Introduction to the Finite Element method

Gustavo C. Buscaglia
ICMC-USP, São Carlos, Brasil
gustavo.buscaglia@gmail.com

Motivation

- For elliptic and parabolic problems, the most popular approximation method is the FEM.
- It is general, not restricted to linear problems, or to isotropic problems, or to any subclass of mathematical problems.
- It is geometrically flexible, complex domains are quite easily treated, not requiring adaptations of the method itself.
- It is easy to code, and the coding is quite problem-independent. Boundary conditions are much easier to deal with than in other methods.
- It is robust, because in most cases the mathematical problem has an underlying variational structure (energy minimization, for example).
- Galerkin approximations: Differential, variational and extremal formulations of a simple 1D boundary value problem. Well-posedness of variational formulations. Functional setting. Strong and weak coercivity. Lax-Milgram lemma. Banach's open mapping theorem. Céa's best-approximation property. Convergence under weak coercivity. (2 lectures)
- The spaces of FEM and their implementation: (3 lectures)
- Interpolation error and convergence: (2 lectures)
- Application to convection-diffusion-reaction problems: (2 lectures)
- Application to linear elasticity: (2 lectures)
- Mixed problems: (2 lectures)
- FEM for parabolic problems: (2 lectures)

1 Galerkin approximations

1.1 Variational formulation of a simple 1D example

Let u be the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.1}\\
u(0)=u(1)=0
\end{array}\right.
$$

The differential formulation (DF) of the problem requires $-u^{\prime \prime}+u$ to be exactly equal to f in all points $x \in(0,1)$.
Multiplying the equation by any function v and integrating by parts (recall that

$$
\begin{equation*}
\int_{0}^{1} w^{\prime} z d x=w(1) z(1)-w(0) z(0)-\int_{0}^{1} w z^{\prime} d x \tag{1.2}
\end{equation*}
$$

holds for all w and z that are regular enough) one obtains that u satisfies

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x-u^{\prime}(1) v(1)+u^{\prime}(0) v(0)=\int_{0}^{1} f v d x \quad \forall v \tag{1.3}
\end{equation*}
$$

- The requirement "for all x " of the DF has become "for all functions v ".
- Does equation (1.3) fully determine u ?
- What happened with the boundary conditions?

Consider the following problem in variational formulation (VF): "Determine $u \in W$, such that $u(0)=$ $u(1)=0$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x \tag{1.4}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=v(1)=0$."
Prop. 1.1 The solution u of the DF (eq. 1.1) is also a solution of the VF if W consists of continuous functions of sufficient regularity. As a consequence, problem VF admits at least one solution whenever DF does.

Proof. Following the steps that lead to the VF, it becomes clear that the only requirement for u to satisfy (1.4) is that the integration by parts formula (1.2) be valid.

Exo. 1.1 Show that the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.5}\\
u(0)=0, \quad u^{\prime}(1)=g \in \mathbb{R}
\end{array}\right.
$$

is a solution to: "Find $u \in W$ such that $u(0)=0$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x+g v(1) \tag{1.6}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=0$."

Consider the following problem in extremal formulation (EF): "Determine $u \in W$ such that it minimizes the function

$$
\begin{equation*}
J(w)=\int_{0}^{1}\left(\frac{1}{2} w^{\prime}(x)^{2}+\frac{1}{2} w(x)^{2}-f w\right) d x \tag{1.7}
\end{equation*}
$$

over the functions $w \in W$ that satisfy $w(0)=w(1)=0$."
Prop. 1.2 The unique solution u of (1.1) is also a solution to EF. As a consequence, EF admits at least one solution.

Proof. We need to show that $J(w) \geq J(u)$ for all $w \in W_{0}$, where

$$
W_{0}=\{w \in W, w(0)=w(1)=0\}
$$

Writing $w=u+\alpha v$ and replacing in (1.7) one obtains

$$
J(u+\alpha v)=J(u)+\alpha\left[\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v-f v\right) d x\right]+\alpha^{2} \int_{0}^{1}\left(\frac{1}{2} v^{\prime}(x)^{2}+\frac{1}{2} v(x)^{2}\right) d x
$$

The last term is not negative and the second one is zero. \square
Exo. 1.2 Identify the EF of the previous exercise.

