Introduction to the Finite Element method

Gustavo C. Buscaglia

ICMC-USP, Sao Carlos, Brasil

gustavo.buscaglia@gmail.com



Motivation

e For elliptic and parabolic problems, the most popular approximation method is the FEM.

e [t is general, not restricted to linear problems, or to isotropic problems, or to any subclass of
mathematical problems.

e [t is geometrically flexible, complex domains are quite easily treated, not requiring adaptations
of the method itself.

e [t is easy to code, and the coding is quite problem-independent. Boundary conditions are much
easier to deal with than in other methods.

e [t is robust, because in most cases the mathematical problem has an underlying variational structure
(energy minimization, for example).



Overview

e Galerkin approximations: Differential, variational and extremal formulations of a simple 1D
boundary value problem. Well-posedness of variational formulations. Functional setting. Strong and
weak coercivity. Lax-Milgram lemma. Banach’s open mapping theorem. Céa’s best-approximation
property. Convergence under weak coercivity. (2 lectures)

e The spaces of FEM and their implementation: (3 lectures)

e Interpolation error and convergence: (2 lectures)

e Application to convection-diffusion-reaction problems: (2 lectures)
e Application to linear elasticity: (2 lectures)

e Mixed problems: (2 lectures)

e FEM for parabolic problems: (2 lectures)



1 Galerkin approximations

1.1 Variational formulation of a simple 1D example
Let u be the solution of

{—u”+u: f o oin(0,1) 11)

u(0)=u(1)=0

The differential formulation (DF) of the problem requires —u” 4 u to be exactly equal to f in all points
z € (0,1).
Multiplying the equation by any function v and integrating by parts (recall that

/0 w'z de = w(1)z(1) — w(0)z(0) — /0 wz dx (1.2)

holds for all w and z that are regular enough) one obtains that u satisfies

/O(U'v/—i—uv) dm—u’(l)v(l)—i—u'(O)v(O):/O fode Vo (1.3)

e The requirement “for all 7 of the DF has become “for all functions v”.
e Does equation (|1.3)) fully determine u?

e What happened with the boundary conditions?



Consider the following problem in variational formulation (VF): “Determine v € W, such that u(0) =
u(1) = 0 and that

/(uv—l—uv dx—/fvda: (1.4)
holds for all v € W satistying v(0) = v(1) = 0.”

Prop. 1.1 The solution u of the DF (eq. 15 also a solution of the VF if W consists of continuous
functions of sufficient reqularity. As a consequence, problem VFE admits at least one solution whenever DF
does.

Proof. Following the steps that lead to the VF, it becomes clear that the only requirement for u to satisfy
(1.4)) is that the integration by parts formula ((1.2)) be valid. O

Exo. 1.1 Show that the solution of

{—u” +u=Ff in (0,1)

u(0) =0, u'(l)=g € R (15)

is a solution to: “Find v € W such that u(0) =0 and that

/Ol(u'v’—i-uv) dx:/olfvdx + go(1) (1.6)

holds for all v € W satisfying v(0) = 0.”



Consider the following problem in extremal formulation (EF): “Determine u € W such that it minimizes

the function - .
J(w) = /0 (éw’(x)Q + §w(x)2 - fw) dx (1.7)

over the functions w € W that satisfy w(0) = w(1) = 0.”

Prop. 1.2 The unique solution u of 1s also a solution to EF. As a consequence, EF admits at least
one solution.

Proof. We need to show that J(w) > J(u) for all w € W, where
Wo={w € W, w(0) =w(l) =0}

Writing w = u + av and replacing in (1.7 one obtains

J(u+av) = J(w) + a [/Ol(u’v/+uv—fv) dx] +0z2/01 (%u(x)uév(x)?) da

The last term is not negative and the second one is zero. [J

Exo. 1.2 Identify the EF of the previous exercise.



Prop. 1.3 Let u be the solution of

—u' +u=f in (0,1)
u(0) =1, uW(l)=9g € R

then w is also a solution of “Determine u € W such that u(0) =1 and that
1 1
/ (u'v" 4+ uv) dx—/ fodr + gv(1)
0 0

holds for all v € W satisfying v(0) = 0.”

Further, defining for any a € R
W, ={w € W,w(0) = a},

u minimizes over Wi the function

J(w) = / 1 (1w'<x)2+3w<x>2—fw) dz — gu(l).
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Exo. 1.3 Prove the last proposition.

