Introduction to the Finite Element method

Gustavo C. Buscaglia
ICMC-USP, São Carlos, Brasil
gustavo.buscaglia@gmail.com

Motivation

- For elliptic and parabolic problems, the most popular approximation method is the FEM.
- It is general, not restricted to linear problems, or to isotropic problems, or to any subclass of mathematical problems.
- It is geometrically flexible, complex domains are quite easily treated, not requiring adaptations of the method itself.
- It is easy to code, and the coding is quite problem-independent. Boundary conditions are much easier to deal with than in other methods.
- It is robust, because in most cases the mathematical problem has an underlying variational structure (energy minimization, for example).
- Galerkin approximations: Differential, variational and extremal formulations of a simple 1D boundary value problem. Well-posedness of variational formulations. Functional setting. Strong and weak coercivity. Lax-Milgram lemma. Banach's open mapping theorem. Céa's best-approximation property. Convergence under weak coercivity. (2 lectures)
- The spaces of FEM: (3 lectures)
- Interpolation error and convergence: (1 lecture)
- Application to convection-diffusion-reaction problems: (2 lectures)
- Application to linear elasticity: (1 lecture)
- Mixed problems: (2 lectures)
- FEM for parabolic problems: (2 lectures)

1 Galerkin approximations

1.1 Variational formulation of a simple 1D example

Let u be the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.1}\\
u(0)=u(1)=0
\end{array}\right.
$$

The differential formulation (DF) of the problem requires $-u^{\prime \prime}+u$ to be exactly equal to f in all points $x \in(0,1)$.
Multiplying the equation by any function v and integrating by parts (recall that

$$
\begin{equation*}
\int_{0}^{1} w^{\prime} z d x=w(1) z(1)-w(0) z(0)-\int_{0}^{1} w z^{\prime} d x \tag{1.2}
\end{equation*}
$$

holds for all w and z that are regular enough) one obtains that u satisfies

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x-u^{\prime}(1) v(1)+u^{\prime}(0) v(0)=\int_{0}^{1} f v d x \quad \forall v \tag{1.3}
\end{equation*}
$$

- The requirement "for all x " of the DF has become "for all functions v ".
- Does equation (1.3) fully determine u ?
- What happened with the boundary conditions?

Consider the following problem in variational formulation (VF): "Determine $u \in W$, such that $u(0)=$ $u(1)=0$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x \tag{1.4}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=v(1)=0$."
Prop. 1.1 The solution u of the DF (eq. 1.1) is also a solution of the VF if W consists of continuous functions of sufficient regularity. As a consequence, problem VF admits at least one solution whenever DF does.

Proof. Following the steps that lead to the VF, it becomes clear that the only requirement for u to satisfy (1.4) is that the integration by parts formula (1.2) be valid.

Exo. 1.1 Show that the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.5}\\
u(0)=0, \quad u^{\prime}(1)=g \in \mathbb{R}
\end{array}\right.
$$

is a solution to: "Find $u \in W$ such that $u(0)=0$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x+g v(1) \tag{1.6}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=0$."

Consider the following problem in extremal formulation (EF): "Determine $u \in W$ such that it minimizes the function

$$
\begin{equation*}
J(w)=\int_{0}^{1}\left(\frac{1}{2} w^{\prime}(x)^{2}+\frac{1}{2} w(x)^{2}-f w\right) d x \tag{1.7}
\end{equation*}
$$

over the functions $w \in W$ that satisfy $w(0)=w(1)=0$."
Prop. 1.2 The unique solution u of (1.1) is also a solution to EF. As a consequence, EF admits at least one solution.

Proof. We need to show that $J(w) \geq J(u)$ for all $w \in W_{0}$, where

$$
W_{0}=\{w \in W, w(0)=w(1)=0\}
$$

Writing $w=u+\alpha v$ and replacing in (1.7) one obtains

$$
J(u+\alpha v)=J(u)+\alpha\left[\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v-f v\right) d x\right]+\alpha^{2} \int_{0}^{1}\left(\frac{1}{2} v^{\prime}(x)^{2}+\frac{1}{2} v(x)^{2}\right) d x
$$

The last term is not negative and the second one is zero.
Exo. 1.2 Identify the EF of the previous exercise.