Prop. 1.3 Let u be the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.8}\\
u(0)=1, \quad u^{\prime}(1)=g \in \mathbb{R}
\end{array}\right.
$$

then u is also a solution of "Determine $u \in W$ such that $u(0)=1$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x+g v(1) \tag{1.9}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=0$."
Further, defining for any $a \in \mathbb{R}$

$$
W_{a}=\{w \in W, w(0)=a\}
$$

u minimizes over W_{1} the function

$$
\begin{equation*}
J(w)=\int_{0}^{1}\left(\frac{1}{2} w^{\prime}(x)^{2}+\frac{1}{2} w(x)^{2}-f w\right) d x-g w(1) \tag{1.10}
\end{equation*}
$$

Exo. 1.3 Prove the last proposition.

Let us define the bilinear and linear forms corresponding to problem (1.1):

$$
\begin{equation*}
a(v, w)=\int_{0}^{1}\left(v^{\prime} w^{\prime}+v w\right) d x \quad \ell(v)=\int_{0}^{1} f v d x \tag{1.11}
\end{equation*}
$$

and the function $J(v)=\frac{1}{2} a(v, v)-\ell(v)$. Remember that W is a space of functions with some (yet unspecified) regularity and let $W_{0}=\{w \in W, w(0)=w(1)=0\}$.

The three formulations that we have presented up to now are, thus:
DF: Find a function u such that

$$
-u^{\prime \prime}(x)+u(x)=f(x) \quad \forall x \in(0,1), \quad u(0)=u(1)=0
$$

VF: Find a function $u \in W_{0}$ such that

$$
a(u, v)=\ell(v) \quad \forall v \in W_{0}
$$

EF: Find a function $u \in W_{0}$ such that

$$
J(u) \leq J(w) \quad \forall w \in W_{0}
$$

and we know that the exact solution of DF is also a solution of VF and of EF.

The logic of the construction is justified by the following
Theorem 1.4 If W is taken as

$$
W=\left\{w:(0,1) \rightarrow \mathbb{R}, \int_{0}^{1} w(x)^{2} d x<+\infty, \int_{0}^{1} w^{\prime}(x)^{2} d x<+\infty\right\} \stackrel{\text { def }}{=} H^{1}(0,1)
$$

and if f is such that there exists $C \in \mathbb{R}$ for which

$$
\begin{equation*}
\int_{0}^{1} f(x) w(x) d x \leq C \sqrt{\int_{0}^{1} w^{\prime}(x)^{2} d x} \quad \forall w \in W_{0} \tag{1.12}
\end{equation*}
$$

then problems (VF) and (EF) have one and only one solution, and their solutions coincide.
The proof will be given later, now let us consider its consequences:

- The differential equation has at most one solution in W.
- If the solution u to (VF)-(EF) is regular enough to be considered a solution to (DF), then u is the solution to (DF).
- If the solution u to (VF)-(EF) is not regular enough to be considered a solution to (DF), then (DF) has no solution.
$\Rightarrow \quad(\mathrm{VF})$ is a generalization of (DF).

Exo. 1.4 Show that $W_{0} \subset C^{0}(0,1)$. Further, compute $C \in \mathbb{R}$ such that

$$
\max _{x \in[0,1]}|w(x)| \leq C \sqrt{\int_{0}^{1} w^{\prime}(x)^{2} d x} \quad \forall w \in W_{0}
$$

Hint: You may assume that $\int_{0}^{1} f(x) g(x) d x \leq \sqrt{\int_{0}^{1} f(x)^{2} d x} \sqrt{\int_{0}^{1} g(x)^{2} d x}$ for any f and g (CauchySchwarz).

