = 1 and p = 2,

‖∇vh‖L2(K) ≤ C ‖A−1
K ‖ |detAK |

1
2‖∇v̂h‖L2(K̂) (2.42)

Now let us show that there exists a constant Ĉ such that

‖∇v̂h‖L2(K̂) ≤ Ĉ‖v̂h‖L2(K̂) (2.43)

For this, consider the set S = {w ∈ PK | ‖ŵ‖L2(K̂) = 1}, which is bounded and closed in the finite-

dimensional space PK . Let Ĉ be the maximum that the continuous function ‖∇ŵ‖L2(K̂) attains in
S.
Then, denoting by

ẑh =
1

‖v̂h‖L2(K̂)

v̂h

and noticing that ẑh ∈ S, we have that
‖∇ẑh‖L2(K̂) ≤ Ĉ

and thus (2.43) is proved. Inserting it into (2.42) and using (2.39) one gets

‖∇vh‖L2(K) ≤ C Ĉ ‖A−1
K ‖ |detAK |

1
2‖v̂h‖L2(K̂) ≤ C2 Ĉ ‖A−1

K ‖ |detAK |
1
2 |detAK |−

1
2‖vh‖L2(K) ≤
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≤
(C2 Ĉ hK̂)

ρK
‖vh‖L2(K)

and the proof ends noticing that the product inside the parentheses is a constant independent of K and
vh. �
Notice that there does not exist a constant C that makes

‖∇v‖L2(K) ≤
C

ρK
‖v‖L2(K) (2.44)

in the infinite dimensional case, i.e., for any v in H1(K).

Exo. 2.13 Let K be the unit interval (0, 1) in 1D. Build a sequence {ϕn} of functions such that ‖ϕn‖L2(K) =
1 and ‖∇ϕn‖L2(K) = n.
Argue that the existence of such a sequence is a counterexample to (2.44).

With a scaling argument one can prove the following discrete trace estimate.

Prop. 2.15 There exists C > 0, independent of K, such that

‖vh‖L2(F ) ≤ C h
− 1

2
K ‖vh‖L2(K) ∀ vh ∈ PK (2.45)

where F is an edge (face in 3D) of K.

The proof is left as an optional exercise. Notice that, again, there is no chance of (2.45) holding for all v
in an infinite-dimensional space, such as C∞(K) for example (build a sequence that shows this!).
Several other inverse inequalities can be extracted as particular cases of the following theorem (see, e.g.,
[7] p. 75).

54



Theorem 2.16 Let Th be a shape-regular family of meshes in Ω ⊂ Rd. Then, for 0 ≤ m ≤ ` and
1 ≤ p, q ≤ ∞, there exists a constant C such that, for all h > 0 and all K ∈ Th,

‖v‖W `,p(K) ≤ C h
m−`+d( 1

p
− 1

q )
K ‖v‖Wm,q(K) (2.46)

for all v ∈ PK.

This local estimate, to be made global, puts the restriction on the family of meshes that, as h → 0 the
diameter ratio between the largest and smaller hK in Th remain bounded.

Def. 2.17 A family of meshes {Th}h>0 is said to be quasi-uniform if it is shape-regular and there exists
c such that

∀h, ∀K ∈ Th, hK ≥ c h (2.47)

Exo. 2.14 Does the quasi-uniformity of the mesh imply the existence of C > 0 such that

‖∇vh‖L2(Ω) ≤ C h−1 ‖vh‖L2(Ω) ∀ vh ∈ Vh ? (2.48)

Exo. 2.15 Does the quasi-uniformity of the mesh imply the existence of C > 0 such that

‖vh‖L2(∂Ω) ≤ C h−
1
2 ‖vh‖L2(Ω) ∀ vh ∈ Vh ? (2.49)
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Let us now give a try at the easy part of the proof of Theorem 2.29.
The point of departure is the following proposition, in which the carets are inserted to remind that it
is to be applied on the master element:

Prop. 2.18 Let Pk ⊂ P̂ , k ≥ 1, then there exists Ĉ > 0 such that

‖û− IK̂ û‖L2(K̂) + ‖∇û−∇IK̂ û‖L2(K̂) ≤ Ĉ ‖Dk+1û‖L2(K̂) ∀u ∈ Hk+1(K̂) . (2.50)

Exo. 2.16 Taking Proposition 2.18 as established, prove Theorem 2.29. The strategy is a scaling
argument analogous to that used in the proof of Prop. 2.14.

Now, how to prove Prop. 2.18? Leaving the details to be read from the literature, let us just put forward
the main conceptual ingredient:

Theorem 2.19 (Bramble-Hilbert lemma) Let F : Hk+1(ω)→ R be a continuous linear functional,
satisfying

F (p) = 0 , ∀ p ∈ Pk . (2.51)

Assuming ω ⊂ Rd to be convex and bounded, with Lipschitz boundary, there exists C(ω) > 0 such that

|F (v)| ≤ C(ω) ‖Dk+1v‖L2(ω) , ∀ v ∈ Hk+1(ω) . (2.52)
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2.6 Interpolation in H(div,Ω)

The Raviart-Thomas element introduced in Exo. 2.4 has constant normal component on each face of
K, leading to

σi(vh|K) = meas(Fi) (vh · ň)(Fi) . (2.53)

Because (vh · ň)(Fi) is single-valued for the two elements sharing face Fi, the global space Wh generated
by RT0 elements is a subspace of H(div,Ω).
The interpolant IRTh : H(div,Ω)→ Wh is built using the local-to-global construction as before.
With the same ingredients as before (Bramble-Hilbert lemma, scaling arguments) it is possible to prove
the following approximation result:

Theorem 2.20 Let Th be a shape-regular family of triangulations. There exists c > 0 such that, for all h
and for all v ∈ H1(Ω)d with ∇ · v ∈ H1(Ω),

‖v − IRTh v‖L2(Ω) + ‖∇ · (v − IRTh v)‖L2(Ω) ≤ c h
(
‖v − IRTh v‖H1(Ω) + ‖∇ · (v − IRTh v)‖H1(Ω)

)
(2.54)
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2.7 Interpolation of non-smooth functions

As already mentioned, Lagrange interpolation is not defined for arbitrary functions in Lp(Ω), not even
for H1(Ω) if d > 1. In applications that will be discussed later on, it is important that there exists an
interpolation operator Ih : H1(Ω)→ Wh with some useful properties:

• Stability: The exists c > 0 such that

∀h, ∀ v ∈ L2(Ω), ‖Ihv‖L2(Ω) ≤ c ‖v‖L2(Ω) . (2.55)

∀h, ∀ v ∈ H1(Ω), ‖Ihv‖H1(Ω) ≤ c ‖v‖H1(Ω) . (2.56)

• Approximation: The exists c > 0 such that

∀h, ∀K ∈ Th, ∀ v ∈ H1(ωK), ‖v − Ihv‖L2(K) ≤ c h ‖v‖H1(ωK) (2.57)

where ωK consists of all elementens sharing at least a node with K.