(1.8)

(1.9)

(1.10)



Let us define the bilinear and linear forms corresponding to problem (|1.1)):

a(v,w):/ol(v'w'—i—vw) dx E(v):/olfvdx (1.11)

and the function J(v) = fa(v,v) — {(v). Remember that W is a space of functions with some (yet

unspecified) regularity and let Wy = {w € W, w(0) = w(1) = 0}.
The three formulations that we have presented up to now are, thus:

DF': Find a function u such that
—(z) +ulw) = f@) V€ (0,1), u(0) = u(1) = 0

VF: Find a function u € Wj such that

a(u,v) =L(v) Yv € Wy

EF: Find a function © € W, such that

J(u) < J(w) Vw e W

and we know that the exact solution of DF is also a solution of VF and of EF.



The logic of the construction is justified by the following

Theorem 1.4 If W is taken as
W:{w:(O,)—>R/ w(z) dx<—|—oo/ )2 dz < 400} = H(0,1)

and if f is such that there exists C' € R for which

/f dSL'<C“/ w'(x)? dx Vw € W, (1.12)

then problems (VF) and (EF) have one and only one solution, and their solutions coincide.

The proof will be given later, now let us consider its consequences:

e The differential equation has at most one solution in W.

e If the solution u to (VF)-(EF) is regular enough to be considered a solution to (DF), then u is
the solution to (DF).

e If the solution u to (VF)-(EF) is not regular enough to be considered a solution to (DF), then (DF)
has no solution.

= (VF) is a generalization of (DF).



Exo. 1.4 Show that Wy C C°(0,1). Further, compute C' € R such that

1
max |w(z)| < C / w!'(z)? dx Yw € W
0

z€[0,1]

Hint: You may assume that fol f@)g(z) de < \/fol f(x)? dx \/folg(m)z dx for any f and g (Cauchy-
Schwarz).

Exo. 1.5 Consider f(x) = |x — 1/2|7. For which exponents vy is fol fx)w(x) de < o0 for allw € Wy?

Exo. 1.6 Consider as f the “Dirac delta function” at v = 1/2, that we will denote by 61/2. It can be
considered as a “generalized” function defined by

1
/ 01p2(z) w(z) doe = w(1/2) Vw € C°0,1)

0
Prove that 0/, satisfies and determine the analytical solution to (VF).

Exo. 1.7 Determine the DF and the EF corresponding to the following VF: “Find v € W = H(0,1),
u(0) =1, such that

/l(u'w'+uw) dr = w(1/2) Yw € Wy (1.13)

where Wy = {w € W,w(0) =0}.”
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1.2 Variational formulations in general

Let V' be a Hilbert space with norm || - ||y.. Let a(-,-) and £(-) be bilinear and linear forms on V satisfying
(continuity), for all v, w € V,
a(v,w) < No [l lwllv, ((v) < Nel[ollv (1.14)

This last inequality means that ¢ € V', the (topological) dual of V. The minimum N, that satisfies this
inequality is called the norm of £ in V', i.e.

. 14
€]y = sup w) (1.15)
orvev [[vllv
The abstract VF we consider here is:
“Find w € V such that  a(u,v) = £(v) Yo e V7 (1.16)
Exo. 1.8 Assume that V is finite dimensional, of dimension n, and let {¢*, ¢*, ..., ¢"} be a basis. Show
that 1s then equivalent to
VIAU=V"L VvV € R™, (1.17)
which in turn s equivalent to the linear system
AU=L; (1.18)
where o ‘
Ay Eald,¢), L= () (1.19)

and U 1s the coefficient column vector of the expansion of u, i.e.,

u=>y U;¢ (1.20)
=1
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Def. 1.5 The bilinear form a(-,-) is said to be strongly coercive if there exists a > 0 such that
a(v,v) > allv||¥ Vo eV (1.21)

Def. 1.6 The bilinear form a(-,-) is said to be weakly coercive (or to satisfy an inf-sup condition) if
there exists B > 0 such that

a(v,w)

sup ———= > B||v|lv Yo eV (1.22)
ozwev  |lwllv

and
sup A0 S i, Vw eV (1.23)

0#£veV vy

Exo. 1.9 Prove that strong coercivity implies weak coercivity.

Exo. 1.10 Prove that, if V' is finite dimensional, then (i) a(-,-) is strongly coercive iff A is positive definite
(X" AX>0VX € R"), and (ii) a(-,-) is weakly coercive iff A is invertible.

