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Motivation

A PDE:
Lu=f in  C R", Bu =g on 0f)

A numerical approximation:

|ES

U=R — Up
e Existence of u, uy,.

e Uniqueness of u, uy,.

e Well-posedness: Continuous dependence on the data.

e Convergence: A numerical method is a systematic way of constructing approximations to u,
in such a way that the difference u — wu;, can be made arbitrarily small (in what sense?).

e Robustness: u, is not exact, there is some error but... is it an error one can tolerate (qualitatively
speaking)?



Motivation

Finite Element Method: When the PDE is elliptic, the most popular approximation method is the FEM.
It is general, geometrically flexible, easy to code, robust, etc. etc.

Understanding PDE’s/FEM requires generalizations of the basic tools of linear algebra:
e The spaces are infinite dimensional.

e The “matrices” are now “operators” between such spaces.

The rank theorem dim(Ker(A))+dim(Im(A)) = n no longer makes sense...(existence and uniqueness).

Linear bijections may not have continuous inverse... (well-posedness).

Different notions of convergence (norms) make a world of difference.
and of the basic tools of differential calculus:

e Function spaces.

e Derivatives, integrals.

e Boundary values.



Overview

e Galerkin approximations: Differential, variational and extremal formulations of a simple 1D
boundary value problem. Well-posedness of variational formulations. Functional setting. Strong and
weak coercivity. Lax-Milgram lemma. Banach’s open mapping theorem. Céa’s best-approximation
property. Convergence under weak coercivity. (2 lectures)

e The spaces of FEM: (3 lectures)

e Interpolation error and convergence: (1 lecture)

e Application to convection-diffusion-reaction problems: (2 lectures)
e Application to linear elasticity: (1 lecture)

e Mixed problems: (2 lectures)

e FEM for parabolic problems: (2 lectures)



1 Galerkin approximations

1.1 Variational formulation of a simple 1D example
Let u be the solution of

{—u”+u: f o oin(0,1) 11)

u(0)=u(1)=0

The differential formulation (DF) of the problem requires —u” 4 u to be exactly equal to f in all points
z € (0,1).
Multiplying the equation by any function v and integrating by parts (recall that

/0 w'z de = w(1)z(1) — w(0)z(0) — /0 wz dx (1.2)

holds for all w and z that are regular enough) one obtains that u satisfies

/O(U'v/—i—uv) dm—u’(l)v(l)—i—u'(O)v(O):/O fode Vo (1.3)

e The requirement “for all 7 of the DF has become “for all functions v”.
e Does equation (|1.3)) fully determine u?

e What happened with the boundary conditions?



Consider the following problem in variational formulation (VF): “Determine v € W, such that u(0) =
u(1) = 0 and that

/(uv—l—uv dx—/fvda: (1.4)
holds for all v € W satistying v(0) = v(1) = 0.”

Prop. 1.1 The solution u of the DF (eq. 15 also a solution of the VF if W consists of continuous
functions of sufficient reqularity. As a consequence, problem VFE admits at least one solution whenever DF
does.

Proof. Following the steps that lead to the VF, it becomes clear that the only requirement for u to satisfy
(1.4)) is that the integration by parts formula ((1.2)) be valid. O

Exo. 1.1 Show that the solution of

{—u” +u=Ff in (0,1)

u(0) =0, u'(l)=g € R (15)

is a solution to: “Find v € W such that u(0) =0 and that

/Ol(u'v’—i-uv) dx:/olfvdx + go(1) (1.6)

holds for all v € W satisfying v(0) = 0.”



Consider the following problem in extremal formulation (EF): “Determine u € W such that it minimizes

the function - .
J(w) = /0 (éw’(x)Q + §w(x)2 - fw) dx (1.7)

over the functions w € W that satisfy w(0) = w(1) = 0.”

Prop. 1.2 The unique solution u of 1s also a solution to EF. As a consequence, EF admits at least
one solution.

Proof. We need to show that J(w) > J(u) for all w € W, where
Wo={w € W, w(0) =w(l) =0}

Writing w = u + av and replacing in (1.7 one obtains

J(u+av) = J(w) + a [/Ol(u’v/+uv—fv) dx] +0z2/01 (%u(x)uév(x)?) da

The last term is not negative and the second one is zero. [J

Exo. 1.2 Identify the EF of the previous exercise.