• Preservation of boundary conditions: If v|∂Ω = 0, then (Ihv)|∂Ω = 0.

• Being a projection: Ihv = v for all v ∈ Wh.

The Clément interpolation operator satisfies the first two properties, while the Scott-Zhang inter-
polation operator satisfies all four.

Exo. 2.17 Read the construction of the Clément and Scott-Zhang interpolation operators, for example in
Ern & Guermond, p. 68-71.
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3 Galerkin treatment of elliptic second-order problems

3.1 The continuous problem

We consider the following problem:

−div(K∇u) + β · ∇u+ σu = f in Ω (3.1)

u = g on ΓD (3.2)

(K∇u) · n = H on ΓN (3.3)

where ΓD and ΓN are disjoint parts of ∂Ω, and ΓD ∪ ΓN = ∂Ω.
Notice that, since K(x) is a n×n symmetric matrix and β(x) is an n-vector, the problem above is a general
second-order partial differential equation.
Integrating formally by parts we get∫

Ω

(∇v · (K∇u) + v β · ∇u+ σuv) dΩ =

∫
Ω

fv dΩ +

∫
∂Ω

vn · (K∇u) dΓ

We thus consider the bilinear form

a(u, v) =

∫
Ω

(∇v · (K∇u) + v β · ∇u+ σuv) dΩ (3.4)

Prop. 3.1 If K ∈ (L∞(Ω))n×n, β ∈ (L∞(Ω))n and σ ∈ L∞(Ω), then a(·, ·) is continuous on H1(Ω).
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Exo. 3.1 Prove the proposition.

It is clear that, for the problem to admit a solution, the data g and ΓD must be regular enough for a
function ug ∈ H1(Ω) to exist satisfying ug = g on ΓD. Such a function is called a “lifting” function, and
if it exists one says that g belongs to a “trace space”.
We now change the unknown to w = u− ug, so that

a(w, v) =

∫
Ω

fv dΩ +

∫
∂Ω

vn · (K∇u) dΓ− a(ug, v)

and w = 0 on ΓD. This leads us to consider the following problem: Find w ∈ H1
D0(Ω) such that

a(w, v) =

∫
Ω

f v dΩ +

∫
ΓN

H v dΓ− a(ug, v)
def
= `(v) (3.5)

where H1
D0 = {v ∈ H1(Ω), v = 0 on ΓD}.

Prop. 3.2 Assume the data f, g,H,ΓN and ΓD are regular enough for the right-hand side of (3.5) to
be a continuous linear functional on H1

D0(Ω). Assume further that the hypotheses of Prop. 3.1 hold,
and that

div β ∈ L∞(Ω), β(x) · n(x) > 0 a.e. on ΓN (3.6)

ξ · (K(x)ξ) ≥ K0 |ξ|2 ∀ξ ∈ Rn; a.e. in Ω (3.7)

σ(x)− 1

2
div β(x) ≥ smin a.e. in Ω (3.8)

where K0 and smin are strictly positive constants. Then (3.5) is well-posed.
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Proof. Notice first that H1
D0(Ω) is a closed subspace of H1(Ω). To see this, consider the applications

γ0 : H1(Ω)→ L2(∂Ω) (the boundary trace operator, which is continuous as proved for example in Adams,
Brenner-Scott, etc.) and rD : L2(∂Ω) → L2(ΓD), the restriction to ΓD of a function in L2(Ω), which is
also continuous. The value of any function f ∈ H1(Ω) on ΓD is, then, γ0D(f) = rD(γ0(f)). The subspace
H1
D0(Ω) is the pre-image of zero by γ0D, and is thus closed.

To conclude the proof, it remains to show that a(·, ·) is weakly coercive. In fact, a direct calculation shows
that a(·, ·) is strongly coercive and thus Lax-Milgram lemma guarantees well-posedness. �
The condition

ξ · (K(x)ξ) ≥ K0 |ξ|2 > 0, ∀ξ ∈ Rn; a.e. in Ω

is essential to the previous well-posedness result, as it applies only for elliptic second-order PDEs (not
hyperbolic, not parabolic). The condition smin > 0 is not essential, in the sense that if smin ≤ 0 what may
happen is that the homogeneous problem defined by f = g = H = 0 admits non-trivial solutions. It may
also happen that for certain data the solution does not exist, in much the same way as a linear system

A x = b

with det(A) = 0 either does not have a solution, or has infinitely many (the solution is determined only
up to the addition of an arbitrary element of Ker(A)).

Exa. 3.3 The simplest and very important case that is not covered by Prop. 3.2 is the purely diffusive
problem with Neumann data, corresponding to

β = 0 (no convection), σ = 0 (no reaction), ΓN = ∂Ω (no Dirichlet boundary). (3.9)

The differential formulation is

− div(K∇u) = f in Ω, (K∇u) · n = H on ∂Ω (3.10)
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which only admits a solution if ∫
Ω

f +

∫
∂Ω

H = 0

and, in this case, the solution is determined up to an additive constant. Notice that the constant functions
are indeed solutions of the homogeneous problem (f = H = 0), and in fact the only solutions if Ω is
connected.

Exo. 3.2 Show that under the hypotheses of Prop. 3.2 the bilinear form a(·, ·) is indeed strongly coercive
(as claimed) and provide an estimate of the coercivity constant α.

Let now H1
Dg(Ω) = {v ∈ H1(Ω); v = g a.e. on ΓD}. Setting u = ug + w it is clear that u solves the

following problem: Find u ∈ H1
Dg(Ω) such that

a(u, v) =

∫
Ω

f v dΩ +

∫
ΓN

H v dΓ (3.11)

for all v ∈ H1
D0(Ω).

