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Motivation

• For elliptic and parabolic problems, the most popular approximation method is the FEM.

• It is general, not restricted to linear problems, or to isotropic problems, or to any subclass of
mathematical problems.

• It is geometrically flexible, complex domains are quite easily treated, not requiring adaptations
of the method itself.

• It is easy to code, and the coding is quite problem-independent. Boundary conditions are much
easier to deal with than in other methods.

• It is robust, because in most cases the mathematical problem has an underlying variational structure
(energy minimization, for example).
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Overview

• Galerkin approximations: Differential, variational and extremal formulations of a simple 1D
boundary value problem. Well-posedness of variational formulations. Functional setting. Strong and
weak coercivity. Lax-Milgram lemma. Banach’s open mapping theorem. Céa’s best-approximation
property. Convergence under weak coercivity. (2 lectures)

• The spaces of FEM and their implementation: (3 lectures)

• Interpolation error and convergence: (2 lectures)

• Application to convection-diffusion-reaction problems: (2 lectures)

• Application to linear elasticity: (2 lectures)

• Mixed problems: (2 lectures)

• FEM for parabolic problems: (2 lectures)
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1 Galerkin approximations

1.1 Variational formulation of a simple 1D example

Let u be the solution of {
−u′′ + u = f in (0, 1)

u(0) = u(1) = 0
(1.1)

The differential formulation (DF) of the problem requires −u′′ +u to be exactly equal to f in all points
x ∈ (0, 1).
Multiplying the equation by any function v and integrating by parts (recall that∫ 1

0

w′ z dx = w(1)z(1)− w(0)z(0)−
∫ 1

0

w z′ dx (1.2)

holds for all w and z that are regular enough) one obtains that u satisfies∫ 1

0

(u′ v′ + u v) dx− u′(1)v(1) + u′(0)v(0) =

∫ 1

0

f v dx ∀ v. (1.3)

• The requirement “for all x” of the DF has become “for all functions v”.

• Does equation (1.3) fully determine u?

• What happened with the boundary conditions?
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Consider the following problem in variational formulation (VF): “Determine u ∈ W , such that u(0) =
u(1) = 0 and that ∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx (1.4)

holds for all v ∈ W satisfying v(0) = v(1) = 0.”

Prop. 1.1 The solution u of the DF (eq. 1.1) is also a solution of the VF if W consists of continuous
functions of sufficient regularity. As a consequence, problem VF admits at least one solution whenever DF
does.

Proof. Following the steps that lead to the VF, it becomes clear that the only requirement for u to satisfy
(1.4) is that the integration by parts formula (1.2) be valid. �

Exo. 1.1 Show that the solution of {
−u′′ + u = f in (0, 1)

u(0) = 0, u′(1) = g ∈ R
(1.5)

is a solution to: “Find u ∈ W such that u(0) = 0 and that∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx + g v(1) (1.6)

holds for all v ∈ W satisfying v(0) = 0.”
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Consider the following problem in extremal formulation (EF): “Determine u ∈ W such that it minimizes
the function

J(w) =

∫ 1

0

(
1

2
w′(x)2 +

1

2
w(x)2 − f w

)
dx (1.7)

over the functions w ∈ W that satisfy w(0) = w(1) = 0.”

Prop. 1.2 The unique solution u of (1.1) is also a solution to EF. As a consequence, EF admits at least
one solution.

Proof. We need to show that J(w) ≥ J(u) for all w ∈ W0, where

W0 = {w ∈ W , w(0) = w(1) = 0}

Writing w = u+ αv and replacing in (1.7) one obtains

J(u+ α v) = J(u) + α

[∫ 1

0

(u′ v′ + u v − f v) dx

]
+ α2

∫ 1

0

(
1

2
v′(x)2 +

1

2
v(x)2

)
dx

The last term is not negative and the second one is zero. �

Exo. 1.2 Identify the EF of the previous exercise.
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Prop. 1.3 Let u be the solution of {
−u′′ + u = f in (0, 1)

u(0) = 1, u′(1) = g ∈ R
(1.8)

then u is also a solution of “Determine u ∈ W such that u(0) = 1 and that∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx + g v(1) (1.9)

holds for all v ∈ W satisfying v(0) = 0.”
Further, defining for any a ∈ R

Wa = {w ∈ W,w(0) = a},

u minimizes over W1 the function

J(w) =

∫ 1

0

(
1

2
w′(x)2 +

1

2
w(x)2 − f w

)
dx − g w(1). (1.10)

Exo. 1.3 Prove the last proposition.
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Let us define the bilinear and linear forms corresponding to problem (1.1):

a(v, w) =

∫ 1

0

(v′w′ + vw) dx `(v) =

∫ 1

0

f v dx (1.11)

and the function J(v) = 1
2
a(v, v) − `(v). Remember that W is a space of functions with some (yet

unspecified) regularity and let W0 = {w ∈ W, w(0) = w(1) = 0}.