Prop. 1.3 Let u be the solution of

—u' +u=f in (0,1)
u(0) =1, uW(l)=9g € R

then w is also a solution of “Determine u € W such that u(0) =1 and that
1 1
/ (u'v" 4+ uv) dx—/ fodr + gv(1)
0 0

holds for all v € W satisfying v(0) = 0.”

Further, defining for any a € R
W, ={w € W,w(0) = a},

u minimizes over Wi the function

J(w) = / 1 (1w'<x)2+3w<x>2—fw) dz — gu(l).
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Exo. 1.3 Prove the last proposition.

(1.8)

(1.9)

(1.10)



Let us define the bilinear and linear forms corresponding to problem (|1.1)):

a(v,w):/ol(v'w'—i—vw) dx E(v):/olfvdx (1.11)

and the function J(v) = fa(v,v) — {(v). Remember that W is a space of functions with some (yet

unspecified) regularity and let Wy = {w € W, w(0) = w(1) = 0}.
The three formulations that we have presented up to now are, thus:

DF': Find a function u such that
—(z) +ulw) = f@) V€ (0,1), u(0) = u(1) = 0

VF: Find a function u € Wj such that

a(u,v) =L(v) Yv € Wy

EF: Find a function © € W, such that

J(u) < J(w) Vw e W

and we know that the exact solution of DF is also a solution of VF and of EF.



The logic of the construction is justified by the following

Theorem 1.4 If W is taken as
W:{w:(O,)—>R/ w(z) dx<—|—oo/ )2 dz < 400} = H(0,1)

and if f is such that there exists C' € R for which

/f dSL'<C“/ w'(x)? dx Vw € W, (1.12)

then problems (VF) and (EF) have one and only one solution, and their solutions coincide.

The proof will be given later, now let us consider its consequences:

e The differential equation has at most one solution in W.

e If the solution u to (VF)-(EF) is regular enough to be considered a solution to (DF), then u is
the solution to (DF).

e If the solution u to (VF)-(EF) is not regular enough to be considered a solution to (DF), then (DF)
has no solution.

= (VF) is a generalization of (DF).
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Exo. 1.4 Show that Wy C C°(0,1). Further, compute C' € R such that

1
max |w(z)| < C / w!'(z)? dx Yw € W
0

z€[0,1]

Hint: You may assume that fol f@)g(z) de < \/fol f(x)? dx \/folg(m)z dx for any f and g (Cauchy-
Schwarz).

Exo. 1.5 Consider f(x) = |x — 1/2|7. For which exponents vy is fol fx)w(x) de < o0 for allw € Wy?

Exo. 1.6 Consider as f the “Dirac delta function” at v = 1/2, that we will denote by 61/2. It can be
considered as a “generalized” function defined by

1
/ 01p2(z) w(z) doe = w(1/2) Vw € C°0,1)

0
Prove that 0/, satisfies and determine the analytical solution to (VF).

Exo. 1.7 Determine the DF and the EF corresponding to the following VF: “Find v € W = H(0,1),
u(0) =1, such that

/l(u'w'+uw) dr = w(1/2) Yw € Wy (1.13)

where Wy = {w € W,w(0) =0}.”
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1.2 Variational formulations in general

Let V' be a Hilbert space with norm || - ||y.. Let a(-,-) and £(-) be bilinear and linear forms on V satisfying
(continuity), for all v, w € V,

a(v,w) < No [l lwllv, {(v) < Neljollv (1.14)

This last inequality means that ¢ € V', the (topological) dual of V. The minimum N, that satisfies this
inequality is called the norm of £ in V', i.e.

