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Motivation

• For elliptic and parabolic problems, the most popular approximation method is the FEM.

• It is general, not restricted to linear problems, or to isotropic problems, or to any subclass of
mathematical problems.

• It is geometrically flexible, complex domains are quite easily treated, not requiring adaptations
of the method itself.

• It is easy to code, and the coding is quite problem-independent. Boundary conditions are much
easier to deal with than in other methods.

• It is robust, because in most cases the mathematical problem has an underlying variational structure
(energy minimization, for example).
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Overview

• Galerkin approximations: Differential, variational and extremal formulations of a simple 1D
boundary value problem. Well-posedness of variational formulations. Functional setting. Strong and
weak coercivity. Lax-Milgram lemma. Banach’s open mapping theorem. Céa’s best-approximation
property. Convergence under weak coercivity. (2 lectures)

• The spaces of FEM and their implementation: (3 lectures)

• Interpolation error and convergence: (2 lectures)

• Application to convection-diffusion-reaction problems: (2 lectures)

• Application to linear elasticity: (2 lectures)

• Mixed problems: (2 lectures)

• FEM for parabolic problems: (2 lectures)
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1 Galerkin approximations

1.1 Variational formulation of a simple 1D example

Let u be the solution of {
−u′′ + u = f in (0, 1)

u(0) = u(1) = 0
(1.1)

The differential formulation (DF) of the problem requires −u′′+u to be exactly equal to f in all points
x ∈ (0, 1).
Multiplying the equation by any function v and integrating by parts (recall that∫ 1

0

w′ z dx = w(1)z(1)− w(0)z(0)−
∫ 1

0

w z′ dx (1.2)

holds for all w and z that are regular enough) one obtains that u satisfies∫ 1

0

(u′ v′ + u v) dx− u′(1)v(1) + u′(0)v(0) =

∫ 1

0

f v dx ∀ v. (1.3)

• The requirement “for all x” of the DF has become “for all functions v”.

• Does equation (1.3) fully determine u?

• What happened with the boundary conditions?
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Consider the following problem in variational formulation (VF): “Determine u ∈ W , such that u(0) =
u(1) = 0 and that ∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx (1.4)

holds for all v ∈ W satisfying v(0) = v(1) = 0.”

Prop. 1.1 The solution u of the DF (eq. 1.1) is also a solution of the VF if W consists of continuous
functions of sufficient regularity. As a consequence, problem VF admits at least one solution whenever DF
does.

Proof. Following the steps that lead to the VF, it becomes clear that the only requirement for u to satisfy
(1.4) is that the integration by parts formula (1.2) be valid. �

Exo. 1.1 Show that the solution of {
−u′′ + u = f in (0, 1)

u(0) = 0, u′(1) = g ∈ R
(1.5)

is a solution to: “Find u ∈ W such that u(0) = 0 and that∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx + g v(1) (1.6)

holds for all v ∈ W satisfying v(0) = 0.”
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Consider the following problem in extremal formulation (EF): “Determine u ∈ W such that it minimizes
the function

J(w) =

∫ 1

0

(
1

2
w′(x)2 +

1

2
w(x)2 − f w

)
dx (1.7)

over the functions w ∈ W that satisfy w(0) = w(1) = 0.”

Prop. 1.2 The unique solution u of (1.1) is also a solution to EF. As a consequence, EF admits at least
one solution.

Proof. We need to show that J(w) ≥ J(u) for all w ∈ W0, where

W0 = {w ∈ W , w(0) = w(1) = 0}

Writing w = u+ αv and replacing in (1.7) one obtains

J(u+ α v) = J(u) + α

[∫ 1

0

(u′ v′ + u v − f v) dx

]
+ α2

∫ 1

0

(
1

2
v′(x)2 +

1

2
v(x)2

)
dx

The last term is not negative and the second one is zero. �

Exo. 1.2 Identify the EF of the previous exercise.
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Prop. 1.3 Let u be the solution of {
−u′′ + u = f in (0, 1)

u(0) = 1, u′(1) = g ∈ R
(1.8)

then u is also a solution of “Determine u ∈ W such that u(0) = 1 and that∫ 1

0

(u′ v′ + u v) dx =

∫ 1

0

f v dx + g v(1) (1.9)

holds for all v ∈ W satisfying v(0) = 0.”
Further, defining for any a ∈ R

Wa = {w ∈ W,w(0) = a},

u minimizes over W1 the function

J(w) =

∫ 1

0

(
1

2
w′(x)2 +

1

2
w(x)2 − f w

)
dx − g w(1). (1.10)

Exo. 1.3 Prove the last proposition.
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Let us define the bilinear and linear forms corresponding to problem (1.1):

a(v, w) =

∫ 1

0

(v′w′ + vw) dx `(v) =

∫ 1

0

f v dx (1.11)

and the function J(v) = 1
2
a(v, v) − `(v). Remember that W is a space of functions with some (yet

unspecified) regularity and let W0 = {w ∈ W, w(0) = w(1) = 0}.

The three formulations that we have presented up to now are, thus:

DF: Find a function u such that

−u′′(x) + u(x) = f(x) ∀x ∈ (0, 1), u(0) = u(1) = 0

VF: Find a function u ∈ W0 such that

a(u, v) = `(v) ∀ v ∈ W0

EF: Find a function u ∈ W0 such that

J(u) ≤ J(w) ∀w ∈ W0

and we know that the exact solution of DF is also a solution of VF and of EF.
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The logic of the construction is justified by the following

Theorem 1.4 If W is taken as

W = {w : (0, 1)→ R,
∫ 1

0

w(x)2 dx < +∞,
∫ 1

0

w′(x)2 dx < +∞} def
= H1(0, 1)

and if f is such that there exists C ∈ R for which∫ 1

0

f(x)w(x) dx ≤ C

√∫ 1

0

w′(x)2 dx ∀w ∈ W0 (1.12)

then problems (VF) and (EF) have one and only one solution, and their solutions coincide.

The proof will be given later, now let us consider its consequences:

• The differential equation has at most one solution in W .

• If the solution u to (VF)-(EF) is regular enough to be considered a solution to (DF), then u is
the solution to (DF).

• If the solution u to (VF)-(EF) is not regular enough to be considered a solution to (DF), then (DF)
has no solution.

⇒ (VF) is a generalization of (DF).
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Exo. 1.4 Show that W0 ⊂ C0(0, 1). Further, compute C ∈ R such that

max
x∈[0,1]

|w(x)| ≤ C

√∫ 1

0

w′(x)2 dx ∀w ∈ W0

Hint: You may assume that
∫ 1

0
f(x) g(x) dx ≤

√∫ 1

0
f(x)2 dx

√∫ 1

0
g(x)2 dx for any f and g (Cauchy-

Schwarz).

Exo. 1.5 Consider f(x) = |x− 1/2|γ. For which exponents γ is
∫ 1

0
f(x)w(x) dx < +∞ for all w ∈ W0?

Exo. 1.6 Consider as f the “Dirac delta function” at x = 1/2, that we will denote by δ1/2. It can be
considered as a “generalized” function defined by∫ 1

0

δ1/2(x)w(x) dx = w(1/2) ∀w ∈ C0(0, 1)

Prove that δ1/2 satisfies (1.12) and determine the analytical solution to (VF).