Further, if u belongs to H2(Ω) integration by parts shows that the partial differential equation holds almost
everywhere in Ω and that the Neumann boundary condition is satisfied on ΓN .
Notice that the Neumann boundary condition enters the right-hand side of (3.11), it is a natural condition
for this formulation, while the Dirichlet condition has to be imposed to the space in which the solution is
sought, it is an essential boundary condition. One could wonder whether the Neumann boundary condition
could also be imposed as an essential condition: The answer is that the set of functions in H1(Ω) which
satisfy n · (K∇u) = H on ΓN is not closed in H1(Ω), implying that the tools we use to prove existence (the
Banach and Hahn-Banach theorems in the general case, the Lax-Milgram lemma in the strongly coercive,
Hilbertian case) do not apply.
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Exo. 3.3 Let Ω = (0, 1). Let ϕ(x) = x. Show a sequence {ϕn} ⊂ H1(Ω) such that ϕ′n(0) = 0 for all n and
such that ϕn → ϕ strongly in H1(Ω).
Hint: For 1/n = ε > 0 consider the “trimmed” function

Tεϕ(x) =

{
ϕ(ε) if x < ε

ϕ(x) if x ≥ ε

3.2 Ritz-Galerkin approximation

Let Vh(Ω) be a finite element space contained in H1(Ω), and let Vh0(Ω) be the subspace of Vh(Ω) obtained
by putting to zero all degrees of freedom corresponding to values on ΓD. Analogously, Vhg(Ω) is defined
as the (linear) subset of Vh(Ω) consisting of functions that coincide with some given interpolation Ihg of g
on ΓD. The Ritz-Galerkin approximation of u in Vh(Ω) then solves:

Find uh ∈ Vhg(Ω) such that

a(uh, vh) =

∫
Ω

f vh dΩ +

∫
∂Ω

H vh dΓ (3.12)

for all vh ∈ Vh0(Ω).

Applying Lax-Milgram lemma to the discrete problem immediately implies that it is well-posed. By Céa’s
lemma (Lemma 1.39),

‖u− uh‖1 ≤
Na

α
inf

vh∈Vhg(Ω)
‖u− vh‖1 ≤

Na

α
‖u− Ihu‖1
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Thus, if the local space PK on each element K of the mesh Th contains all polynomials up to degree k and
the solution is smooth enough,

‖u− uh‖1 ≤ Chk|u|k+1

3.3 Aubin-Nitsche’s duality argument

The error bound in theH1(Ω)-norm, as shown before, is naturally obtained in the Ritz-Galerkin formulation
of second-order PDEs. A first estimate in the L2(Ω)-norm follows from the continuous injection of H1(Ω)
into L2(Ω), yielding

‖u− uh‖0 ≤ Chk|u|k+1

This estimate, however, is not optimal, since the interpolant of u (with u smooth) approximates u with
order hk+1 in the L2(Ω)-norm. It is possible to obtain optimal-order estimates using a duality argument.
Let us show how it works in the simpler case β = 0, g = 0, ΓD = ∂Ω. Let

Lu = −div(K∇u) + σu

and assume that the domain is regular enough for L to have a smoothing property, namely that the
continuous problem

Lw = F , w = 0 on ∂Ω

satisfies
‖w‖H2(Ω) ≤ Cs‖F‖L2(Ω) (3.13)

This latter inequality is sometimes called a regularity estimate.

Exo. 3.4 Prove the smoothing property in 1D. More specifically, consider the problem

− (k u′)′ + σ u = f in Ω = (0, 1) (3.14)
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with u(0) = u(1) = 0, k, σ ∈ L∞(Ω) satisfying k(x) ≥ γ > 0 for all x and σ(x) ≥ 0 for all x. Further,
assume that k′ ∈ L∞(Ω), f ∈ L2(Ω). Notice that k′(x) must be bounded. Show that then there exists
C > 0 such that ‖u′′‖L2(Ω) ≤ C ‖f‖L2(Ω) and provide an estimate for C. Show how this implies (3.13).

Remark 3.4 The smoothing property (3.13) holds in 2D/3D if the boundary is very regular, of class C2,
or if it is a convex polygon/polyhedron.

Prop. 3.5 Under the above hypotheses, there exists C > 0 such that

‖u− uh‖0 ≤ Ch‖u− uh‖1 (3.15)

Proof. Let w be the unique solution of

Lw = u− uh, w = 0 on ∂Ω

where we have used the error e = u− uh as source term. The corresponding variational formulation is

a(w, v) = (e, v)0 ∀ v ∈ H1
0 (Ω)

Taking v = e we see that a(w, e) = ‖e‖2
0, but also, since the bilinear form is symmetric (otherwise one

needs a smoothing property for the adjoint differential operator, but the proof is essentially the same),

a(w, e) = a(e, w) = a(u− uh, w) = a(u− uh, w − Ihw)

where we have introduced the interpolant of w and used the “orthogonality” property of the Galerkin
approximation (a(u− uh, vh) = 0 for all vh). Finally

‖u− uh‖2
0 = a(e, w − Ihw) ≤ Na‖e‖1‖w − Ihw‖1 ≤ Na‖e‖1h‖w‖2

where the last inequality follows from an interpolation estimate for w. Combining with (3.13),

‖u− uh‖2
0 ≤ CsNah‖e‖1‖e‖0

�
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Exo. 3.5 Let F (v) =
∫

Ω
ψ(x) v(x) dΩ, where ψ is a function in L2(Ω). For example, if ψ = 1 then F (v)

is simply the integral of v. How does F (uh) converge to F (u) when Vh contains all piecewise polynomials
of degree k and ‖u− uh‖1 ≤ C hk?
Hint: Use a variant of Nitsche’s trick. Let w be the solution of

a(w, v) = F (v) ∀ v ∈ V = H1
0 (Ω)

which is the weak form of
Lw = ψ in Ω, w = 0 on ∂Ω

so that, from the smoothing property, ‖w‖H2(Ω) ≤ C ‖ψ‖L2(Ω). Then use the following calculation

F (u− uh) = a(w, u− uh) = a(w − Ihw, u− uh) ≤ Na‖w − Ihw‖1‖u− uh‖1

to prove that, if ψ is smooth (at least as smooth as f), then |F (u)− F (uh)| ≤ C̃ h2k.
Another question: What is the expected order of convergence for F (u) =

∫
ω
u dΩ, with ω a region of the

domain? (Answer: hk+1, why?).

3.4 The case smin = 0. Poincaré inequality.

In the case smin = 0 we have to prove strong coercivity without counting on the reaction term, so that we
start from the estimate

a(v, v) ≥
∫

Ω

∇v · (K∇v) dΩ ∀v ∈ H1
D0(Ω)

which in turn implies

a(v, v) ≥ K0

∫
Ω

|∇v|2 dΩ = K0 |v|21

Essentially, we need an estimate of the form |v|1 ≥ c‖v‖1 for some c > 0. This is provided by Poincaré-
Friedrichs inequality:
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Lemma 3.6 (Poincaré-Friedrichs inequality) In a connected bounded domain, if meas(ΓD) > 0 then
there exists a constant cP > 0 such that ‖∇v‖0 ≥ cP‖v‖0 for all v ∈ H1

D0(Ω).