Exo. 1.11 Prove that, if a(-,-) is weakly coercive, then the solution u of depends continuously on
the forcing ((-). Specifically, prove that

1
Jullv < 3 1€y (1.24)
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Theorem 1.7 Assuming V to be a Hilbert space, problem is well posed for any € € V' if and only
if (1) a(-,-) is continuous, and (ii) a(-,-) is weakly coercive.

A simpler version of this result is known as Lax-Milgram lemma:

Theorem 1.8 Assuming V' to be a Hilbert space, if a(-,-) is continuous and strongly coercive then problem
11.16}) is well posed for any £ € V'.

Proof. This proof uses the so-called “Galerkin method”, which will be useful to introduce. .. the Galerkin
method!

Let {¢'} be a basis of V. Denoting Viy = span(¢', ..., ¢") we can define uy € Vy as the unique solution
of a(un,v) = £(v) for all v € Vy. This generates a sequence {uy}ny=12. . in V. Further, this sequence is
bounded, because

1 1 Ly 2|y
funliy < & afuyoun) = = fun) < B gy = uygy < 1y

a Q a Q
Recalling the weak compactness of bounded sets in Hilbert spaces, there exists v € V such that a sub-
sequence of {uy} (still denoted by {uy} for simplicity) converges to u weakly. It remains to prove that

a(u,v) = £(v) for all v € V. To see this, notice that

a(u7 ¢l) = a(hj{fn UN, (bz) = h},na(u]\ﬁ ¢Z) = E(QSZ)

where the last equality holds because a(uy, ¢') = £(¢') whenever N > i. Uniqueness is left as an exercise.

O

Exo. 1.12 Prove uniqueness in the previous theorem (bounded sequences may have several accumulation
points).
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Remark 1.9 The space L*(a,b) (also denoted by H°(a,b)) is the Hilbert space of functions f : (a,b) — R

such that f f?(x)dzx < +oo.
The scalar pmduct 18

b
(F9)n = [ F@lgla) da (1.25)
and accordingly
b

1120y = D)y = | [ £20) o (1.26)

Also of frequent use are the Hilbert spaces H'(a,b) and H?(a,b):
H'(a,b) = {f € Xa.b) | f € L2(ab)} (1.27)
ity = 12 (1.28)
[fllmr@y = 12 + [fla@p) (1.29)
Ha,b) = {f € Ha,b)| f" € [*(a,b)} (1.30)
[flrzay = 1"z (1.31)
Iz = If L@ + [ flr2@p (1.32)

Exo. 1.13 Other equivalent norms can be defined in H'(a,b), e.g.,

1/2

1My = (1 oy + 1 By

2. |1 11 i2 oy = max (|1 f || L2(ays |11 (o))

3. |||f|||H1 @p) = Iflle2@p) + 1€ f' | 22(ap), where £ (a,b) — R satisfies 0 < lyin < £(x) < lax for all
€ (a,b). Notice that if {(z) has dzmenszons of length then this norm is unit-consistent.
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Find the constants ¢ and C such that c||f|| < ||| f||| < C|f||-

Remark 1.10 For the spaces H'(a,b) and H*(a,b) to be complete, one needs a weaker definition of the
derivative. For this purpose, one first introduces the space

D(a,b) = C5(a,b) = {p € C*(a,b) | ¢ has compact support in (a,b)} . (1.33)
Given a function f : (a,b) — R, if there exists g : (a,b) — R such that

b b
[ s@ o) de== [ )¢ do. Ve D). (1.34)
then we say that f' exists in a weak sense, and that f' = g.

Exo. 1.14 Show that the function

) AN (1.35)

belongs to D(R). By suitably shifting and scaling the argument of ¢ show that D(a, b) has infinite dimension
for all a < b. (Hint: See Brenner-Scott, p. 27)

Exo. 1.15 Consider f(x) =1 — |z| in the domain (—1,1). Prove that its weak derivative is given by

oo 1 if x <0
f(x)—{_l o0 (1.36)

Prove also that " does not exist. (Hint: See Brenner-Scott, p. 28)

Exo. 1.16 Let f € L*(a,b), and let V = H'(a,b). Show that {(v) = fff(x)v(x) dx belongs to V' and
that ||[€]lv: < [| fll2(a)-
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