Exo. 1.7 Determine the DF and the EF corresponding to the following VF: “Find u ∈ W = H1(0, 1),
u(0) = 1, such that ∫ 1

0

(u′w′ + uw) dx = w(1/2) ∀w ∈ W0 (1.13)

where W0 = {w ∈ W,w(0) = 0}.”
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1.2 Variational formulations in general

Let V be a Hilbert space with norm ‖ · ‖V . Let a(·, ·) and `(·) be bilinear and linear forms on V satisfying
(continuity), for all v, w ∈ V ,

a(v, w) ≤ Na ‖v‖V ‖w‖V , `(v) ≤ N` ‖v‖V (1.14)

This last inequality means that ` ∈ V ′, the (topological) dual of V . The minimum N` that satisfies this
inequality is called the norm of ` in V ′, i.e.

‖`‖V ′
def
= sup

06=v∈V

`(v)

‖v‖V
(1.15)

The abstract VF we consider here is:

“Find u ∈ V such that a(u, v) = `(v) ∀ v ∈ V ” (1.16)

Exo. 1.8 Assume that V is finite dimensional, of dimension n, and let {φ1, φ2, . . . , φn} be a basis. Show
that (1.16) is then equivalent to

V T AU = V T L ∀V ∈ Rn , (1.17)

which in turn is equivalent to the linear system

A U = L ; (1.18)

where
Aij

def
= a(φj, φi), Li

def
= `(φi) (1.19)

and U is the coefficient column vector of the expansion of u, i.e.,

u =
n∑
i=1

Ui φ
i (1.20)
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Def. 1.5 The bilinear form a(·, ·) is said to be strongly coercive if there exists α > 0 such that

a(v, v) ≥ α‖v‖2
V ∀ v ∈ V (1.21)

Def. 1.6 The bilinear form a(·, ·) is said to be weakly coercive (or to satisfy an inf-sup condition) if
there exists β > 0 such that

sup
06=w∈V

a(v, w)

‖w‖V
≥ β‖v‖V ∀ v ∈ V (1.22)

and

sup
0 6=v∈V

a(v, w)

‖v‖V
≥ β‖w‖V ∀w ∈ V (1.23)

Exo. 1.9 Prove that strong coercivity implies weak coercivity.

Exo. 1.10 Prove that, if V is finite dimensional, then (i) a(·, ·) is strongly coercive iff A is positive definite

(XT A X > 0 ∀X ∈ Rn), and (ii) a(·, ·) is weakly coercive iff A is invertible.

Exo. 1.11 Prove that, if a(·, ·) is weakly coercive, then the solution u of (1.16) depends continuously on
the forcing `(·). Specifically, prove that

‖u‖V ≤
1

β
‖`‖V ′ (1.24)
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Theorem 1.7 Assuming V to be a Hilbert space, problem (1.16) is well posed for any ` ∈ V ′ if and only
if (i) a(·, ·) is continuous, and (ii) a(·, ·) is weakly coercive.

A simpler version of this result is known as Lax-Milgram lemma:

Theorem 1.8 Assuming V to be a Hilbert space, if a(·, ·) is continuous and strongly coercive then problem
(1.16) is well posed for any ` ∈ V ′.

Proof. This proof uses the so-called “Galerkin method”, which will be useful to introduce. . . the Galerkin
method!
Let {φi} be a basis of V . Denoting VN = span(φ1, . . . , φN) we can define uN ∈ VN as the unique solution
of a(uN , v) = `(v) for all v ∈ VN . This generates a sequence {uN}N=1,2,... in V . Further, this sequence is
bounded, because

‖uN‖2
V ≤

1

α
a(uN , uN) =

1

α
`(uN) ≤ ‖`‖V

′

α
‖uN‖V ⇒ ‖uN‖V ≤

‖`‖V ′

α
, ∀N

Recalling the weak compactness of bounded sets in Hilbert spaces, there exists u ∈ V such that a sub-
sequence of {uN} (still denoted by {uN} for simplicity) converges to u weakly. It remains to prove that
a(u, v) = `(v) for all v ∈ V . To see this, notice that

a(u, φi) = a(lim
N
uN , φ

i) = lim
N
a(uN , φ

i) = `(φi)

where the last equality holds because a(uN , φ
i) = `(φi) whenever N ≥ i. Uniqueness is left as an exercise.

�

Exo. 1.12 Prove uniqueness in the previous theorem (bounded sequences may have several accumulation
points).
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Remark 1.9 The space L2(a, b) (also denoted by H0(a, b)) is the Hilbert space of functions f : (a, b)→ R
such that

∫ b
a
f 2(x) dx < +∞.

The scalar product is

(f, g)L2(a,b) =

∫ b

a

f(x)g(x) dx (1.25)

and accordingly

‖f‖L2(a,b) = (f, f)
1/2

L2(a,b) =

√∫ b

a

f 2(x) dx . (1.26)

Also of frequent use are the Hilbert spaces H1(a, b) and H2(a, b):

H1(a, b) = {f ∈ L2(a, b) | f ′ ∈ L2(a, b)} (1.27)

|f |H1(a,b) = ‖f ′‖L2(a,b) (1.28)

‖f‖H1(a,b) = ‖f‖L2(a,b) + |f |H1(a,b) (1.29)

H2(a, b) = {f ∈ H1(a, b) | f ′′ ∈ L2(a, b)} (1.30)

|f |H2(a,b) = ‖f ′′‖L2(a,b) (1.31)

‖f‖H2(a,b) = ‖f‖H1(a,b) + |f |H2(a,b) (1.32)

Exo. 1.13 Other equivalent norms can be defined in H1(a, b), e.g.,

1. |||f |||H1(a,b) =
(
‖f‖2

L2(a,b) + |f |2H1(a,b)

)1/2

2. |||f |||H1(a,b) = max
(
‖f‖L2(a,b), |f |H1(a,b)

)
3. |||f |||H1(a,b) = ‖f‖L2(a,b) + ‖` f ′‖L2(a,b), where ` : (a, b) → R satisfies 0 < `min ≤ `(x) ≤ `max for all

x ∈ (a, b). Notice that if `(x) has dimensions of length then this norm is unit-consistent.
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Find the constants c and C such that c‖f‖ ≤ |||f ||| ≤ C‖f‖.

Remark 1.10 For the spaces H1(a, b) and H2(a, b) to be complete, one needs a weaker definition of the
derivative. For this purpose, one first introduces the space

D(a, b) = C∞0 (a, b) = {ϕ ∈ C∞(a, b) | ϕ has compact support in (a, b)} . (1.33)

Given a function f : (a, b)→ R, if there exists g : (a, b)→ R such that∫ b

a

g(x)ϕ(x) dx = −
∫ b

a

f(x)ϕ′(x) dx , ∀ϕ ∈ D(a, b) , (1.34)

then we say that f ′ exists in a weak sense, and that f ′ = g.