Prop. 1.3 Let u be the solution of

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \quad \text { in }(0,1) \tag{1.8}\\
u(0)=1, \quad u^{\prime}(1)=g \in \mathbb{R}
\end{array}\right.
$$

then u is also a solution of "Determine $u \in W$ such that $u(0)=1$ and that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} v^{\prime}+u v\right) d x=\int_{0}^{1} f v d x+g v(1) \tag{1.9}
\end{equation*}
$$

holds for all $v \in W$ satisfying $v(0)=0$."
Further, defining for any $a \in \mathbb{R}$

$$
W_{a}=\{w \in W, w(0)=a\}
$$

u minimizes over W_{1} the function

$$
\begin{equation*}
J(w)=\int_{0}^{1}\left(\frac{1}{2} w^{\prime}(x)^{2}+\frac{1}{2} w(x)^{2}-f w\right) d x-g w(1) \tag{1.10}
\end{equation*}
$$

Exo. 1.3 Prove the last proposition.

Let us define the bilinear and linear forms corresponding to problem (1.1):

$$
\begin{equation*}
a(v, w)=\int_{0}^{1}\left(v^{\prime} w^{\prime}+v w\right) d x \quad \ell(v)=\int_{0}^{1} f v d x \tag{1.11}
\end{equation*}
$$

and the function $J(v)=\frac{1}{2} a(v, v)-\ell(v)$. Remember that W is a space of functions with some (yet unspecified) regularity and let $W_{0}=\{w \in W, w(0)=w(1)=0\}$.

The three formulations that we have presented up to now are, thus:
DF: Find a function u such that

$$
-u^{\prime \prime}(x)+u(x)=f(x) \quad \forall x \in(0,1), \quad u(0)=u(1)=0
$$

VF: Find a function $u \in W_{0}$ such that

$$
a(u, v)=\ell(v) \quad \forall v \in W_{0}
$$

EF: Find a function $u \in W_{0}$ such that

$$
J(u) \leq J(w) \quad \forall w \in W_{0}
$$

and we know that the exact solution of DF is also a solution of VF and of EF.

The logic of the construction is justified by the following
Theorem 1.4 If W is taken as

$$
W=\left\{w:(0,1) \rightarrow \mathbb{R}, \int_{0}^{1} w(x)^{2} d x<+\infty, \int_{0}^{1} w^{\prime}(x)^{2} d x<+\infty\right\} \stackrel{\text { def }}{=} H^{1}(0,1)
$$

and if f is such that there exists $C \in \mathbb{R}$ for which

$$
\begin{equation*}
\int_{0}^{1} f(x) w(x) d x \leq C \sqrt{\int_{0}^{1} w^{\prime}(x)^{2} d x} \quad \forall w \in W_{0} \tag{1.12}
\end{equation*}
$$

then problems (VF) and (EF) have one and only one solution, and their solutions coincide.
The proof will be given later, now let us consider its consequences:

- The differential equation has at most one solution in W.
- If the solution u to (VF)-(EF) is regular enough to be considered a solution to (DF), then u is the solution to (DF).
- If the solution u to (VF)-(EF) is not regular enough to be considered a solution to (DF), then (DF) has no solution.
$\Rightarrow \quad(\mathrm{VF})$ is a generalization of (DF).

Exo. 1.4 Show that $W_{0} \subset C^{0}(0,1)$. Further, compute $C \in \mathbb{R}$ such that

$$
\max _{x \in[0,1]}|w(x)| \leq C \sqrt{\int_{0}^{1} w^{\prime}(x)^{2} d x} \quad \forall w \in W_{0}
$$

Hint: You may assume that $\int_{0}^{1} f(x) g(x) d x \leq \sqrt{\int_{0}^{1} f(x)^{2} d x} \sqrt{\int_{0}^{1} g(x)^{2} d x}$ for any f and g (CauchySchwarz).

Exo. 1.5 Consider $f(x)=|x-1 / 2|^{\gamma}$. For which exponents γ is $\int_{0}^{1} f(x) w(x) d x<+\infty$ for all $w \in W_{0}$?
Exo. 1.6 Consider as f the "Dirac delta function" at $x=1 / 2$, that we will denote by $\delta_{1 / 2}$. It can be considered as a "generalized" function defined by

$$
\int_{0}^{1} \delta_{1 / 2}(x) w(x) d x=w(1 / 2) \quad \forall w \in C^{0}(0,1)
$$

Prove that $\delta_{1 / 2}$ satisfies (1.12) and determine the analytical solution to (VF).
Exo. 1.7 Determine the DF and the EF corresponding to the following VF: "Find $u \in W=H^{1}(0,1)$, $u(0)=1$, such that

$$
\begin{equation*}
\int_{0}^{1}\left(u^{\prime} w^{\prime}+u w\right) d x=w(1 / 2) \quad \forall w \in W_{0} \tag{1.13}
\end{equation*}
$$

where $W_{0}=\{w \in W, w(0)=0\} . "$