Proof. We will prove it in the case ΓD = ∂Ω. We show it first for ϕ ∈ D(Ω) and then extend it to H1
0 (Ω)

by a density argument. We consider ϕ extended by zero to Rn and assume that the domain is contained
in the strip a ≤ x1 ≤ b (in other words, a ≤ x1 ≤ b for all x ∈ Ω). Then, since

ϕ(x1, x2, . . . , xn) =

∫ x1

a

∂ϕ

∂x1

(t, x2, . . . , xn) dt

we have, using Cauchy-Schwarz inequality,

ϕ2(x1, x2, . . . , xn) ≤ |x1 − a|
∫ x1

a

∣∣∣∣ ∂ϕ∂x1

(t, x2, . . . , xn)

∣∣∣∣2 dt

integration over x2 to xn gives∫
ϕ2dx2 . . . dxn ≤ |x1 − a|

∫ x1

a

. . .

∫ ∣∣∣∣ ∂ϕ∂x1

∣∣∣∣2 dt dx2 . . . dxn ≤ |x1 − a|
∫

Ω

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣2 dΩ

A final integration over x1 yields ∫
Ω

ϕ2 dΩ ≤ (b− a)2

2

∫
Ω

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣2 dΩ

proving that cP ≥
√

2
b−a . Now we consider v ∈ H1

0 (Ω) and ϕn → v, then

‖v‖0 ≤ ‖ϕn‖0 + ‖v − ϕn‖0 ≤
1

cP
‖∇ϕn‖0 + ‖v − ϕn‖0 ≤

1

cP
‖∇v‖0 + ‖v − ϕn‖0 + +

1

cP
‖∇v −∇ϕn‖0 ≤

1

cP
‖∇v‖0 + min

{
1,

1

cP

}
‖v − ϕn‖1

and since ‖v − ϕn‖1 can be made arbitrarily small, the claim is proved. �
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Remark 3.7 Using Poincaré-Friedrichs inequality, it is easily shown that the bilinear form

a(v, w) =

∫
Ω

[∇v · (K∇w) + v β · ∇w + σ v w] dΩ (3.16)

is strongly coercive in H1
D0(Ω) whenever meas(ΓD) > 0, β(x) ·n(x) > 0 a.e. on ΓN , K0 > 0 and smin ≥ 0.

Exo. 3.6 Prove the previous remark in detail.
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4 Finite elements for linear elasticity

4.1 Introduction and differential formulation

We recall the usual notations for the Cauchy stress tensor σ and the linearized strain tensor

ε(u) =
1

2

(
∇u+∇uT

)
(4.1)

where u in this case is a vector field corresponding to the displacement of the body. We also recall the
elastic constitutive law for small deformations,

σ = λ tr(ε(u)) I + 2µε(u) = λ divu I + µ
(
∇u+∇uT

)
(4.2)

where λ and µ are the Lamé coefficients, which in general depend on the point x and by thermodynamic
reasons are constrained to satisfy, for almost all x,

µ(x) > 0; λ(x) +
2

3
µ(x) ≥ 0 (4.3)

Differential Formulation: The governing equation follows from the static equilibrium balance, which reads

divσ + f = 0 (4.4)

where f is a vector field of applied forces. Replacing the expression of σ in terms of u one obtains an
equation for the displacement field. This problem admits both Dirichlet and Neumann boundary conditions
on u:

u = g on ΓD; σ · n = F on ΓN (4.5)

where F is a field of surface forces applied on ΓN , ΓN ∩ ΓD = ∅ and ΓN ∪ ΓD = ∂Ω. The domain Ω
corresponds to the region of space occupied by the body under consideration, both before and after the
application of the forces since just problems with small displacements are being considered.
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Exo. 4.1 Let u1, u2 be the components of u in a planar elasticity case in which the domain is the unit
square. The boundary conditions are: zero displacement on the bottom boundary (x2 = 0), and a normal
force equal to P on the rest of ∂Ω. Write down the system of two equations and two unknowns for u1 and
u2 considering λ and µ independent of x1 and x2.
Hint: Equation (4.4), written in Cartesian indices, becomes

d∑
j=1

∂j σij + fi = 0 ∀ i = 1, . . . , d

and (4.2) becomes,
σij = λ(∂1u1 + ∂2u2) δij + µ (∂jui + ∂iuj) .

It remains to replace the latter into the former. For the boundary force we have that, if x = (x1, x2) ∈ ∂Ω
then at x we have

(σ · n)1 = [(λ+ 2µ)∂1u1 + λ∂2u2]n1 + µ (∂2u1 + ∂1u2) n2 = −P n1

(σ · n)2 = [λ∂1u1 + (λ+ 2µ)∂2u2]n2 + µ (∂2u1 + ∂1u2) n1 = −P n2

As a consequence, along x1 = 0 (left boundary), the boundary conditions are

(λ+ 2µ)∂1u1 + λ∂2u2 = −P, ∂2u1 + ∂1u2 = 0

the conditions at the other boundaries are analogous.
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4.2 Variational Formulation

The variational formulation of this problem can be obtained from the corresponding PDE by integration
by parts. In Mechanics, however, it is considered a fundamental principle: The Principle of Virtual Work
(or of Virtual Power)

Principle of Virtual Power: The internal virtual power of the stresses (
∫

Ω
σ : ε(v)) plus the

virtual power of the acceleration (
∫

Ω
ρ a · v) equals the virtual power of the applied forces. This holds

for all virtual velocity fields, that is, all vector fields v that are kinematically admissible variations of
the body motion. ∫

Ω

σ : ε(v) +

∫
Ω

ρ a · v =

∫
Ω

f · v +

∫
ΓN

F · v ∀ v ∈ VAR (4.6)

The kinematically admissible motions must belong to

KIN = VDg = {v ∈ [H1(Ω)]n; v = g on ΓD} (4.7)

so that their variations must belong to

VAR = VD0 = {v ∈ [H1(Ω)]n; v = 0 on ΓD} (4.8)

The variational formulation of linear elastostatics then reads:
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“Find u ∈ VDg such that

a(u, v) =

∫
Ω

f · v dΩ +

∫
ΓN

F · v dΓ =: `(v) (4.9)

for all v ∈ VD0”, where

a(u, v) =

∫
Ω

σ(u) : ε(v) dΩ =

∫
Ω

[λ divu div v + 2µε(u) : ε(v)] dΩ (4.10)

4.3 Well-posedness and Galerkin approximation

Theorem 4.1 (Korn’s inequality) Let Ω be a domain in Rn. There exists CK > 0 such that

‖v‖1 ≤ CK‖ε(v)‖0 ∀v ∈ H1
0 (Ω)n (4.11)

It is not necessary that v be zero on the whole of ∂Ω, the same result holds if meas(ΓD) > 0 (in connected
domains), so that we have strong coercivity of the bilinear form on V . This gives the result below.