Exo. 1.14 Show that the function

φ(x) =

{
exp (1/(|x|2 − 1)) if |x| < 1

0 if |x| ≥ 1
(1.35)

belongs to D(R). By suitably shifting and scaling the argument of φ show that D(a, b) has infinite dimension
for all a < b. (Hint: See Brenner-Scott, p. 27)

Exo. 1.15 Consider f(x) = 1− |x| in the domain (−1, 1). Prove that its weak derivative is given by

f ′(x) =

{
1 if x < 0

−1 if x > 0
. (1.36)

Prove also that f ′′ does not exist. (Hint: See Brenner-Scott, p. 28)

Exo. 1.16 Let f ∈ L2(a, b), and let V = H1(a, b). Show that `(v) =
∫ b
a
f(x) v(x) dx belongs to V ′ and

that ‖`‖V ′ ≤ ‖f‖L2(a,b).
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1.3 Galerkin approximations

The previous proof suggests a numerical method, the Galerkin method, to approximate the solution of a
variational problem and thus of an elliptic PDE. The idea is simply to restrict the variational problem to
a subspace of V that we will denote by Vh.

Discrete variational problem (Galerkin): Find uh ∈ Vh such that

a(uh, vh) = `(vh) ∀ vh ∈ Vh (1.37)

When the bilinear form a(·, ·) is symmetric and strongly coercive, this discrete probleme is equivalent to

Discrete extremal problem (Galerkin): Find uh ∈ Vh which minimizes over Vh the function

J(w) =
1

2
a(w,w) − `(w) (1.38)

Exo. 1.17 Prove this last assertion.

The natural questions that arise are:

• Does uh exist? Is it unique?

• Does uh approximate u (the exact solution)?

• How difficult is it to compute uh?
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Does uh exist? Is it unique?

Case 1) Strong coercivity of the form a(·, ·) over V

If a(·, ·) is strongly coercive over V , then

inf
06=w∈V

a(w,w)

‖w‖2
V

= α > 0.

If Vh ⊂ V , then a(·, ·) is strongly coercive over Vh (because the infimum is taken over a smaller set). Then
uh exists and is unique as a consequence of Exo. 1.10.

Case 2) Weak coercivity of the form a(·, ·) over V

If a(·, ·) is just weakly coercive over V , then it may or may not be weakly coercive over Vh. Compare the
two following conditions

(A) inf
w∈V

sup
v∈V

a(w, v)

‖w‖V ‖v‖V
= β > 0, (B) inf

w∈Vh
sup
v∈Vh

a(w, v)

‖w‖V ‖v‖V
= βh > 0.

It is not true that (A)⇒(B) because the sup in (B) is taken over a smaller set. In this case the weak coercivity
of the discrete problem must be proven independently, it is not inherited from the weak coercivity over the
whole space V .
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Does uh approximate u?

Case 1) Strong coercivity of the form a(·, ·) over V

Lemma 1.11 (J. Céa) If a(·, ·) and `(·) are continuous in V and a(·, ·) is strongly coercive, then

‖u− uh‖V ≤
Na

α
‖u− vh‖V ∀ vh ∈ Vh (1.39)

Proof. Notice the so-called Galerkin orthogonality:

a(u− uh, vh) = 0 ∀ vh ∈ Vh (1.40)

which implies that a(u− uh, u− uh) = a(u− uh, u− vh) for all vh ∈ Vh. Using this,

‖u− uh‖2
V ≤

1

α
a(u− uh, u− uh) =

1

α
a(u− uh, u− vh) ≤

Na

α
‖u− uh‖V ‖u− vh‖V ∀vh ∈ Vh

In other words, ‖u− uh‖V ≤ C infvh∈Vh ‖u− vh‖V . �

Let h be a real parameter, typically a “mesh size”. We say that a family {Vh}h>0 ⊂ V satisfies the
approximability property if:

lim
h→0

dist(u, Vh) = lim
h→0

inf
v ∈Vh

‖u− v‖V = 0 (1.41)

Corollary 1.12 If a(·, ·) and `(·) are continuous in V , a(·, ·) is strongly coercive, and the family {Vh}h>0 ⊂
V satisfies (1.41), then

lim
h→0

uh = u

in the sense of the norm ‖ · ‖V .
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If the strongly coercive bilinear form is symmetric, then a(·, ·) is a scalar product over V . In this case,
Galerkin orthogonality corresponds to: The Galerkin solution uh is the orthogonal projection of u
onto Vh.
Further, the energy norm can be defined

‖v‖a =
√
a(v, v) , (1.42)

which satisfies the equivalence

α
1
2 ‖v‖V ≤ ‖v‖a ≤ N

1
2
a ‖v‖V . (1.43)

Exo. 1.18 Show that the Galerkin approximation is optimal in the energy norm,

‖u− uh‖a ≤ ‖u− vh‖a , ∀ vh ∈ Vh , (1.44)

without the constants that appear in Céa’s lemma. Further show that the following sharper estimate holds:

‖u− uh‖V ≤
(
Na

α

) 1
2

‖u− vh‖V , ∀ vh ∈ Vh . (1.45)
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Case 2) Weak coercivity of the form a(·, ·) over Vh
Assume now that the weak coercivity constant βh is positive for all h > 0, so that uh exists and is unique.
Notice that Galerkin orthogonality still holds.

Lemma 1.13 If a(·, ·) and `(·) are continuous in V , and a(·, ·) is weakly coercive in Vh with constant
βh > 0, then

‖u− uh‖V ≤
(

1 +
Na

βh

)
‖u− vh‖V ∀ vh ∈ Vh (1.46)

Proof. One begins by decomposing the error as follows (we omit the subindex V in the norm)

‖u− uh‖ ≤ ‖u− vh‖+ ‖uh − vh‖ ∀ vh ∈ Vh (1.47)

and then using the weak coercivity

‖uh − vh‖ ≤
1

βh
sup
wh∈Vh

a(uh − vh, wh)
‖wh‖

=
1

βh
sup
wh∈Vh

a(u− vh, wh)
‖wh‖

≤ Na

βh
‖u− vh‖

Substituting this into (1.47) one proves the claim. �

Corollary 1.14 Under the hypotheses of Lemma 1.13, if there exists β0 > 0 such that βh > β0 for all h
and the family {Vh}h>0 ⊂ V satisfies (1.41), then

lim
h→0

uh = u

in the sense of the norm ‖ · ‖V .
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How difficult is it to compute uh?

Let us go back to our problem −u′′+u = f in (0, 1) with u(0) = u(1) = 0, which in VF requires to compute
u ∈ H1(0, 1) satisfying the boundary conditions and such that∫ 1

0

[u′(x) v′(x) + u(x) v(x)] dx =

∫ 1

0

f(x) v(x) dx (1.48)

Suitable spaces for the Galerkin approximation are, for example,

• Pk: The polynomials of degree up to k.

• Fk: The space generated by the functions φm(x) = sin(mπ x), m = 1, 2, . . . , k.

Exo. 1.19 Show that a(·, ·) is continuous and strongly coercive over V = H1(0, 1) with the norm

‖w‖V
def
=

[∫ 1

0

[
w′(x)2 + w(x)2

]
dx

] 1
2

Exo. 1.20 Build a small program in Matlab or Octave (or something else) that solves the Galerkin ap-
proximation of problem (1.48) considering f = δ1/4 and the spaces Pk and/or Fk, for some values of k.
Compare the results to the analytical solution building plots of u and uh. Also, build graphs of ‖u− uh‖ vs
k.