. 14
€]y = sup ) (1.15)
orvev [[vllv
The abstract VF we consider here is:
“Find v € V such that  a(u,v) = £(v) Vo e V” (1.16)
Exo. 1.8 Assume that V is finite dimensional, of dimension n, and let {¢*, ¢*, ..., ¢"} be a basis. Show
that 15 then equivalent to the linear system
AU-L (1.17)
where o ‘
Ay Zal¢ 6, Li = (¢ (1.18)

and U 1s the coefficient column vector of the expansion of u, i.e.,

u=>y U;¢' (1.19)
=1
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Def. 1.5 The bilinear form a(-,-) is said to be strongly coercive if there exists a > 0 such that
a(v,v) > allv||¥ Vo eV (1.20)

Def. 1.6 The bilinear form a(-,-) is said to be weakly coercive (or to satisfy an inf-sup condition) if
there exists B > 0 such that

a(v,w)

sup ———= > B||v|lv Yo eV (1.21)
ozwev  |lwllv

and
sup A0 S i, Vw eV (1.22)

0#£veV vy

Exo. 1.9 Prove that strong coercivity implies weak coercivity.

Exo. 1.10 Prove that, if V' is finite dimensional, then (i) a(-,-) is strongly coercive iff A is positive definite
(X" AX>0VX € R"), and (ii) a(-,-) is weakly coercive iff A is invertible.

Exo. 1.11 Prove that, if a(-,-) is weakly coercive, then the solution u of depends continuously on
the forcing ((-). Specifically, prove that

1
Jullv < 3 1€y (1.23)
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Theorem 1.7 Assuming V to be a Hilbert space, problem is well posed for any € € V' if and only
if (1) a(-,-) is continuous, and (ii) a(-,-) is weakly coercive.

A simpler version of this result is known as Lax-Milgram lemma:

Theorem 1.8 Assuming V' to be a Hilbert space, if a(-,-) is continuous and strongly coercive then problem
11.16}) is well posed for any £ € V'.

Proof. This proof uses the so-called “Galerkin method”, which will be useful to introduce. .. the Galerkin
method!

Let {¢'} be a basis of V. Denoting Viy = span(¢', ..., ¢") we can define uy € Vy as the unique solution
of a(un,v) = £(v) for all v € Vy. This generates a sequence {uy}ny=12. . in V. Further, this sequence is
bounded, because

1 1 Ly 2|y
funliy < & afuyoun) = = fun) < B gy = uygy < 1y

a Q a Q
Recalling the weak compactness of bounded sets in Hilbert spaces, there exists v € V such that a sub-
sequence of {uy} (still denoted by {uy} for simplicity) converges to u weakly. It remains to prove that

a(u,v) = £(v) for all v € V. To see this, notice that

a(u7 ¢l) = a(hj{fn UN, (bz) = h},na(u]\ﬁ ¢Z) = E(QSZ)

where the last equality holds because a(uy, ¢') = £(¢') whenever N > i. Uniqueness is left as an exercise.

O

Exo. 1.12 Prove uniqueness in the previous theorem (bounded sequences may have several accumulation
points).
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1.3 Galerkin approximations

The previous proof suggests a numerical method, the Galerkin method, to approximate the solution of a
variational problem and thus of an elliptic PDE. The idea is simply to restrict the variational problem to
a subspace of V that we will denote by V},.

Discrete variational problem (Galerkin): Find u;, € V}, such that

a(uh,vh) = ﬁ(vh) Yu, € Vy (124)

When the bilinear form a(-, -) is symmetric and strongly coercive, this discrete probleme is equivalent to

Discrete extremal problem (Galerkin): Find u;, € V}, which minimizes over V}, the function

J(w) = %a(w,w) ~ Y(w) (1.25)

Exo. 1.13 Prove this last assertion.

The natural questions that arise are:
e Does uy, exist? Is it unique?
e Does uy, approximate u (the exact solution)?

e How difficult is it to compute u;?

15



Does uy, exist? Is it unique?

Case 1) Strong coercivity of the form af(-,-) over V
If a(-,-) is strongly coercive over V' then

a(w,w)

= a > 0.
oAweV  [lwl[7,

If V, € V, then a(-, ) is strongly coercive over V}, (because the infimum is taken over a smaller set). Then
uy, exists and is unique as a consequence of Exo.