Theorem 4.2 Let Ω be a regular connected domain on which the elasticity problem (4.9) is posed with
meas(ΓD) > 0, f ∈ L2(Ω)n and F ∈ L2(ΓN)n. We assume that the Lamé coefficients are bounded and
satisfy (4.3). Then there exists a unique solution u, and there exists c > 0 such that

‖u‖1 ≤ c (‖f‖0 + ‖F‖0,ΓN
) (4.12)

Proof. V = VD0 is a Hilbert space, the bilinear form is continuous with

a(u, v) ≤ cmax {λmax, µmax} ‖∇u‖0 ‖∇v‖0
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From Korn’s inequality we also have

a(v, v) =

∫
Ω

[
λ(div v)2 + 2µε(v) : ε(v)

]
dΩ ≥ cµmin‖v‖2

1

It only remains to apply Lax-Milgram lemma.
�
Let

Vh = {vh ∈ C0(Ω)n, vh|K ∈ (PK)n, vh = 0 on ΓD}. (4.13)

Since Vh ⊂ V , we have well-posedness and convergence of the discrete problem.

Prop. 4.3 The solution uh ∈ Vhg satisfying

a(uh, vh) = `(vh) ∀ vh ∈ Vh0 (4.14)

exists and is unique. It satisfies limh→0 ‖u− uh‖1 = 0. If u ∈ H`+1(Ω)n for some ` ≤ k, with k such that
Pk(K) ⊂ PK, then there exists c > 0 such that

‖u− uh‖1 ≤ c h`|u|`+1 (4.15)

Exo. 4.2 Build an extremal formulation of the linear elasticity problem.
Hint: Consider

J(w) =

∫
Ω

[
λ

2
(divw)2 + µ ε(w) : ε(w)

]
dΩ−

∫
Ω

f · w dΩ−
∫

ΓN

F · w dΓ (4.16)

where the first integral is the “strain energy” of the body. The solution u is the displacement field that
minimizes J over VDg,

J(u) = inf
w∈VDg

J(w) (4.17)
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Exo. 4.3 Assume that you are initiating a project which involves the solution by finite elements of linear
elastic problems. Formulate the first four “common sense” mathematical questions that you would ask, and
try to answer them, at least partially, with the content discussed in this lecture.
Example: What are the equations and boundary conditions, and which are the unknowns (both in the exact
and in the discrete cases)?

4.4 Implementation aspects

A significant difference between the elastostatics problem and the convection-diffusion-reaction problem
discussed earlier is that the elasticity unknown is a vector field.
Let {N j} (j = 1, . . . ,M) be the scalar basis functions associated to a mesh Th. The space Vh is now of
dimension n×M , as to each node j correspond n basis functions:

Nj,1(x) = N j(x) ě1 = (N j(x), 0) . . . Nj,n(x) = N j(x) ěn = (0,N j(x)) (4.18)

where we have chosen the local basis {ěα} equal to the canonical basis (ěαβ = δαβ), but any other can be
chosen and sometimes is.

Exo. 4.4 Compute the following in terms of the scalar basis {N j}:

• div (Nj,α) (Answer: = ∂αN j)

• ε(Nj,α)

•
∫
K

div (Nj,α) div (Nk,β)

•
∫
K
ε(Nj,α) : ε(Nk,β)
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Exa. 4.4 Assume that, at a given node j, the vector basis is chosen as

g
(j)α
β = R

(j)
αβ

or, equivalently g(j)α = R
(j)
αβ ě

β, for some non-singular matrix R(j). Then the basis functions corresponding
to that node, which have two indices (j for the node and α that runs from 1 to number of space dimensions),
are given by

Nj,α(x) = N j(x)g(j)α = N j(x)R
(j)
αβ ě

β.

Then, for example,
∂Nj,α

m

∂xn
=
∂N j

∂xn
R(j)
αm.
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5 Incompressible elasticity and the Stokes problem

5.1 Incompressible elasticity

There exist elastic materials which behave as incompressible, in the sense that they preserve their volume
in every deformation. Under the hypothesis of small deformations, the preservation of volume is equivalent
to the deformation field having zero divergence,

divu = 0 a.e. in Ω (5.1)

Considering the elastic energy functional seen in the previous section (where λ is assumed independent of
x for simplicity and ‖ε(v)‖2 = ε(v) : ε(v))

J(v) =
λ

2

∫
Ω

(div v)2 dΩ +

∫
Ω

µ ‖ε(v)‖2 dΩ−
∫

Ω

f · v dΩ−
∫

ΓN

F · v dΓ (5.2)

one can view the first term as a penalization (with coefficient λ) of the incompressibility constraint. As a
consequence, totally incompressible behavior corresponds to λ→ +∞ in theory, and to λ very large, much
larger than the shear modulus µ, in practice.
For the Primal Formulation, which is the one we have been studying up to now, the divergence-free
constraint is treated as an essential constraint, just like the Dirichlet constraints, and is incorporated into
the set of admissible displacement fields,

ZDg
def
= {v ∈ VDg | div v = 0 a.e. in Ω} (5.3)

Inside ZDg the first term of J becomes irrelevant, so that defining

J̃(v) =

∫
Ω

µ ‖ε(v)‖2 dΩ−
∫

Ω

f · v dΩ−
∫

ΓN

F · v dΓ, (5.4)

we have the Primal Extremal Formulation of incompressible elasticity.
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Primal Extremal Formulation of incompressible elasticity: Find u ∈ ZDg that minimizes J̃ over ZDg,
i.e.,

J̃(u) ≤ J̃(v) ∀ v ∈ ZDg (5.5)

Defining now

ã(u, v) =

∫
Ω

2µ ε(u) : ε(v) dΩ, and `(v) =

∫
Ω

f · v dΩ +

∫
ΓN

F · v dΓ (5.6)

we have

J̃(v) =
1

2
ã(v, v)− `(v) (5.7)

and also the

Primal Variational Formulation of incompressible elasticity: Find u ∈ ZDg such that

ã(u, v) = `(v) ∀ v ∈ ZD0 (5.8)