In general, however, the construction of spaces of global basis functions, as the ones above, is not practical
because it leads to dense matrices. In the next chapter we will introduce the spaces of the FEM, which
are characterized by having bases with small support and thus lead to sparse matrices.
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Exercises

Reading assignment: Read Chapter 1 of Duran’s notes (all of it).

Exo. 1.21 Carry out the “easy computation” that shows that A is the tridiagonal matrix such that the diagonal
elements are 2/h+ 2h/3 and the extra-diagonal elements are −1/h+ h/6 (Durán, page 3).

Exo. 1.22 Can a symmetric bilinear form be weakly coercive but not strongly coercive?

Exo. 1.23 To what variational formulation and what differential formulation corresponds the following extremal
formulation?
Find u ∈ V , V consisting of functions that are smooth in (0, 1/2) and (1/2, 1) but can exhibit a (bounded)
discontinuity at x = 1/2, that minimizes the function

J(w) =

∫ 1

0
[w′(x)2 + 2w(x)2] dx+ 4 [w(1/2+)− w(1/2−)]2 −

∫ 1/2

0
7 w(x) dx− 9w(0) (1.49)

where w(1/2±) represent the values on each side of the discontinuity. Notice that the space V (is it a vector space
really?) has no boundary condition imposed. What are the boundary conditions of the DF at x = 0 and x = 1?

Exo. 1.24 Consider the bilinear form

a(u, v) =

∫ 1

0
u′(x) v′(x) dx.

Prove that this form is not strongly coercive in H1(0, 1) considering the norm

‖w‖H1
def
=

{∫ 1

0

[
u′(x)2 + u(x)2

]
dx

} 1
2

and that it is, with the same norm, in

H1
0 (0, 1)

def
= {w ∈ H1(0, 1) , w(0) = w(1) = 0}.
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1.4 Variational formulations in 2D and 3D

The ideas are similar, but we need another integration by parts formula:

Lemma 1.15 Let f : Ω → R be an integrable function, with Ω a Lipschitz bounded open set in Rd and
∂if integrable over Ω, then ∫

Ω

∂if dΩ =

∫
∂Ω

f ni dΓ (1.50)

Notice that this implies that ∫
Ω

∇ · v dΩ =

∫
∂Ω

v · ň dΓ (1.51)

and that ∫
Ω

v∇2u dΩ =

∫
∂Ω

v∇u · ň dΓ−
∫

Ω

∇v · ∇u dΩ (1.52)

We will also introduce the notation

Def. 1.16 The Lebesgue space Lp(Ω), where p ≥ 1, is the set of all functions such that their Lp(Ω)-norm
is finite,

‖w‖Lp(Ω)
def
=

[∫
Ω

|w(x)|p dx
] 1

p

(1.53)
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Exa. 1.17 (Poisson equation) Consider the DF

−∇2u = f in Ω, u = 0 on ∂Ω (1.54)

where ∇ is the gradient operator and ∇2u =
∑d

i=1 ∂
2
iiu.

A suitable variational formulation is: Find u ∈ V such that

a(u, v) = `(v) ∀ v ∈ V

where

a(u, v) =

∫
Ω

∇u · ∇v dΩ, `(v) =

∫
Ω

f v dΩ and (1.55)

V = H1
0 (Ω) = {w ∈ L2(Ω), ∂iw ∈ L2(Ω)∀i = 1, . . . , d , w = 0 on ∂Ω}

which is a Hilbert space with the norm

‖w‖H1 =
(
‖w‖2

L2 + ‖∇w‖2
L2

) 1
2 (1.56)
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Exo. 1.25 Prove that if u is a solution of the DF, then it solves the VF.

Exo. 1.26 Prove that a(·, ·) is continuous in V . Prove that `(·) is continuous in V if f ∈ L2(Ω). Is this
last condition necessary?

Exo. 1.27 Determine the EF of the Poisson problem.

Exo. 1.28 Is a(·, ·) strongly coercive?

Exo. 1.29 Let Ω be the unit circle. Determine for which exponents γ is the function rγ in H1(Ω).

Exo. 1.30 Assume that the domain Ω is divided into subdomains Ω1 and Ω2 by a smooth internal boundary
Γ. Let V consist of functions such that their restrictions to Ωi belong to H1(Ωi) and that are continuous
across Γ. Determine the VF corresponding to the following EF:Find u ∈ V that minimizes

J(w) =

∫
Ω1

w2 + ‖∇w‖2

2
dΩ +

∫
Ω2

3‖∇w‖2

2
dΩ +

∫
Γ

(5w2 − w) dΓ

over V .

Exo. 1.31 Determine the DF that corresponds to the previous exercise.
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2 Finite element spaces and interpolation

The basic reference for what follows is Ciarlet [5]. Basically, the idea is to define finite element spaces that
are locally polynomial and that contain complete polynomials of degree k in the space variables. With
a judicious choice of the nodes (degrees of freedom), these piecewise polynomial functions can be made
continuous by construction (if needed).
In the previous chapter it was shown that if there exists β > 0 such that, for all wh ∈ Vh and all h > 0,

sup
vh ∈Vh

a(wh, vh)

‖vh‖V
≥ β ‖wh‖V (2.1)

then there exists C > 0 such that

‖u− uh‖V ≤ C inf
vh ∈Vh

‖u− vh‖V (2.2)

Notice that (2.1) is automatically satisfied if the bilinear form a(·, ·) is strongly coercive.
Denoting by Ihu the element-wise Lagrange interpolant of u ∈ V ∩ C0(Ω), it is obvious from (2.2) that

‖u− uh‖V ≤ C ‖u− Ihu‖V (2.3)

The goal of this section is to introduce estimates of the interpolation error ‖u− Ihu‖V for some spaces V
that appear in the applications.

2.1 Basic definitions

Def. 2.1 A finite element in Rn is a triplet (K,PK ,ΣK) where

(i) K is a closed (bounded) subset of Rn with a nonempty interior and Lipschitz boundary;

(ii) PK is a finite-dimensional space of functions defined in K, of dimension m;

26



(iii) ΣK is a set of m linear forms {σi}i=1,...,m which is PK-unisolvent; i.e., if p ∈ PK then

σ(p) = 0 ∀σ ∈ ΣK ⇒ p = 0

It is implicitly assumed that the finite element is viewed with a larger function space V (K) associated to
it, in general a Sobolev space. Each σi ∈ ΣK is then assumed to be extended as an element of V (K)′.

Prop. 2.2 There exists a basis {Ni} such that σi(Nj) = δij.

Whenever needed, we will write σK,i instead of σi and NK,i instead of Ni to make explicit the element K
being considered.

Def. 2.3 If the degrees of freedom correspond to nodal values of the functions in V (K) the element is
called a Lagrange finite element. In this case, there exist X1, . . ., Xm in K such that σi(v) = v(X i) for
all i = 1, . . ., m.

Exa. 2.4 Pk elements.