Case 2) Weak coercivity of the form a(-,-) over V

If a(-,-) is just weakly coercive over V, then it may or may not be weakly coercive over V},. Compare the
two following conditions

a(w,v)

wllv vl

(A) inf sup alw, v) =p3>0, (B) inf sup

_— = > 0.
oS Tl Tolly o2y, Sop 2

It is not true that (A)=-(B) because the sup in (B) is taken over a smaller set. In this case the weak coercivity
of the discrete problem must be proven independently, it is not inherited from the weak coercivity over the
whole space V.
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Does uy approximate u?

Case 1) Strong coercivity of the form a(-,-) over V

Lemma 1.9 (J. Céa) If a(-,-) and {(-) are continuous in V and a(-,-) is strongly coercive, then

N,
Hu—uhHV < ?HU—U}LHV V’Uh eV, (126)

Proof. Notice the so-called Galerkin orthogonality:
a(u — up,vp) =0 Vo, € Vy (1.27)

which implies that a(u — up, u — up) = a(u — up, uw — vp,) for all v, € Vj,. Using this,

1

Ju—uplly < —a(u—up,u—wy,) = .
(8]

a(u — up,u—vp) < lluw —unllv |lw — vnllv Yy, € V,

1
a a
In other words, ||u — uy||v < C inf,, ey, [[u — vp|lv. O

Let h be a real parameter, typically a “mesh size”. We say that a family {V},},~0 C V satisfies the
approximability property if:

]lgr(l)dlst(u,‘/h):}ll_r% Ulerléh lu—vlly =0 (1.28)

Corollary 1.10 Ifa(-,) and £(-) are continuous in' V', a(-,-) is strongly coercive, and the family {Vj,}n=0 C

V' satisfies , then

lim up, = u
h—0

in the sense of the norm || - ||v.
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Case 2) Weak coercivity of the form a(-,-) over V},
Assume now that the weak coercivity constant ), is positive for all h > 0, so that u, exists and is unique.
Notice that Galerkin orthogonality still holds.

Lemma 1.11 If a(-,-) and £(-) are continuous in V', and a(-,-) is weakly coercive in V}, with constant
Br > 0, then

N,
llu — uplly < (1+5_) llu — vp|v Yo, € V (1.29)
h

Proof. One begins by decomposing the error as follows (we omit the subindex V' in the norm)
lu — up|| < [Ju—vp|| + ||un — vpl| Yo, € Vp (1.30)
and then using the weak coercivity

1 alup — vy, wp 1 alu — vp, wp,
|lup, — vp|| < = sup g*— sup g

< Doy
= < — |lu—wvp
Bh wrEV), ”whH Bh wpEV), ”whH Bh

Substituting this into ((1.30]) one proves the claim. [

Corollary 1.12 Under the hypotheses of Lemma if there exists By > 0 such that By, > Py for all h
and the family {Vi,}nso C V satisfies (1.28), then

limu, = u
h—0

in the sense of the norm || - ||v.
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How difficult is it to compute up?

Let us go back to our problem —u”+u = fin (0, 1) with u(0) = u(1) = 0, which in VF requires to compute
u € H'(0,1) satisfying the boundary conditions and such that

1 1
/ [ (z) V' (z) + u(z) v(x)] dx :/ f(x)v(z) dx (1.31)
0 0
Suitable spaces for the Galerkin approximation are, for example,
e P.: The polynomials of degree up to k.
e F;: The space generated by the functions ¢"(x) =sin(mnrx), m=1,2,... k.
Exo. 1.14 Show that a(-,-) is continuous and strongly coercive over V.= H'(0,1) with the norm

1
2

lwlly & [/01 [w'(2)* + w(z)?] dx

Exo. 1.15 Build a small program in Matlab or Octave (or something else) that solves the Galerkin ap-
proximation of problem considering f = 6174 and the spaces Py and/or Fy, for some values of k.
Compare the results to the analytical solution building plots of u and wuy. Also, build graphs of ||u — uy|| vs
k.

In general, however, the construction of spaces of global basis functions, as the ones above, is not practical
because it leads to dense matrices. In the next chapter we will introduce the spaces of the FEM, which
are characterized by having bases with small support and thus lead to sparse matrices.
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Exercises

Reading assignment: Read Chapter 1 of Duran’s notes (all of it).