It can be shown that problem (5.8) is indeed well posed, so that a unique solution u exists. However, the
imposition of the zero-divergence constraint on the space creates several difficulties for the finite element
discretization.
It is thus convenient to replace the Primal Extremal Formulation by the following equivalent one:
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Mixed Extremal Formulation of incompressible elasticity: Defining b(·, ·) : H1(Ω)d × L2(Ω) → R by

b(v, q) =

∫
Ω

q div v dΩ (5.9)

and the Lagrangian L : H1(Ω)d × L2(Ω) → R by

L(v, q) = J̃(v)− b(v, q) =
1

2
ã(v, v)− `(v)− b(v, q) , (5.10)

problem (5.5) becomes equivalent to “Find (u, p) ∈ VDg × L2(Ω) that is an extremal point (saddle
point) of L”, or, in other words,

L(u, p) = J̃(u) = inf
v ∈ZDg

J̃(v) = inf
v∈VDg

sup
q∈L2(Ω)

L(v, q) (5.11)

The extremality conditions for L are

dL(v, 0) = lim
t→0

L(u+ tv, p)− L(u, p)

t
= 0 ∀v ∈ VD0 (5.12)

dL(0, q) = lim
t→0

L(u, p+ tq)− L(u, p)

t
= 0 ∀q ∈ L2(Ω) (5.13)

and lead to the mixed variational formulation.
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Mixed Variational Formulation of incompressible elasticity: Find (u, p) ∈ VDg × L2(Ω) such that

ã(u, v)− b(v, p) = `(v) ∀v ∈ VD0 (5.14)

b(u, q) = 0 ∀q ∈ L2(Ω) (5.15)

The enforcement of incompressibility in this formulation is not built in the space for u, which is VDg and
not ZDg. Instead, it appears explicitly in equation (5.15), because

b(u, q) =

∫
Ω

q div u dΩ = 0 ∀ q ∈ L2(Ω) ⇔ div u = 0 a.e. in Ω. (5.16)

Integrating by parts the left-hand side of (5.14) one arrives at the

Differential Formulation of incompressible elasticity:

− div σ̃(u) + ∇p = f, where σ̃(u) = 2µ ε(u) (5.17)

div u = 0 (5.18)

u = g on ΓD (5.19)

(−p I + σ̃) · n = F on ΓN (5.20)

It is important to notice that the incompressibility constraint “materializes” in the equilibrium equation
(5.17) as the gradient of the unknown pressure p, and at the force boundary as a normal contribution −pn.
In mechanical terms, this means that the Cauchy stress tensor of an incompressible elastic material is

σ = − p I + σ̃ = − p I + 2µ ε(u) (5.21)
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Exo. 5.1 Show that the extremality conditions (5.12)-(5.13) are equivalent to the mixed formulation equa-
tions (5.14)-(5.15).

Exo. 5.2 Show that, with sufficient regularity of u and p, (5.14) implies (5.17) and (5.20).

5.2 Abstract mixed formulation

Generalizing the previous examples, one considers the problem

Abstract Mixed Problem: Find (u, p) ∈ V ×Q such that

a(u, v)− b(v, p) = `(v) ∀ v ∈ V (5.22)

b(u, q) = g(q) ∀ q ∈ Q (5.23)

where a : V × V → R, b : V ×Q→ R are continuous bilinear forms, ` ∈ V ′, g ∈ Q′.
When a(·, ·) is symmetric, it is equivalent to the extremization of

J(v) =
1

2
a(v, v)− `(v) (5.24)

over the (constrained) set
Zg = {v ∈ V | b(v, q) = g(q) ∀ q ∈ Q} (5.25)

and to the extremization over V ×Q (i.e., unconstrained) of the Lagrangian

L(v, q) = J(v)− b(v, q) + g(q) (5.26)
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The first logical question is whether (5.22)-(5.23) is well-posed. We consider both the cases where V and
Q are infinite-dimensional (the continuous case) and finite-dimensional (the discrete case).

Theorem 5.1 If a(·, ·) is strongly coercive on Z0,

a(v, v) ≥ α ‖v‖2
V ∀ v ∈ Z0 (5.27)

with α > 0, and if

inf
q∈Q

sup
v∈V

b(v, q)

‖q‖Q ‖v‖V
= γ > 0 (5.28)

then (5.22)-(5.23) is well-posed.

The proof of this result relies on applying Thm. 1.7 to the setting defined by the product space W = V ×Q,
the bilinear form B : W ×W → R defined by

B((u, p), (v, q)) = a(u, v)− b(v, p)− b(u, q) (5.29)

and the linear form S ∈ W ′ defined by

S(v, q) = `(v)− g(q). (5.30)

Exo. 5.3 The Abstract Mixed Problem (5.22)-(5.23) is equivalent to the problem: Find (u, p) ∈ W
such that

B((u, p), (v, q)) = S(v, q) ∀ (v, q) ∈ W (5.31)
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Now it only remains to prove that,

Theorem 5.2 (Brezzi) Under hypotheses (5.27) and (5.28), the bilinear form B(·, ·) is weakly coercive
on V ×Q.

Proof. To simplify things, assume that (5.27) holds ∀ v ∈ V and that a(·, ·) is symmetric. Taking (u, p)
arbitrary in V ×Q, choose w ∈ V such that ‖w‖V = ‖p‖Q and −b(w, p) ≥ γ‖p‖2. Then, taking η = αγ/N2

a ,
one gets

B((u, p), (u+ ηw, p)) ≥ α

2
min

{
1,
γ2

N2
a

}
‖(u, p)‖2

V×Q

Besides,

‖(u+ ηw, p)‖V×Q ≤
(

1 +
αγ

N2
a

)
‖(u, p)‖V×Q

so that

inf
(u,p)

sup
(v,q)

B((u, p), (v, q))

‖(u, p)‖ ‖(v, q)‖
≥ inf

(u,p)

B((u, p), (u+ ηw, p))

‖(u, p)‖ ‖(u+ ηw, p)‖
≥

α
2

min
{

1, γ
2

N2
a

}
1 + αγ

N2
a

> 0

and condition (1.22) is satisfied. Since B is symmetric, the proof is complete. As a by-product, we observe
that the coercivity constant of B(·, ·) can be chosen as

β =

α
2

min
{

1, γ
2

N2
a

}
1 + αγ

N2
a

(5.32)

�
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Exo. 5.4 Prove that, for all (u, p) and (v, q) in V ×Q,

B((u, p), (v, q)) ≤ (Na + 2Nb) ‖(u, p)‖V×Q ‖(v, q)‖V×Q (5.33)

Exo. 5.5 Write down the abstract conditions (5.27) and (5.28) for the specific case of incompressible
elastic solids or, equivalently, for incompressible viscous fluids. Sketch a proof of them in the exact case.