Exo. 1.5 Consider $f(x)=|x-1 / 2|^{\gamma}$. For which exponents γ is $\int_{0}^{1} f(x) w(x) d x<+\infty$ for all $w \in W_{0}$?
Exo. 1.6 Consider as f the "Dirac delta function" at $x=1 / 2$, that we will denote by $\delta_{1 / 2}$. It can be considered as a "generalized" function defined by

$$
\int_{0}^{1} \delta_{1 / 2}(x) w(x) d x=w(1 / 2) \quad \forall w \in C^{0}(0,1)
$$

Prove that $\delta_{1 / 2}$ satisfies (1.12) and determine the analytical solution to (VF).
Exo. 1.7 Determine the DF and the EF corresponding to the following VF: "Find $u \in W=H^{1}(0,1)$, $u(0)=1$, such that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} w^{\prime}+u w\right) d x=w(1 / 2) \quad \forall w \in W_{0} \tag{1.13}
\end{equation*}
$$

where $W_{0}=\{w \in W, w(0)=0\} . "$

1.2 Variational formulations in general

Let V be a Hilbert space with norm $\|\cdot\|_{V}$. Let $a(\cdot, \cdot)$ and $\ell(\cdot)$ be bilinear and linear forms on V satisfying (continuity), for all $v, w \in V$,

$$
\begin{equation*}
a(v, w) \leq N_{a}\|v\|_{V}\|w\|_{V}, \quad \ell(v) \leq N_{\ell}\|v\|_{V} \tag{1.14}
\end{equation*}
$$

This last inequality means that $\ell \in V^{\prime}$, the (topological) dual of V. The minimum N_{ℓ} that satisfies this inequality is called the norm of ℓ in V^{\prime}, i.e.

$$
\begin{equation*}
\|\ell\|_{V^{\prime}} \stackrel{\text { def }}{=} \sup _{0 \neq v \in V} \frac{\ell(v)}{\|v\|_{V}} \tag{1.15}
\end{equation*}
$$

The abstract VF we consider here is:

$$
\begin{equation*}
\text { "Find } u \in V \text { such that } \quad a(u, v)=\ell(v) \quad \forall v \in V \text { " } \tag{1.16}
\end{equation*}
$$

Exo. 1.8 Assume that V is finite dimensional, of dimension n, and let $\left\{\phi^{1}, \phi^{2}, \ldots, \phi^{n}\right\}$ be a basis. Show that (1.16) is then equivalent to

$$
\begin{equation*}
\underline{V}^{T} \underline{\underline{A}} \underline{U}=\underline{V}^{T} \underline{L} \quad \forall \underline{V} \in \mathbb{R}^{n} \tag{1.17}
\end{equation*}
$$

which in turn is equivalent to the linear system

$$
\begin{equation*}
\underline{\underline{A}} \underline{U}=\underline{L} ; \tag{1.18}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i j} \xlongequal{\text { def }} a\left(\phi^{j}, \phi^{i}\right), \quad L_{i} \stackrel{\text { def }}{=} \ell\left(\phi^{i}\right) \tag{1.19}
\end{equation*}
$$

and \underline{U} is the coefficient column vector of the expansion of u, i.e.,

$$
\begin{equation*}
u=\sum_{i=1}^{n} U_{i} \phi^{i} \tag{1.20}
\end{equation*}
$$

Def. 1.5 The bilinear form $a(\cdot, \cdot)$ is said to be strongly coercive if there exists $\alpha>0$ such that

$$
\begin{equation*}
a(v, v) \geq \alpha\|v\|_{V}^{2} \quad \forall v \in V \tag{1.21}
\end{equation*}
$$

Def. 1.6 The bilinear form $a(\cdot, \cdot)$ is said to be weakly coercive (or to satisfy an inf-sup condition) if there exists $\beta>0$ such that

$$
\begin{equation*}
\sup _{0 \neq w \in V} \frac{a(v, w)}{\|w\|_{V}} \geq \beta\|v\|_{V} \quad \forall v \in V \tag{1.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{0 \neq v \in V} \frac{a(v, w)}{\|v\|_{V}} \geq \beta\|w\|_{V} \quad \forall w \in V \tag{1.23}
\end{equation*}
$$

Exo. 1.9 Prove that strong coercivity implies weak coercivity.
Exo. 1.10 Prove that, if V is finite dimensional, then (i) $a(\cdot, \cdot)$ is strongly coercive iff $\underline{\underline{A}}$ is positive definite $\left(\underline{X}^{T} \underline{\underline{A}} \underline{X}>0 \forall \underline{X} \in \mathbb{R}^{n}\right)$, and (ii) $a(\cdot, \cdot)$ is weakly coercive iff $\underline{\underline{A}}$ is invertible.