Exo. 1.16 Carry out the “easy computation” that shows that A is the tridiagonal matriz such that the diagonal
elements are 2/h + 2h/3 and the extra-diagonal elements are —1/h + h/6 (Durdn, page 3).

Exo. 1.17 Can a symmetric bilinear form be weakly coercive but not strongly coercive?

Exo. 1.18 To what variational formulation and what differential formulation corresponds the following extremal
formulation?

Find v € V, V consisting of functions that are smooth in (0,1/2) and (1/2,1) but can exhibit a (bounded)
discontinuity at z = 1/2, that minimizes the function

1 1/2
J(w) = /0 [w/(aj)2 + 2w(a:)2] dr + 4 [w(1/24) — w(1/2—)]2 — /0 7 w(x) de — 9w(0) (1.32)

where w(1/2+) represent the values on each side of the discontinuity. Notice that the space V' (is it a vector space
really?) has no boundary condition imposed. What are the boundary conditions of the DF at x = 0 and 2 = 1?7

Exo. 1.19 Consider the bilinear form
1
a(u,v) :/ o' (z) v (x) dx.
0

Prove that this form is not strongly coercive in H'(0,1) considering the norm

][ = {/01 [ (2)” + u(@)?] d:c}é

and that it is, with the same norm, in

def

H}(0,1) = {w € H0,1), w(0) = w(1) = 0}.

20



1.4 Variational formulations in 2D and 3D

The ideas are similar, but we need another integration by parts formula:

Lemma 1.13 Let f : Q — R be an integrable function, with Q a Lipschitz bounded open set in R? and
0;f integrable over €, then

Q o0
Notice that this implies that
/V-VdQ:/ v-ndl (1.34)
Q 19)
and that
/UV2udQ:/ UVu-ﬁdF—/VU-VudQ (1.35)
Q o0 Q

We will also introduce the notation

Def. 1.14 The Lebesgue space LP(Q2), where p > 1, is the set of all functions such that their LP(€))-norm
18 finite,

e | [ ot dx]; (1.36)
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Exa. 1.15 (Poisson equation) Consider the DF
—Viu=f in €, u=0 on 0 (1.37)
where V is the gradient operator and V*u = Z

zlu

A suitable variational formulation is: Find v € V such that
a(u,v) = £(v) Vv eV

where

a(u,v) = / Vu - Vv dQ, / fodQ and (1.38)
Q

V=Hy(Q) ={w € L*(Q), dw € L*(Q)V ,d,w =0 on 0N

which is a Hilbert space with the norm

Il = (llwllZ> + [Vwlz2)? (1.39)
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Exo. 1.20 Prove that if u is a solution of the DF, then it solves the VF.

Exo. 1.21 Prove that a(-,-) is continuous in V. Prove that ((-) is continuous in V if f € L*(Q2). Is this
last condition necessary?

Exo. 1.22 Determine the EF of the Poisson problem.

Exo. 1.23 Is a(-,-) strongly coercive?

Exo. 1.24 Let Q be the unit circle. Determine for which exponents v is the function v in H'(Q).

Exo. 1.25 Assume that the domain () is divided into subdomains €2y and Qs by a smooth internal boundary

[. Let V consist of functions such that their restrictions to §; belong to H'(Q;) and that are continuous
across I'. Determine the VF' corresponding to the following EF:Find v € V that minimizes

2 2 2
J(w):/ wdﬂ+ Mdﬂ+/(5w2—w)df
o 2 o 2 r

over V.

Exo. 1.26 Determine the DF that corresponds to the previous exercise.
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2 Finite element spaces and interpolation

The basic reference for what follows is Ciarlet [5]. Basically, the idea is to define finite element spaces that
are locally polynomial and that contain complete polynomials of degree k in the space variables. With
a judicious choice of the nodes (degrees of freedom), these piecewise polynomial functions can be made
continuous by construction (if needed).

In the previous chapter it was shown that if there exists g > 0 such that, for all w, € V} and all A > 0,

a\Wp, Uy,
sup —( ) > B |wnl|v (2.1)
vp €V ||Uh||V

then there exists C' > 0 such that

lu—uplly <C inf ||ju— vy (2.2)
vy € Vi

Notice that (2.1 is automatically satisfied if the bilinear form a(-,-) is strongly coercive.
Denoting by Z,u the element-wise Lagrange interpolant of u € V N C%(Q), it is obvious from |) that

|u —unlly < Clu—Tyully (2.3)

The goal of this section is to introduce estimates of the interpolation error |u — Z,u||y for some spaces V'
that appear in the applications.