Finite elements are usually built by mapping a unique master element (K̂, P̂ , Σ̂) onto (K,PK ,ΣK) in a

clever way. We denote by {σ̂i} the degrees of freedom of the master, and {N̂i} the corresponding basis
functions.
One begins by defining a linear bijective transformation

TK : V (K)→ V (K̂) , (2.4)

mapping functions defined on K onto functions defined on K̂. Its inverse, T−1
K allows one to build PK , i.e.,

PK = {T−1
K p̂, p̂ ∈ P̂} . (2.5)
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Exo. 2.1 Two elements K̂, K, are said to be affine equivalent if there exists a bijective mapping FK :
K̂ → K of the form

FK(x̂) = AK x̂ + b . (2.6)

Show that if P̂ = Pk and TK is defined by

(TKv)(x̂) = v(FK(x̂)) (2.7)

then PK = Pk.

This preservation of polynomial spaces makes the analysis of affine-equivalent elements much easier, but if
FK is not affine one still uses (2.7) for the definition of PK in Lagrange finite elements (PK will not consist
of polynomials).

Prop. 2.5 If (K̂, P̂ , Σ̂) is a master finite element and TK : V (K) → V (K̂) is linear and bijective, then
the triplet (K,PK ,ΣK) given by

K = FK(K̂) (2.8)

PK = T−1
K P̂ (2.9)

ΣK = {σi | σi(p) = αi σ̂i(TKp), ∀ p ∈ PK } (2.10)

(where all αi are non-zero) is a finite element. Further, the basis functions on K are given by

Ni =
1

αi
T−1
K N̂i . (2.11)

In the case of Lagrange finite elements one takes αi = 1 and obtains

X i = FK(X̂ i) , σi(p) = p(X i) = p(FK(X̂ i)) , Ni(FK(x̂)) = N̂i(x̂) . (2.12)
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Exo. 2.2 Prove the previous proposition.
Hint: One has to assume that K̂ has Lipschitz boundary and that FK is regular enough for FK(K̂) to have
Lipschitz boundary too. Because TK is linear bijective, PK will be a vector space of the same dimension
as P̂ . It remains to show that ΣK is unisolvent. Let p ∈ PK such that σi(p) = 0 for all i = 1, . . . ,m.

Then σ̂i(TKp) = 0 for all i and thus TKp = 0 because Σ̂ is unisolvent. The last assertion follows from
σi(Nj) = δij and the case of Lagrange finite elements is a particular case of the former.
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A case in which the scaling factors αi in the previous proposition are needed is that of Hermite finite
elements.

Exo. 2.3 Build a basis for a cubic 1D Hermite finite element. For this, let K be an interval [a, b], let
V (K) = H2(K), PK = P3 (cubic polynomials), and

ΣK = {θa, θb, ηa, ηb} , (2.13)

where θa(v) = v(a), θb(v) = v(b), ηa(v) = v′(a) and ηb(v) = v′(b). Write down the basis functions.

Now consider the master element K̂ = [−1, 1] and the affine mapping

FK(x̂) = a+
b− a

2
(x+ 1) . (2.14)

Defining TK as in (2.7), find the factors {αi} so that σi relates σ̂i according to (2.10). Write down the

basis functions N̂i and verify (2.11).
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Raviart-Thomas finite element: The interpolation of vector fields in K with Lagrange finite elements
is usually done one component at a time with the tools developed for scalar functions. A notable exception
is the Raviart-Thomas element, very popular to approximate velocity fields in porous media. In this case
V (K) and PK consist of vector fields and cannot be interpolated one component at a time.

Exo. 2.4 Let K be a simplex (triangle in 2D, tetrahedron in 3D), and let the space PK be defined as

PK = RT0 = (P0)d ⊕ xP0 , (2.15)

which is of dimension d+ 1. Defining as degrees of freedom the fluxes across each face (edge in 2D),

σi(p) =

∫
Fi

p · ň , (2.16)

prove that (K,PK ,ΣK = {σi}) is a finite element and that

Ni(x) =
1

dmeas(K)
(x− ai) , (2.17)

where ai is the vertex opposite to Fi.

The space VK is in this case H(div, K) of vector fields in L2(K)d with divergence in L2(K).

Exo. 2.5 To obtain the RT0 element from a master element one needs the mapping TK to transform vectors
normal to ∂K into vectors normal to ∂K̂. Prove that this is accomplished by the Piola transformation:

TKv(x̂) = det(AK)A−1
K v(FK(x̂)) . (2.18)
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Def. 2.6 The local interpolation operator IK : V (K)→ PK is defined as

IKv =
m∑
i=1

σi(v)Ni ∀ v ∈ V (K)

Exo. 2.6 This interpolation is indeed a projection:

IKp = p for all p ∈ PK . (2.19)

Exo. 2.7 It is also preserved by composition with the TK mapping:

ÎKv = TKIKv = IK̂TKv = IK̂ v̂, for all v ∈ V (K) . (2.20)

We now turn to the problem of estimating the interpolation error, i.e., v − IKv.
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2.2 Local L∞(K) estimates for P1-triangles

We begin by considering the case of P1-simplices (triangles in 2D, tetrahedra in 3D). It is a good exercise in
which the estimates can be derived explicitly. It is also a good excuse to introduce the multi-point Taylor
formula.

Theorem 2.7 Let K be a P1-element, hK its diameter and ρK the radius of the largest ball contained
in K. Then, for all v ∈ C2(K),

(a) ‖v − IKv‖L∞(K) ≤
d2 h2K

2
max|α|=2 ‖Dαv‖L∞(K)

(b) max|α|=1 ‖Dα(v − IKv)‖L∞(K) ≤
(d+1) d2 h2K

2 ρK
max|α|=2 ‖Dαv‖L∞(K)

Proof. Let Xj be the position of the j-th node of the element, then

IKv(x) =
d+1∑
j=1

v(Xj)N j(x) (2.21)

We now perform a Taylor expansion around x, and evaluate it at Xj, obtaining

v(Xj) = v(x) +
d∑

k=1

∂v

∂xk
(x)
(
Xj
k − xk

)
+

1

2

d∑
k,`=1

∂2v

∂xk∂x`
(ξ)
(
Xj
k − xk

) (
Xj
` − x`

)
(2.22)

where ξ = ηXj + (1 − η)x for some η ∈ [0, 1]. Let us denote by pj(x) the second term in the right-hand
side of (2.22), and by rj(x) the third term. By direct inspection we notice that

|rj(x)| ≤ d2 h2
K

2
max
|α|=2
‖Dαv‖L∞(K)
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Let us now insert v(Xj) from (2.22) into (2.21) to get

IKv(x) =
d+1∑
j=1

v(x)N j(x) +
d+1∑
j=1

pj(x)N j(x) +
d+1∑
j=1

rj(x)N j(x)

The first term on the right is equal to v(x) because
∑

j N j = 1. The second term vanishes, since

d+1∑
j=1

d∑
k=1

∂v

∂xk
(x)
(
Xj
k − xk

)
N j(x) =

d∑
k=1

∂v

∂xk
(x)

{
d+1∑
j=1

Xj
kN

j(x)− xk
d+1∑
j=1

N j(x)