Exo. 1.11 Prove that, if $a(\cdot, \cdot)$ is weakly coercive, then the solution u of (1.16) depends continuously on the forcing $\ell(\cdot)$. Specifically, prove that

$$
\begin{equation*}
\|u\|_{V} \leq \frac{1}{\beta}\|\ell\|_{V^{\prime}} \tag{1.24}
\end{equation*}
$$

Theorem 1.7 Assuming V to be a Hilbert space, problem (1.16) is well posed for any $\ell \in V^{\prime}$ if and only if (i) $a(\cdot, \cdot)$ is continuous, and (ii) $a(\cdot, \cdot)$ is weakly coercive.

A simpler version of this result is known as Lax-Milgram lemma:
Theorem 1.8 Assuming V to be a Hilbert space, if $a(\cdot, \cdot)$ is continuous and strongly coercive then problem (1.16) is well posed for any $\ell \in V^{\prime}$.

Proof. This proof uses the so-called "Galerkin method", which will be useful to introduce... the Galerkin method!
Let $\left\{\phi^{i}\right\}$ be a basis of V. Denoting $V_{N}=\operatorname{span}\left(\phi^{1}, \ldots, \phi^{N}\right)$ we can define $u_{N} \in V_{N}$ as the unique solution of $a\left(u_{N}, v\right)=\ell(v)$ for all $v \in V_{N}$. This generates a sequence $\left\{u_{N}\right\}_{N=1,2, \ldots}$ in V. Further, this sequence is bounded, because

$$
\left\|u_{N}\right\|_{V}^{2} \leq \frac{1}{\alpha} a\left(u_{N}, u_{N}\right)=\frac{1}{\alpha} \ell\left(u_{N}\right) \leq \frac{\|\ell\|_{V^{\prime}}}{\alpha}\left\|u_{N}\right\|_{V} \quad \Rightarrow \quad\left\|u_{N}\right\|_{V} \leq \frac{\|\ell\|_{V^{\prime}}}{\alpha}, \forall N
$$

Recalling the weak compactness of bounded sets in Hilbert spaces, there exists $u \in V$ such that a subsequence of $\left\{u_{N}\right\}$ (still denoted by $\left\{u_{N}\right\}$ for simplicity) converges to u weakly. It remains to prove that $a(u, v)=\ell(v)$ for all $v \in V$. To see this, notice that

$$
a\left(u, \phi^{i}\right)=a\left(\lim _{N} u_{N}, \phi^{i}\right)=\lim _{N} a\left(u_{N}, \phi^{i}\right)=\ell\left(\phi^{i}\right)
$$

where the last equality holds because $a\left(u_{N}, \phi^{i}\right)=\ell\left(\phi^{i}\right)$ whenever $N \geq i$. Uniqueness is left as an exercise.

Exo. 1.12 Prove uniqueness in the previous theorem (bounded sequences may have several accumulation points).

Remark 1.9 The space $L^{2}(a, b)$ (also denoted by $H^{0}(a, b)$) is the Hilbert space of functions $f:(a, b) \rightarrow \mathbb{R}$ such that $\int_{a}^{b} f^{2}(x) d x<+\infty$.
The scalar product is

$$
\begin{equation*}
(f, g)_{L^{2}(a, b)}=\int_{a}^{b} f(x) g(x) d x \tag{1.25}
\end{equation*}
$$

and accordingly

$$
\begin{equation*}
\|f\|_{L^{2}(a, b)}=(f, f)_{L^{2}(a, b)}^{1 / 2}=\sqrt{\int_{a}^{b} f^{2}(x) d x} . \tag{1.26}
\end{equation*}
$$