2.1 Basic definitions
Def. 2.1 A finite element in R" is a triplet (K, Pk, > ) where

(1) K is a closed (bounded) subset of R™ with a nonempty interior and Lipschitz boundary;

(ii) Py is a finite-dimensional space of functions defined in K, of dimension m;
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(iii) Xk is a set of m linear forms {o;}i=1. _m which is Px-unisolvent; i.e., if p € Pk then

o(p) =0 Vo € Yk = p=0

It is implicitly assumed that the finite element is viewed with a larger function space V(K') associated to
it, in general a Sobolev space. Each 0; € Y is then assumed to be extended as an element of V(K)'.

Exa. 2.2 P,.

Prop. 2.3 There exists a basis {N;} such that o;(N;) = d;;.

Finite elements are usually built by mapping a unique master element K , the following proposition states
that if the master element is in itself a finite element, all the others will also be so. We restrict to
affine mappings, since isoparametric finite elements fall slightly outside the classical theory, in that the
corresponding spaces do not consist of piecewise polynomial functions.

Prop. 2.4 If K,I/(\' are affine equivalent, K = gb(f?), then if (I?, ﬁ, i) is a finite element then we can
define (K, Px,Y) and it is a finite element.

Proof. The suitable definition that works is the one used in the implementations. Let Fi : K—K be the
(affine) mapping which is assumed to exist. Then we define, for v in V(K), the function v € V(K) by
v(z) = v(Fk(z)). Further,
Px={v:K —>R,3 € P}
and ~ ~
Yk ={0:V(K)—=R,ow)=0({), Vv € P, witho € X}

O
The popular “master element” is thus a specific triplet ([? , ﬁ, f]) from which all the other finite elements
are obtained by suitably composing with the affine mapping Fi.
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Def. 2.5 The local interpolation operator Zy : V(K) — Pk is defined as

m

Trv = Zai(v)J\/} Vo € V(K)

i=1
This interpolation is indeed a projection:

Prop. 2.6 Zgxp=p forallp € Pg.

and is preserved by composition with the affine mapping:

Prop. 2.7 Ixv = Iz for allv € V(K).

Notice also that, if P contains all polynomials up to some degree k, then Pg will also contain all polynomials
up to degree k whenever K is affine-equivalent to K. The local problem of approximating a function in K
with functions in Pk is thus in order, and the subject of the next paragraph.

2.2 Local L>*(K) estimates for P-triangles

We begin by considering the case of P;-simplices (triangles in 2D, tetrahedra in 3D). It is a good exercise in
which the estimates can be derived explicitly. It is also a good excuse to introduce the multi-point Taylor
formula.

Theorem 2.8 Let K be a Pi-element, hy its diameter and py the radius of the largest ball contained
in K. Then, for allv € C*(K),

2 p2
(@) [[v—Trvl[rem) < . 2hK max|q|=2 | DV oo (k)

21,2
(b) maxjai—y D (v — Zxv) || re) < L0

<S 2K maX|a‘:2 HDaUHLoo(K)
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Proof. Let X7 be the position of the j-th node of the element, then

Irv(z) =Y v(X))N(x) (2.4)

1

+

<.
Il

We now perform a Taylor expansion around x, and evaluate it at X7, obtaining

d
Z v , .

v X’ Oxy, XJ — ) Z 0mk3xe O (Xi—m) (Xi =) (2:5)
k=

where £ = nX7 + (1 — n)x for some n € [0,1]. Let us denote by p’(x) the second term in the right-hand
side of (2.5, and by 77(x) the third term. By direct inspection we notice that

21,2

I (@)] < =5 max | D0l

Let us now insert v(X7) from ({2.5)) into (2.4) to get

d+1 d+1 d+1
Tiv(x) = Y o(@N (@) + 3P @A (@) + 3 r (2N )