}
=

=
d∑

k=1

∂v

∂xk
(x) {xk − xk} = 0

As a consequence, v(x)− IKv(x) =
∑d+1

j=1 r
j(x)N j(x) and thus

|v(x)− IKv(x)| ≤ max
j
|rj(x)|

∑
j

N j(x) = max
j
|rj(x)| ≤ d2 h2

K

2
max
|α|=2
‖Dαv‖L∞(K)

implying assertion (a). Now, by differentiating (2.21) and using (2.22) as before, one obtains

∂IKv
∂xm

(x) =
∑
j

v(x)
∂N j

∂xm
(x) +

∑
j,k

∂v

∂xk
(x)
(
Xj
k − xk

) ∂N j

∂xm
(x) +

∑
j,k

rj(x)
∂N j

∂xm
(x)

On the right-hand side above, the first term vanishes and the second term happens to be equal to ∂v
∂xm

(x),
since ∑

j,k

∂v

∂xk
(x)
(
Xj
k − xk

) ∂N j

∂xm
(x) =

∑
k

∂v

∂xk
(x)

[∑
j

Xj
k

∂N j

∂xm
(x)− xm

∑
j

∂N j

∂xm
(x)

]
=
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=
∑
k

∂v

∂xk
(x)

∂

∂xm

∑
j

Xj
kN

j(x) =
∑
k

∂v

∂xk
(x)

∂xk
∂xm

=
∂v

∂xm
(x)

As a consequence∣∣∣∣∂IKv∂xm
(x)− ∂v

∂xm
(x)

∣∣∣∣ =

∣∣∣∣∣
d+1∑
j=1

rj(x)
∂N j

∂xm
(x)

∣∣∣∣∣ ≤ max
j
|rj(x)|

d+1∑
j=1

∣∣∣∣∂N j

∂xm
(x)

∣∣∣∣
The reader can convince himself that the norm of the gradient of a P1 basis function, which equals one at
one node and zero on the opposite side/face, can never be greater than 1

ρK
, which immediately leads to

assertion (b). �

2.3 Local estimates in Sobolev norms

The previous paragraph provides us with an interpolation estimate in the norm L∞(K) for the function
and its first derivatives. Most formulations studied so far, however, have V = H1(Ω) and we need thus
estimates of u− IKu in the Hm(K)-norm.

2.3.1 First estimates

A simplistic approach to estimate ‖u− IKu‖L2(K) for P1 elements could be

‖u− IKu‖2
L2(K) =

∫
K

(u− IKu)2 ≤ |K| ‖u− IKu‖2
L∞(K) ≤ 4|K|h4

K max
|α|=2
‖Dαu‖2

L∞(K)

so that, with simplified notation,
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‖u− IKu‖L2(K) ≤ 2
√
|K|h2

K ‖D2u‖L∞(K) (2.23)

Proceeding analogously, we obtain a first estimate for ‖∇u−∇(IKu)‖L2(K),

‖∇u−∇(IKu)‖2
L2(K) =

∫
K

d∑
i=1

[
∂(u− IKu)

∂xi

]2

≤ |K|
d∑
i=1

∥∥∥∥∂(u− IKu)

∂xi

∥∥∥∥2

L∞(K)

which from Th. 2.7 implies

‖∇u−∇(IKu)‖L2(K) ≤
√
|K| 6 d h

2
K

ρK
‖D2u‖L∞(K) (2.24)

Notice that these estimates require u ∈ W 2,∞(K), which is “too much” regularity.

Exo. 2.8 Consider the function u(x) = |x| and its P1 interpolant in the 1D simplex K = (−h/2, h/2).
Compute ‖u− IKu‖L2(K) and ‖u′ − (IKu)′‖L2(K), compare to the previous estimates, and discuss briefly.

2.3.2 An L2-estimate without second derivatives

If the function to be interpolated does not have second derivatives in K, then ‖u − IKu‖L2(K) cannot be

expected to be of order O(
√
|K|h2

K). The following estimate, proved in Buscaglia & Agouzal (IMA J.
Numer. Anal. 32, 672-686, 2012), has minimal requirements on both PK and u. Notice in particular that
PK must contain the constants but not necessarily polynomials of degree 1.
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Theorem 2.8 Assume that the basis functions {N j} (j = 1, . . . , d + 1) of an element K satisfy: (H1)
N j(Xk) = δjk, (H2)

∑
j N j(x) = 1, (H3) 0 ≤ N j(x) ≤ 1 for all j and for all x ∈ K.

Then, for all u ∈ W 1,p(K) with p > d ≥ 2,

‖u− IKu‖L2(K) ≤
p (d+ 1)

p− d
|K|

1
2
− 1

p hK ‖∇u‖Lp(K) (2.25)

If ∇u is bounded we can take p = +∞ to get

‖u− IKu‖L2(K) ≤ (d+ 1)
√
|K|hK ‖∇u‖L∞(K) (2.26)

which is of order O(
√
|K|hK).

2.3.3 Local interpolation estimates for Lagrange finite elements

Lagrange interpolation implies that the function being interpolated is at least in C0(K), since otherwise
its nodal values would not be well defined.
Sobolev’s imbedding theorems state that, for bounded convex domain K, Wm,p(K) ⊂ C0(K) if mp > d.
Taking p = 2 (Hilbert spaces), m needs to be at least 1 in 1D and at least 2 in 2D/3D for Hm(K) to
consist of continuous functions.

Theorem 2.9 Let (K,PK ,ΣK) be a Lagrange finite element such that (a) PK contains all polynomials

of degree ≤ k, and (b) it is affine-equivalent to the “master element” (K̂, P̂ , Σ̂). Then, the Lagrange
interpolant IKu(x) =

∑
j u(Xj)N j(x) satisfies

‖u− IKu‖L2(K) ≤ C h`+1
K ‖D`+1u‖L2(K) (2.27)

for all ` ≤ k, with C depending on ` but not on hK or u.
Similarly,

|u− IKu|H1(K) = ‖∇u−∇(IKu)‖L2(K) ≤ C
h`+1
K

ρK
‖D`+1u‖L2(K) (2.28)
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The proof of this theorem is somewhat involved. The interested reader may refer to Ciarlet [5] or to
Ern-Guermond [7].

2.4 Global interpolation error

The obtention of global interpolation estimates is quite straightforward, but needs a few definitions.