Hint: Consider periodic boundary conditions to simplify things. Show that proving (5.28) is equivalent to
proving that, for any q ∈ L2

0(Ω) (functions with zero mean), there exists v ∈ H1
per(Ω) satisfying∫

Ω

q div v ≥ c ‖q‖2
0 (5.34)

‖v‖1 ≤ C ‖q‖0 (5.35)

where c and C do not depend on q. Then define ϕ as the solution of ∇2ϕ = q and choose v = ∇ϕ. Show
that the two conditions above are satisfied.
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5.3 Abstract approximation

Now we consider the following abstract setting, in which Vh ⊂ V and Qh ⊂ Q:

H1 Let (u, p) ∈ V ×Q satisfy

B((u, p), (vh, qh)) = S(vh, qh) ∀ (vh, qh) ∈ Vh ×Qh (5.36)

with the definitions (5.29)-(5.30), assuming all linear and bilinear forms involved are bounded.
Notice that we do not assume that B(·, ·) coincides with that of the exact mixed formulation on
V ×Q. The analysis thus includes non-Galerkin approximations. B could depend on the mesh.

H2 The subspaces Vh and Qh are such that

inf
qh ∈Qh

sup
vh ∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q
= γh > 0 (5.37)

and
a(vh, vh) ≥ αh ‖vh‖2

V ∀ vh ∈ Zh0, (5.38)

with αh > 0 and
Zh0 = {vh ∈ Vh | b(vh, qh) = 0 ∀ qh ∈ Qh}. (5.39)

Theorem 5.3 Under the hypotheses H1 and H2 above, the approximation (uh, ph) ∈ Vh×Qh defined
by

B((uh, ph), (vh, qh)) = S(vh, qh) ∀ (vh, qh) ∈ Vh ×Qh (5.40)

exists and is unique. Further, there exists C = C(Na, Nb, αh, γh) such that

‖u− uh‖V + ‖p− ph‖Q ≤ C

(
inf

vh ∈Vh
‖u− vh‖V + inf

qh ∈Qh

‖p− qh‖Q
)

(5.41)
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Exo. 5.6 Prove the previous theorem. Hint: Use Lemma 1.13. The hypothesis H2, together with (5.32)
applied to the discrete problem and (5.33) allow to estimate

C = 1 +
Na + 2Nb

βh
= 1 +

2 (Na + 2Nb)
(

1 + αhγh
N2

a

)
αh min

{
1,

γ2h
N2

a

} (5.42)

Exo. 5.7 Show that uh that solves (5.40) also solves: Find uh ∈ Zhg such that

a(uh, vh) = B((uh, 0), (vh, 0)) = S(vh, 0) = `(vh) ∀ vh ∈ Zh0 (5.43)

where
Zhg = {vh ∈ Vh | b(vh, qh) = g(qh) ∀ qh ∈ Qh} (5.44)

• Optimal approximation properties are obtained for the mixed problem on the unconstrained space
Vh.

• The space Qh needs to be chosen such that the inf-sup condition is satisfied, and such that ‖p−Ihp‖Q
is sufficiently small to not degrade the approximation of u. The norm ‖ · ‖Q is usually weaker than
‖ · ‖V , allowing Qh to be coarser, or of lower order, than Vh.

• Estimate (5.42) shows that if there exist α0 > 0 and γ0 > 0 such that αh ≥ α0 and γh ≥ γ0 for all h,
then C in (5.41) can be taken independent of h.
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5.4 Application to incompressible elasticity and to Stokes flow

The mixed variational formulation of incompressible elasticity is: Find (u, p) ∈ VDg × L2(Ω) such that∫
Ω

2µ ε(u) : ε(v) dΩ−
∫

Ω

p div v dΩ =

∫
Ω

f · v dΩ +

∫
ΓN

F · v dΓ ∀ v ∈ VD0 (5.45)∫
Ω

q div u dΩ = 0 ∀ q ∈ L2(Ω) (5.46)

which fits nicely in the framework (5.22)-(5.23). This exact same mathematical problem corresponds to
Stokes flow, in which u is the velocity field of an incompressible Newtonian fluid of viscosity µ. Stokes
flow models fluid flow in conditions in which inertial effects are negligible, as happens for example in
microfluidics.
We identify the components of the abstract mixed formulation:

a(u, v) =

∫
Ω

2µ ε(u) : ε(v) dΩ (5.47)

b(v, q) =

∫
Ω

q div v dΩ (5.48)

Z0 = {v ∈ VD0 |
∫

Ω

q div v dΩ = 0 ∀ q ∈ L2(Ω)} = {v ∈ VD0 | div v = 0} (5.49)

and we observe that a(·, ·) is strongly coercive on V = VD0 as a consequence of Korn’s inequality. The
mixed formulation is well-posed because

inf
q ∈L2(Ω)

sup
v ∈H1

0 (Ω)

∫
Ω
q div v dΩ

‖v‖1 ‖q‖0

> 0, (5.50)

an inequality that was proved by Ladyzhenskaya. But notice that our abstract approximation results do
not depend on stability estimates such as (5.50), which correspond to the exact problem. Only the
boundedness of the exact problem and the stability (coercivity) of the discrete problem matters.
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Turning now to the mixed Galerkin approximation, which reads just as (5.45)-(5.46) replacing all exact
spaces by Vhg, Vh0 and Qh, the following comments are in order:

• Whichever Qh, the mixed Galerkin formulation admits a unique solution uh belonging to

Zhg = {vh ∈ Vhg |
∫

Ω

qh div vh dΩ = 0 ∀ qh ∈ Qh} (5.51)

and satisfying
‖u− uh‖V ≤ C inf

vh ∈Zhg

‖u− vh‖V . (5.52)

• If Qh is too large the approximation ability of Zhg may be much poorer than that of Vhg. This lack
of approximability is known as “locking”. It manifests as largely inaccurate uh even for very fine
meshes.

• If Qh is “balanced” with Vh0, in the sense that

inf
qh∈Qh

sup
vh∈Vh0

∫
Ω
qh div vh dΩ

‖qh‖Q ‖vh‖V
= γh > 0 (5.53)

then there exists a unique ph ∈ Qh such that (uh, ph) satisfies the mixed Galerkin formulation and

‖u− uh‖V + ‖p− ph‖Q ≤
c

γ2
h

(
inf

vh∈Vhg
‖u− vh‖V + inf

qh∈Qh

‖p− qh‖Q
)
. (5.54)

with c independent of h for h small.