The first term on the right is equal to v(z) because > y N7 = 1. The second term vanishes, since

Zzg— Xj—wk)N%x):Za” {ZXWJ —xszw'(x)}:

k=1



As a consequence, v(z) — Zxv(z) = Zjﬁ r(x)N7(z) and thus

] ) ) d2 h2
[o() = Zgo(x)| < max|r(2)] Y N () = max |/ ()] < 5 max || D[ o
J - J

- =2
implying assertion (a). Now, by differentiating (2.4) and using (2.5 as before, one obtains

Tt = a0+ 3 ) (=) e )+ 2w )

0T, 0x, oxy, aiUm

aian (I)v

since

v ; 8/\/'9 3/\/' 8/\/'3

81}
- Z (9xk Z X]N] Z &xk 83: 8a:m (z)

m
J

As a consequence

d+1 d+1

er 8x < max|rj |Z
m

The reader can convince himself that the norm of the gradient of a P, basis function, which equals one at
one node and zero on the opposite side/face, can never be greater than pLK, which immediately leads to
assertion (b). OJ

8:[ KU
0T,

(z) =

8xm a:Em
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2.3 Local estimates in Sobolev norms

The previous paragraph provides us with an interpolation estimate in the norm L*(K) for the function
and its first derivatives. Most formulations studied so far, however, have V' = H'(Q) and we need thus
estimates of u — Zxu in the H™(K)-norm.

2.3.1 First estimates

A simplistic approach to estimate ||u — Zxu||12(x) for P, elements could be
lw = Zrcul 72 se) = /K(U — Ixu)® < |K|lu— Ticu| Loy < 4K [P mﬁgHDO‘UIle K)

so that, with simplified notation,

lu = Zrull 2y < 2| K| hﬁ(HDQUHLoo (2.6)

Proceeding analogously, we obtain a first estimate for ||Vu — V(IKU)H L2(K)s

IV = 9 i) = /Z[ e

which from Th. implies

2
IK’LL

Lo (K)

6dh?
IVu = V(Zxw)llrame) < VIK—F

|1 D?ul| oo (1) (2.7)
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Notice that these estimates require u € W2 (K), which is “too much” regularity.

Exo. 2.1 Consider the function u(x) = |z| and its Py interpolant in the 1D simplexr K = (—h/2,h/2).
Compute ||u — Zru| 2k and |[u" — (Zgw)'|| 12k, compare to the previous estimates, and discuss briefly.
2.3.2 An L’-estimate without second derivatives

If the function to be interpolated does not have second derivatives in K, then ||u — Zxu||12(x) cannot be

expected to be of order O(y/|K|h%). The following estimate, proved in Buscaglia & Agouzal (IMA J.
Numer. Anal. 32, 672-686, 2012), has minimal requirements on both Px and u. Notice in particular that
Pr must contain the constants but not necessarily polynomials of degree 1.

Theorem 2.9 Assume that the basis functions {N?} (j = 1,....,d+ 1) of an element K satisfy: (H1)
NI(XF) = 05, (H2) 3", N (x) =1, (H3) 0 < NV(x) <1 for all j and for all x € K.
Then, for allu € WY'P(K) with p > d > 2,

p(d+1)

b—d [K[2 7 hie [Vl o) (2.8)

Hu — IKUHLQ(K) S
If Vu is bounded we can take p = 400 to get

ot — Treull ey < (d+ 1) V/IE e [Vl oo (2.9)

which is of order O(\/|K| hx).

2.3.3 General local interpolation estimates

Theorem 2.10 Let (K, Px,Y) be a Lagrange finite element such that (a) Pk contains all polynomials
of degree < k, and (b) it is affine-equivalent to the “master element” (K, P,¥.). Then, the Lagrange
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interpolant Treu(r) = - u(X7) N (x) satisfies
||U—IKU||L2(K) S Oh?l ||DZ+1UHL2(K) (210)

for all ¢ < k, with C' depending on ¢ but not on hx or u.

Similarly,
hf-{—l

|U — IKulHl(K) = ”VU — V(IKU)HLQ(K) < C pLK HDHluHLz(K) (211)

The proof of this theorem is somewhat involved. The interested reader may refer to Ciarlet [5] or to
Ern-Guermond [7].