2.4.1 Considerations about meshes

A mesh Th of a domain Ω in Rd is a collection of compacts (elements) Ki, i = 1, . . . , Ne, such that

Ω =
Ne⋃
i=1

Ki, K̇i ∩ K̇j = ∅ if i 6= j, ∂Ω ⊂
Ne⋃
i=1

∂Ki (2.29)

Def. 2.10 The global interpolation operator Ih : W → Wh, where

W = {w ∈ L1(Ω), w|K ∈ V (K), ∀K ∈ Th}

Wh = {w ∈ L1(Ω), w|K ∈ PK , ∀K ∈ Th}

by

Ihv =
∑
K∈Th

∑
i

σK,i(v|K)NK,i (2.30)

Notice that, depending on the definition of the degrees of freedom, Ihv may be multiple-valued at element
boundaries. The mesh is said to be conforming when Ihv belongs to the Sobolev space W in which the
variational problem is posed.
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The subscript h refers to the mesh size. In fact, in error estimates one has to consider not a single mesh
but a family of meshes indexed by h, and study the error as h → 0. The geometrical properties of the
mesh refinement enter thus into consideration. Generally, the mesh-size parameter h is defined as

h = max
K∈Th

hK (2.31)

For global estimates in Hm(Ω) with m ≥ 1 the ratio sK = hK
ρK

will appear. This motivates the definition

of shape-regular (or, simply, regular) meshes:

Def. 2.11 A family of meshes Th, parameterized by the parameter h ∈ H (where H is some subset of R),
is said to be shape-regular if there exists S ∈ R such that

sK =
hK
ρK
≤ S ∀K ∈ Th, ∀h ∈ H (2.32)

A shape-regular mesh (rigorously speaking, family of meshes) cannot contain needle-like elements. If the
elements are triangles, no angle can tend to zero, the so-called “minimum angle condition”. This condition
is known not to be necessary for the convergence of the finite element interpolant in H1(Ω), the necessary
one being that no angle in the triangulation tend to π (the so-called “maximum angle condition”).

2.4.2 From local to global

The local estimates already obtained can be turned global by simply collecting the contributions from all
elements in the mesh.
Consider the estimate of Thm. 2.7(a), to begin with. One can build an L∞(Ω) as follows:

‖u− Ihu‖L∞(Ω) = max
K
‖u− IKu‖L∞(K) ≤

d2

2
max
K

{
h2
K‖D2u‖L∞(K)

}
≤ d2

2
h2 ‖D2u‖L∞(Ω)

which holds without any assumption on the mesh.
Similar estimates based on local to global reasonings are left as exercises.
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Exo. 2.9 Starting from Thm. 2.7(b), prove that

‖∇u−∇(Ihu)‖L∞(Ω) ≤
(d+ 1)d2S

2
h ‖D2u‖L∞(Ω)

where S is the shape-regularity constant of the mesh. Notice that it is necessary that ∇(Ihu) belongs to
L∞(Ω), which requires a conforming mesh.

Exo. 2.10 Using (2.26) prove that

‖u− Ihu‖L2(Ω) ≤ (d+ 1)
√
|Ω|h ‖∇u‖L∞(Ω) (2.33)

Exo. 2.11 Starting from (2.28) prove that, if the family of (conforming) meshes is shape-regular and the
function u smooth, then

|u− Ihu|H1(Ω) ≤ C S hk ‖Dk+1u‖L2(Ω) (2.34)

where S is the shape-regularity constant of the mesh.

Exo. 2.12 Assume that there exists a straight line Γ (or planar surface in 3D) in the domain Ω, at which
there is a sudden change in material properties. As a consequence, u ∈ H2(Ω\Γ)∩C0(Ω), but u 6∈ H2(Ω).
Discuss the interpolation estimate for such a function u, showing the advantages of using an “interface-
fitting mesh”; i.e., a mesh such that Γ coincides with inter-element boundaries and thus does not cut any
element.

2.4.3 Global estimate

Let us state a global estimate more general than the one we have been building up to now.
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Theorem 2.12 Let Th, h > 0, be a family of shape-regular meshes of a domain Ω ⊂ Rn. Let (K̂, P̂ , Σ̂)

be the (Lagrange) reference element of the mesh, all the mappings FK : K̂ → K being affine. Let Ih be

the global interpolation operator corresponding to Th. Assume further that Pk ⊂ P̂ (i.e.; that the finite
elements are “of degree k”). Then, for each 1 ≤ p < +∞, and for each 0 ≤ ` ≤ k, there exists C such
that for all h and all v ∈ W `+1,p(Ω),

‖v − Ihv‖Lp(Ω) +
`+1∑
m=1

hm

( ∑
K ∈Th

|v − Ihv|pWm,p(K)

) 1
p

≤ C h`+1|v|W `+1,p(Ω) (2.35)

If p = +∞,

‖v − Ihv‖L∞(Ω) +
`+1∑
m=1

hm
(

max
K ∈Th

|v − Ihv|pWm,∞(K)

) 1
p

≤ C h`+1|v|W `+1,∞(Ω) (2.36)

Proof. See Ern-Guermond [7], p. 61. �
Notice that the previous theorem holds not just for simplicial elements but also for affine-equivalent quadri-
laterals, hexahedra, etc.

Exo. 2.13 Deduce from the theorem that, for Pk and Qk elements,

‖v − Ihv‖H1(Ω) ≤ C hk, ‖v − Ihv‖L2(Ω) ≤ C hk+1

and explain on what quantities depend the constant C.
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The previous theorem establishes, in particular, that the family of spaces {Wh} satisfies the approxima-
bility property.

Prop. 2.13 For any v ∈ Lp(Ω), p < +∞,

lim
h→0

(
inf

vh ∈Vh
‖v − vh‖Lp(Ω)

)
= 0 (2.37)

Exo. 2.14 Prove the previous proposition. Hint: One cannot interpolate a generic function in Lp(Ω)
because it is not continuous. Fortunately, smooth functions are dense in Lp(Ω) for all p < +∞, so
that for any ε > 0 one can find vε ∈ H2(Ω) such that ‖v − vε‖Lp(Ω) < ε. The interpolant Ihvε is well
defined and Theorem 2.12 can be applied.
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2.5 Inverse inequalities

Inverse inequalities are often useful in the convergence analysis of finite element methods. They provide
bounds on operators that are unbounded in Hm(Ω), with m > 0, but bounded in Vh due to its finite-
dimensionality. Intuitively, in a shape-regular mesh for a derivative ∂uh/∂xi to be “very large” the nodal
values of the uh must also be “very large”.
Let (K̂, P̂ , Σ̂) be the “reference” or “master” element. Let K be an element that is affine-equivalent to K̂,

as defined before, with FK : K̂ → K the corresponding linear mapping:

FK(x) = AK x+ bK .

In this section we only consider finite elements for which

TKv(x̂) = v(FK(x̂)) ,

such as Lagrange finite elements. In such a setting, we have

Lemma 2.14

(a)

|detAK | =
|K|
|K̂|

, ‖AK‖ ≤
hK
ρK̂

, ‖A−1
K ‖ ≤

hK̂
ρK

(b) There exists C, depending on s and p but independent of K, such that for all v ∈ W s,p(K),

|v̂|W s,p(K̂) ≤ C‖AK‖s |detAK |−
1
p |v|W s,p(K) (2.38)

|v|W s,p(K) ≤ C‖A−1
K ‖

s |detAK |
1
p |v̂|W s,p(K̂) (2.39)
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Proof. See, e.g., Ciarlet [5], p. 122. �
Let us show how to take advantage of this result to prove some simple estimates.

Prop. 2.15 There exists C > 0, independent of K, such that

‖∇vh‖L2(K) ≤
C

ρK
‖vh‖L2(K) (2.40)

for any vh ∈ PK.