• If γh = 0, then ph is not uniquely defined. This implies in particular that the system matrix of the
mixed Galerkin formulation is singular.
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• Though condition (5.53) is cumbersome to satisfy and check, there exists a vast collection of com-
binations Vh − Qh for which (5.53) holds uniformly in h (i.e., with γh ≥ γ0 > 0 for all h). These
combinations are called stable mixed elements.

• Equal-order elements are not stable. They can be handled with stabilized formulations. The
convergence is proved using Theorem 5.3, though replacing H2 with a weak coercivity condition on
B.
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5.5 Project: A FEniCS microswimmer solver

5.5.1 Introduction

In this project we consider swimmers which have n degrees of freedom, more specifically that the swimmers
position and configuration at time t is given by q(t) ∈ Rn.
The degrees of freedom decompose as q = (p, ξ), where p ∈ Rnp are the positional degrees of freedom
(global position of the swimmer, orientation) and ξ ∈ Rnc the configurational degrees of freedom (length
of extensible parts, angles of joints, etc.).
The swimmer moves in a viscous fluid acted upon just by the forces the fluid exerts on it. The swimmer
has internal mechanisms to change its configurational variables along time, in particular we assume that it
is possible to specify ξ(t) to be any piecewise-differentiable continuous function with bounded derivative.

The swimming problem consists in, given ξ(t) for 0 ≤ t ≤ T and the initial position p(0), finding p(t)
for 0 < t ≤ T .

5.5.2 Equations

• Consider a swimmer that can only move along the x1 axis, and choose any of its material points P
as reference. The only positional degree of freedom is thus p = p = (p1), the position of the material
point P . The configurational variables ξ, on the other hand, can be many.

• The force F that the fluid exerts on the swimmer is a function of q and q̇.

• If the fluid is Newtonian and inertialess the linearity of the Stokes problem implies that

F (q, q̇) = R(q) q̇ = A(p, ξ) ṗ +B(p, ξ) ξ̇. (5.55)
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• Notice that in the one-dimensional case A is the coefficient that relates de drag force to the velocity
when the swimmer is moved by an external agent with its configuration fixed (i.e., when ξ̇ = 0).

• Because the only force on the swimmer is that exerted by the fluid, F = 0, thus the fundamental
equation is

dp

dt
= C(p, ξ)

dξ

dt
, (5.56)

where C = −A−1B.

• In an infinite medium, A, B and C does not depend on p.

• Notice that B and C are row matrices with nc entries, while A is a (negative) number, for each ξ.

• To compute A(q) and B(q) we follow the steps:

1. Generate a mesh with the geometry corresponding to q.

2. Impose the velocities at the swimmer’s boundary corresponding to ridig-body translation with
speed 1 along x1 (i.e., ṗ = 1, ξ̇ = 0). From the solution, extract the force (along x1) that the
fluid exerts on the swimmer. This value is A(q).

3. For j = 1, . . . , nc, impose the velocities at the swimmer’s boundary corresponding to ṗ = 0 and
ξ̇j = 1, and ξ̇i = 0 if i 6= j. Extract the force (along x1) that the fluid exerts on the swimmer.
This value is Bj(q).

• Library FEniCS will be used to discretize the solution of the Stokes problems with a mesh Th, so as
to obtain approximations of A(q) and B(q) which lead to

Ch(q) ' C(q) .

We thus obtain the ODE
dph
dt

(t) = Ch(ph(t), ξ(t)) ξ′(t). (5.57)
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• One can discretize (5.56) in time with different schemes, the simplest one being

pn+1
h = pnh + δt Ch(p

n
h, ξ(tn)) ξ′(tn).

• Notice that in an infinite medium C does not depend on p, because of translational symmetry. One
can build an approximate atlas C̃h by computing Ch for a set of values of ξ and then use interpolation
in ξ to get Ch at values that have not been computed.

5.5.3 Tasks of the miniproject

1. Consider a rectilinear swimmer consisting of three link bodies inside an infinite medium. The ge-
ometries of the bodies will be circular of diameter D, or square of edgelength D. The positional dof
is p = p1, the center of the leftmost body. The configurational degrees of freedom will be ξ1 = `1 and
ξ2 = `2, the lengths of the links. These links are restricted to take values between `min and `max.

2. We will adopt the values D = 1, `min = 1.5, `max = 4. Notice that C is independent of the fluid’s
viscosity, so there are no other parameters in the problem.

3. Compute Ch(ξ) at the four corners {ξ(k)} (k = 1, . . . , 4) of the square S = [`min, `max]× [`min, `max].
By refining the mesh, estimate the convergence order (in h) for Ch(ξ

(k))→ C(ξ(k)). For this task and
the ones below, one group will use P2/P1-Galerkin formulation and the other the P1/P1-stabilized
formulation.

4. Based on the results of the previous item, select a mesh of adequate precision for each of the swimmers
(circular and square). Then build an atlas C̃h on S, by sampling Ch at n×n points of S. The outcome
of this task is a function that, for each (ξ1, ξ2) returns the interpolated value of the 2-vector C̃h(ξ1, ξ2).
Plot this vector field.
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5. Solve (5.57) from t = 0 to t = 2π using a first or second order scheme in time, depending on the
group. For this, impose

ξ1(t) = α + β cos(t), ξ2(t) = α + β cos(t+ φ), (5.58)

with α = 2.5, β = 1, φ = π/2. Check the convergence of the scheme as δt → 0. Notice that ph(2π)
is the net displacement after one stroke if the proposed ξ(t) is repeated periodically.

6. Solve (5.57) replacing Ch by the atlas C̃h calculated previously. Discuss the error introduced by
interpolating Ch.

7. Using the plot of C̃h and the previous results, try to find another periodic motion that is more efficient
to propel the swimmer than the one studied in the previous items.
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Thank you for your attention in class

and your dedication throughout the course.

Happy holidays!!
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[4] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991.

[5] P. Ciarlet. Basic error estimates for elliptic problems. Handbook of Numerical Analysis, Vol. II. Finite
Element Methods (Part 1). Edited by P. Ciarlet and J.L. Lions. Elsevier. 1991.

[6] R. Durán. Galerkin approximations and finite element methods. Lecture notes (available at the au-
thor’s website).

[7] A. Ern and J.-L. Guermond. Theory and practice of finite elements. Applied Mathematical Sciences
159. Springer. 2004.

[8] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. Grundlehren der
mathematischen Wissenschaften 224. Second edition. Springer-Verlag. 1983.

[9] O. Ladyzenskaja and N. Uralceva, Equations aux dérivées partielles de type elliptique. Dunod, Paris,
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