The three formulations that we have presented up to now are, thus:

DF: Find a function u such that

−u′′(x) + u(x) = f(x) ∀x ∈ (0, 1), u(0) = u(1) = 0

VF: Find a function u ∈ W0 such that

a(u, v) = `(v) ∀ v ∈ W0

EF: Find a function u ∈ W0 such that

J(u) ≤ J(w) ∀w ∈ W0

and we know that the exact solution of DF is also a solution of VF and of EF.
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The logic of the construction is justified by the following

Theorem 1.4 If W is taken as

W = {w : (0, 1)→ R,
∫ 1

0

w(x)2 dx < +∞,
∫ 1

0

w′(x)2 dx < +∞} def
= H1(0, 1)

and if f is such that there exists C ∈ R for which∫ 1

0

f(x)w(x) dx ≤ C

√∫ 1

0

w′(x)2 dx ∀w ∈ W0 (1.12)

then problems (VF) and (EF) have one and only one solution, and their solutions coincide.

The proof will be given later, now let us consider its consequences:

• The differential equation has at most one solution in W .

• If the solution u to (VF)-(EF) is regular enough to be considered a solution to (DF), then u is
the solution to (DF).

• If the solution u to (VF)-(EF) is not regular enough to be considered a solution to (DF), then (DF)
has no solution.

⇒ (VF) is a generalization of (DF).
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Exo. 1.4 Show that W0 ⊂ C0(0, 1). Further, compute C ∈ R such that

max
x∈[0,1]

|w(x)| ≤ C

√∫ 1

0

w′(x)2 dx ∀w ∈ W0

Hint: You may assume that
∫ 1

0
f(x) g(x) dx ≤

√∫ 1

0
f(x)2 dx

√∫ 1

0
g(x)2 dx for any f and g (Cauchy-

Schwarz).

Exo. 1.5 Consider f(x) = |x− 1/2|γ. For which exponents γ is
∫ 1

0
f(x)w(x) dx < +∞ for all w ∈ W0?

Exo. 1.6 Consider as f the “Dirac delta function” at x = 1/2, that we will denote by δ1/2. It can be
considered as a “generalized” function defined by∫ 1

0

δ1/2(x)w(x) dx = w(1/2) ∀w ∈ C0(0, 1)

Prove that δ1/2 satisfies (1.12) and determine the analytical solution to (VF).

Exo. 1.7 Determine the DF and the EF corresponding to the following VF: “Find u ∈ W = H1(0, 1),
u(0) = 1, such that ∫ 1

0

(u′w′ + uw) dx = w(1/2) ∀w ∈ W0 (1.13)

where W0 = {w ∈ W,w(0) = 0}.”
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1.2 Variational formulations in general

Let V be a Hilbert space with norm ‖ · ‖V . Let a(·, ·) and `(·) be bilinear and linear forms on V satisfying
(continuity), for all v, w ∈ V ,

a(v, w) ≤ Na ‖v‖V ‖w‖V , `(v) ≤ N` ‖v‖V (1.14)

This last inequality means that ` ∈ V ′, the (topological) dual of V . The minimum N` that satisfies this
inequality is called the norm of ` in V ′, i.e.

‖`‖V ′
def
= sup

06=v∈V

`(v)

‖v‖V
(1.15)

The abstract VF we consider here is:

“Find u ∈ V such that a(u, v) = `(v) ∀ v ∈ V ” (1.16)

Exo. 1.8 Assume that V is finite dimensional, of dimension n, and let {φ1, φ2, . . . , φn} be a basis. Show
that (1.16) is then equivalent to

V T AU = V T L ∀V ∈ Rn , (1.17)

which in turn is equivalent to the linear system

A U = L ; (1.18)

where
Aij

def
= a(φj, φi), Li

def
= `(φi) (1.19)

and U is the coefficient column vector of the expansion of u, i.e.,

u =
n∑
i=1

Ui φ
i (1.20)

11



Def. 1.5 The bilinear form a(·, ·) is said to be strongly coercive if there exists α > 0 such that

a(v, v) ≥ α‖v‖2V ∀ v ∈ V (1.21)

Def. 1.6 The bilinear form a(·, ·) is said to be weakly coercive (or to satisfy an inf-sup condition) if
there exists β > 0 such that

sup
06=w∈V

a(v, w)

‖w‖V
≥ β‖v‖V ∀ v ∈ V (1.22)

and

sup
0 6=v∈V

a(v, w)

‖v‖V
≥ β‖w‖V ∀w ∈ V (1.23)

Exo. 1.9 Prove that strong coercivity implies weak coercivity.

Exo. 1.10 Prove that, if V is finite dimensional, then (i) a(·, ·) is strongly coercive iff A is positive definite

(XT A X > 0 ∀X ∈ Rn), and (ii) a(·, ·) is weakly coercive iff A is invertible.

Exo. 1.11 Prove that, if a(·, ·) is weakly coercive, then the solution u of (1.16) depends continuously on
the forcing `(·). Specifically, prove that

‖u‖V ≤
1

β
‖`‖V ′ (1.24)
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Theorem 1.7 Assuming V to be a Hilbert space, problem (1.16) is well posed for any ` ∈ V ′ if and only
if (i) a(·, ·) is continuous, and (ii) a(·, ·) is weakly coercive.