Also of frequent use are the Hilbert spaces $H^{1}(a, b)$ and $H^{2}(a, b)$:

$$
\begin{align*}
H^{1}(a, b) & =\left\{f \in L^{2}(a, b) \mid f^{\prime} \in L^{2}(a, b)\right\} \tag{1.27}\\
|f|_{H^{1}(a, b)} & =\left\|f^{\prime}\right\|_{L^{2}(a, b)} \tag{1.28}\\
\|f\|_{H^{1}(a, b)} & =\|f\|_{L^{2}(a, b)}+|f|_{H^{1}(a, b)} \tag{1.29}\\
H^{2}(a, b) & =\left\{f \in H^{1}(a, b) \mid f^{\prime \prime} \in L^{2}(a, b)\right\} \tag{1.30}\\
|f|_{H^{2}(a, b)} & =\left\|f^{\prime \prime}\right\|_{L^{2}(a, b)} \tag{1.31}\\
\|f\|_{H^{2}(a, b)} & =\|f\|_{H^{1}(a, b)}+|f|_{H^{2}(a, b)} \tag{1.32}
\end{align*}
$$

Exo. 1.13 Other equivalent norms can be defined in $H^{1}(a, b)$, e.g.,

1. $\left|\left|\mid f \|_{H^{1}(a, b)}=\left(\|f\|_{L^{2}(a, b)}^{2}+|f|_{H^{1}(a, b)}^{2}\right)^{1 / 2}\right.\right.$
2. $\left|\left||f| \|_{H^{1}(a, b)}=\max \left(\|f\|_{L^{2}(a, b)},|f|_{H^{1}(a, b)}\right)\right.\right.$
3. $\left\|\|f\|_{H^{1}(a, b)}=\right\| f\left\|_{L^{2}(a, b)}+\right\| \ell f^{\prime} \|_{L^{2}(a, b)}$, where $\ell:(a, b) \rightarrow \mathbb{R}$ satisfies $0<\ell_{\min } \leq \ell(x) \leq \ell_{\max }$ for all $x \in(a, b)$. Notice that if $\ell(x)$ has dimensions of length then this norm is unit-consistent.

Find the constants c and C such that $c\|f\| \leq\| \| f\| \| \leq C\|f\|$.
Remark 1.10 For the spaces $H^{1}(a, b)$ and $H^{2}(a, b)$ to be complete, one needs a weaker definition of the derivative. For this purpose, one first introduces the space

$$
\begin{equation*}
\mathcal{D}(a, b)=C_{0}^{\infty}(a, b)=\left\{\varphi \in C^{\infty}(a, b) \mid \varphi \text { has compact support in }(a, b)\right\} \tag{1.33}
\end{equation*}
$$

Given a function $f:(a, b) \rightarrow \mathbb{R}$, if there exists $g:(a, b) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\int_{a}^{b} g(x) \varphi(x) d x=-\int_{a}^{b} f(x) \varphi^{\prime}(x) d x, \quad \forall \varphi \in \mathcal{D}(a, b) \tag{1.34}
\end{equation*}
$$

then we say that f^{\prime} exists in a weak sense, and that $f^{\prime}=g$.
Exo. 1.14 Show that the function

$$
\phi(x)= \begin{cases}\exp \left(1 /\left(|x|^{2}-1\right)\right) & \text { if }|x|<1 \tag{1.35}\\ 0 & \text { if }|x| \geq 1\end{cases}
$$

belongs to $\mathcal{D}(\mathbb{R})$. By suitably shifting and scaling the argument of ϕ show that $\mathcal{D}(a, b)$ has infinite dimension for all $a<b$. (Hint: See Brenner-Scott, p. 27)

Exo. 1.15 Consider $f(x)=1-|x|$ in the domain $(-1,1)$. Prove that its weak derivative is given by

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
1 & \text { if } x<0 \tag{1.36}\\
-1 & \text { if } x>0
\end{array} .\right.
$$

Prove also that $f^{\prime \prime}$ does not exist. (Hint: See Brenner-Scott, p. 28)
Exo. 1.16 Let $f \in L^{2}(a, b)$, and let $V=H^{1}(a, b)$. Show that $\ell(v)=\int_{a}^{b} f(x) v(x) d x$ belongs to V^{\prime} and that $\|\ell\|_{V^{\prime}} \leq\|f\|_{L^{2}(a, b)}$.