Proof. This proof uses the so-called scaling argument. From (2.39) we have, taking s = 1 and p = 2,

‖∇vh‖L2(K) ≤ C ‖A−1
K ‖ |detAK |

1
2‖∇v̂h‖L2(K̂) (2.41)

Now let us show that there exists a constant Ĉ such that

‖∇v̂h‖L2(K̂) ≤ Ĉ‖v̂h‖L2(K̂) (2.42)

For this, consider the set S = {w ∈ PK | ‖ŵ‖L2(K̂) = 1}, which is bounded and closed in the finite-

dimensional space PK . Let Ĉ be the maximum that the continuous function ‖∇ŵ‖L2(K̂) attains in
S.
Then, denoting by

ẑh =
1

‖v̂h‖L2(K̂)

v̂h

and noticing that ẑh ∈ S, we have that
‖∇ẑh‖L2(K̂) ≤ Ĉ

and thus (2.42) is proved. Inserting it into (2.41) and using (2.38) one gets

‖∇vh‖L2(K) ≤ C Ĉ ‖A−1
K ‖ |detAK |

1
2‖v̂h‖L2(K̂) ≤ C2 Ĉ ‖A−1

K ‖ |detAK |
1
2 |detAK |−

1
2‖vh‖L2(K) ≤
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≤
(C2 Ĉ hK̂)

ρK
‖vh‖L2(K)

and the proof ends noticing that the product inside the parentheses is a constant independent of K and
vh. �
Notice that there does not exist a constant C that makes

‖∇v‖L2(K) ≤
C

ρK
‖v‖L2(K) (2.43)

in the infinite dimensional case, i.e., for any v in H1(K).

Exo. 2.15 Let K be the unit interval (0, 1) in 1D. Build a sequence {ϕn} of functions such that ‖ϕn‖L2(K) =
1 and ‖∇ϕn‖L2(K) = n.
Argue that the existence of such a sequence is a counterexample to (2.43).

With a scaling argument one can prove the following discrete trace estimate.

Prop. 2.16 There exists C > 0, independent of K, such that

‖vh‖L2(F ) ≤ C h
− 1

2
K ‖vh‖L2(K) ∀ vh ∈ PK (2.44)

where F is an edge (face in 3D) of K.

The proof is left as an optional exercise. Notice that, again, there is no chance of (2.44) holding for all v
in an infinite-dimensional space, such as C∞(K) for example (build a sequence that shows this!).
Several other inverse inequalities can be extracted as particular cases of the following theorem (see, e.g.,
[7] p. 75).
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Theorem 2.17 Let Th be a shape-regular family of meshes in Ω ⊂ Rd. Then, for 0 ≤ m ≤ ` and
1 ≤ p, q ≤ ∞, there exists a constant C such that, for all h > 0 and all K ∈ Th,

‖v‖W `,p(K) ≤ C h
m−`+d( 1

p
− 1

q )
K ‖v‖Wm,q(K) (2.45)

for all v ∈ PK.

This local estimate, to be made global, puts the restriction on the family of meshes that, as h → 0 the
diameter ratio between the largest and smaller hK in Th remain bounded.

Def. 2.18 A family of meshes {Th}h>0 is said to be quasi-uniform if it is shape-regular and there exists
c such that

∀h, ∀K ∈ Th, hK ≥ c h (2.46)

Exo. 2.16 Does the quasi-uniformity of the mesh imply the existence of C > 0 such that

‖∇vh‖L2(Ω) ≤ C h−1 ‖vh‖L2(Ω) ∀ vh ∈ Vh ? (2.47)

Exo. 2.17 Does the quasi-uniformity of the mesh imply the existence of C > 0 such that

‖vh‖L2(∂Ω) ≤ C h−
1
2 ‖vh‖L2(Ω) ∀ vh ∈ Vh ? (2.48)
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Let us now give a try at the easy part of the proof of Theorem 2.27.
The point of departure is the following proposition, in which the carets are inserted to remind that it
is to be applied on the master element:

Prop. 2.19 Let Pk ⊂ P̂ , k ≥ 1, then there exists Ĉ > 0 such that

‖û− IK̂ û‖L2(K̂) + ‖∇û−∇IK̂ û‖L2(K̂) ≤ Ĉ ‖Dk+1û‖L2(K̂) ∀u ∈ Hk+1(K̂) . (2.49)

Exo. 2.18 Taking Proposition 2.19 as established, prove Theorem 2.27. The strategy is a scaling
argument analogous to that used in the proof of Prop. 2.15.

Now, how to prove Prop. 2.19? Leaving the details to be read from the literature, let us just put forward
the main conceptual ingredient:

Theorem 2.20 (Bramble-Hilbert lemma) Let F : Hk+1(ω)→ R be a continuous linear functional,
satisfying

F (p) = 0 , ∀ p ∈ Pk . (2.50)

Assuming ω ⊂ Rd to be convex and bounded, with Lipschitz boundary, there exists C(ω) > 0 such that

|F (v)| ≤ C(ω) ‖Dk+1v‖L2(ω) , ∀ v ∈ Hk+1(ω) . (2.51)

47



2.6 Interpolation in H(div,Ω)

The Raviart-Thomas element introduced in Exo. 2.4 has constant normal component on each face of
K, leading to

σi(vh|K) = meas(Fi) (vh · ň)(Fi) . (2.52)

Because (vh · ň)(Fi) is single-valued for the two elements sharing face Fi, the global space Wh generated
by RT0 elements is a subspace of H(div,Ω).
The interpolant IRTh : H(div,Ω)→ Wh is built using the local-to-global construction as before.
With the same ingredients as before (Bramble-Hilbert lemma, scaling arguments) it is possible to prove
the following approximation result:

Theorem 2.21 Let Th be a shape-regular family of triangulations. There exists c > 0 such that, for all h
and for all v ∈ H1(Ω)d with ∇ · v ∈ H1(Ω),

‖v − IRTh v‖L2(Ω) + ‖∇ · (v − IRTh v)‖L2(Ω) ≤ c h
(
‖v − IRTh v‖H1(Ω) + ‖∇ · (v − IRTh v)‖H1(Ω)

)
(2.53)
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2.7 Interpolation of non-smooth functions

As already mentioned, Lagrange interpolation is not defined for arbitrary functions in Lp(Ω), not even
for H1(Ω) if d > 1. In applications that will be discussed later on, it is important that there exists an
interpolation operator Ih : H1(Ω)→ Wh with some useful properties:

• Stability: The exists c > 0 such that

∀h, ∀ v ∈ L2(Ω), ‖Ihv‖L2(Ω) ≤ c ‖v‖L2(Ω) . (2.54)

∀h, ∀ v ∈ H1(Ω), ‖Ihv‖H1(Ω) ≤ c ‖v‖H1(Ω) . (2.55)

• Approximation: The exists c > 0 such that

∀h, ∀K ∈ Th, ∀ v ∈ H1(ωK), ‖v − Ihv‖L2(K) ≤ c h ‖v‖H1(ωK) (2.56)

where ωK consists of all elementens sharing at least a node with K.

• Preservation of boundary conditions: If v|∂Ω = 0, then (Ihv)|∂Ω = 0.

• Being a projection: Ihv = v for all v ∈ Wh.

The Clément interpolation operator satisfies the first two properties, while the Scott-Zhang inter-
polation operator satisfies all four.

Exo. 2.19 Read the construction of the Clément and Scott-Zhang interpolation operators, for example in
Ern & Guermond, p. 68-71.
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