A simpler version of this result is known as Lax-Milgram lemma:

Theorem 1.8 Assuming V to be a Hilbert space, if a(·, ·) is continuous and strongly coercive then problem
(1.16) is well posed for any ` ∈ V ′.

Proof. This proof uses the so-called “Galerkin method”, which will be useful to introduce. . . the Galerkin
method!
Let {φi} be a basis of V . Denoting VN = span(φ1, . . . , φN) we can define uN ∈ VN as the unique solution
of a(uN , v) = `(v) for all v ∈ VN . This generates a sequence {uN}N=1,2,... in V . Further, this sequence is
bounded, because

‖uN‖2V ≤
1

α
a(uN , uN) =

1

α
`(uN) ≤ ‖`‖V

′

α
‖uN‖V ⇒ ‖uN‖V ≤

‖`‖V ′

α
, ∀N

Recalling the weak compactness of bounded sets in Hilbert spaces, there exists u ∈ V such that a sub-
sequence of {uN} (still denoted by {uN} for simplicity) converges to u weakly. It remains to prove that
a(u, v) = `(v) for all v ∈ V . To see this, notice that

a(u, φi) = a(lim
N
uN , φ

i) = lim
N
a(uN , φ

i) = `(φi)

where the last equality holds because a(uN , φ
i) = `(φi) whenever N ≥ i. Uniqueness is left as an exercise.

�

Exo. 1.12 Prove uniqueness in the previous theorem (bounded sequences may have several accumulation
points).
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Remark 1.9 The space L2(a, b) (also denoted by H0(a, b)) is the Hilbert space of functions f : (a, b)→ R
such that

∫ b
a
f 2(x) dx < +∞.

The scalar product is

(f, g)L2(a,b) =

∫ b

a

f(x)g(x) dx (1.25)

and accordingly

‖f‖L2(a,b) = (f, f)
1/2

L2(a,b) =

√∫ b

a

f 2(x) dx . (1.26)

Also of frequent use are the Hilbert spaces H1(a, b) and H2(a, b):

H1(a, b) = {f ∈ L2(a, b) | f ′ ∈ L2(a, b)} (1.27)

|f |H1(a,b) = ‖f ′‖L2(a,b) (1.28)

‖f‖H1(a,b) = ‖f‖L2(a,b) + |f |H1(a,b) (1.29)

H2(a, b) = {f ∈ H1(a, b) | f ′′ ∈ L2(a, b)} (1.30)

|f |H2(a,b) = ‖f ′′‖L2(a,b) (1.31)

‖f‖H2(a,b) = ‖f‖H1(a,b) + |f |H2(a,b) (1.32)

Exo. 1.13 Other equivalent norms can be defined in H1(a, b), e.g.,

1. |||f |||H1(a,b) =
(
‖f‖2L2(a,b) + |f |2H1(a,b)

)1/2
2. |||f |||H1(a,b) = max

(
‖f‖L2(a,b), |f |H1(a,b)

)
3. |||f |||H1(a,b) = ‖f‖L2(a,b) + ‖` f ′‖L2(a,b), where ` : (a, b) → R satisfies 0 < `min ≤ `(x) ≤ `max for all

x ∈ (a, b). Notice that if `(x) has dimensions of length then this norm is unit-consistent.
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Find the constants c and C such that c‖f‖ ≤ |||f ||| ≤ C‖f‖.

Remark 1.10 For the spaces H1(a, b) and H2(a, b) to be complete, one needs a weaker definition of the
derivative. For this purpose, one first introduces the space

D(a, b) = C∞
0 (a, b) = {ϕ ∈ C∞(a, b) | ϕ has compact support in (a, b)} . (1.33)

Given a function f : (a, b)→ R, if there exists g : (a, b)→ R such that∫ b

a

g(x)ϕ(x) dx = −
∫ b

a

f(x)ϕ′(x) dx , ∀ϕ ∈ D(a, b) , (1.34)

then we say that f ′ exists in a weak sense, and that f ′ = g.

Exo. 1.14 Show that the function

φ(x) =

{
exp (1/(|x|2 − 1)) if |x| < 1

0 if |x| ≥ 1
(1.35)

belongs to D(R). By suitably shifting and scaling the argument of φ show that D(a, b) has infinite dimension
for all a < b. (Hint: See Brenner-Scott, p. 27)

Exo. 1.15 Consider f(x) = 1− |x| in the domain (−1, 1). Prove that its weak derivative is given by

f ′(x) =

{
1 if x < 0

−1 if x > 0
. (1.36)

Prove also that f ′′ does not exist. (Hint: See Brenner-Scott, p. 28)

Exo. 1.16 Let f ∈ L2(a, b), and let V = H1(a, b). Show that `(v) =
∫ b
a
f(x) v(x) dx belongs to V ′ and

that ‖`‖V ′ ≤ ‖f‖L2(a,b).
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