2.4 Global interpolation error

The obtention of global interpolation estimates is quite straightforward, but needs a few definitions.

2.4.1 Considerations about meshes

A mesh T, of a domain € in R? is a collection of compacts (elements) K;, i = 1,..., N,, such that
N. . . Ne
O=JK, KnK;=0ifi£j 0Qc| oK, (2.12)
i=1 i=1

Def. 2.11 The global interpolation operator Z, : W — W, where
W={w e L'Q),w|x € V(K), VK € Ty}

Wy ={w € LYQ),w|K € Pg, VK € T}
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Tw= > > oxiv[K)Nk, (2.13)

KeTy, i

The subscript h refers to the mesh size. In fact, in error estimates one has to consider not a single mesh
but a family of meshes indexed by h, and study the error as h — 0. The geometrical properties of the
mesh refinement enter thus into consideration. Generally, the mesh-size parameter h is defined as

h = h 2.14

max fug (2.14)
For global estimates in H™(2) with m > 1 the ratio sx = Z—; will appear. This motivates the definition
of shape-regular (or, simply, regular) meshes:

Def. 2.12 A family of meshes Ty, parameterized by the parameter h € H (where H is some subset of R),
1s said to be shape-regular if there exists S € R such that
h

sK:p—gs VK € T,, Yh € H (2.15)
K

A shape-regular mesh (rigorously speaking, family of meshes) cannot contain needle-like elements. If the
elements are triangles, no angle can tend to zero, the so-called “minimum angle condition”. This condition
is known not to be necessary for the convergence of the finite element interpolant in H'(2), the necessary
one being that no angle in the triangulation tend to 7 (the so-called “maximum angle condition”).

2.4.2 From local to global

The local estimates already obtained can be turned global by simply collecting the contributions from all
elements in the mesh.
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Consider the estimate of Thm. [2.8(a), to begin with. One can build an L*(Q2) as follows:

d? d?
I = Znullpe(@) = max flu = Tcull o) < 5 max { R || D%l )} < 5 B 1Dl 10

which holds without any assumption on the mesh.
Similar estimates based on local to global reasonings are left as exercises.

Exo. 2.2 Starting from Thm. [2.§(b), prove that

(d+1)d*S

Ve = V(Zht)llp=(0) < == hIDll1x(0)
where S s the shape-regularity constant of the mesh.
Exo. 2.3 Using prove that
lu = Tyl 20y < (d+ 1) V2] B[Vl (@) (2.16)

Exo. 2.4 Starting from prove that, if the family of meshes is shape-reqular and the function u
smooth, then

|u - Ihu|H1(Q) S CcS hk ||Dk+1u||L2(Q) (217)

where S is the shape-regqularity constant of the mesh.

Exo. 2.5 Assume that there exists a straight line T (or planar surface in 3D) in the domain <), at which
there is a sudden change in material properties. As a consequence, u € H?*(Q\T)NC%(Q), but u ¢ H*(Q).
Discuss the interpolation estimate for such a function u, showing the advantages of using an “interface-
fitting mesh”; i.e., a mesh such that I coincides with inter-element boundaries and thus does not cut any
element.
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2.4.3 Global estimate

Let us state a global estimate more general than the one we have been building up to now.

Theorem 2.13 Let Ty, h > 0, be a family of shape-regular meshes of a domain Q2 C R". Let (IA(, ﬁ, EA])
be the reference element of the mesh, all the mappings F : K— K being affine. Let I, be the global
interpolation operator corresponding to Ty. Assume further that P, C p (i.e.; that the finite elements
are “of degree k7). Then, for each 1 < p < +00, and for each 0 < ¢ < k, there exists C' such that for
all h and all v € WHP(Q),

1

041 v

[v = Tl ooy + Y ™ ( > - zhvmm,,,m) < Ch Y olweriag) (2.18)
m=1 KeTy,

If p = 400,

+1 %

v = Zpv|| Lo () + Z ™ (I?Ga% lv — Ihv’%vmm(zﬂ) < Ch™ olwestoo (g (2.19)
m=1

Proof. See Ern-Guermond [7], p. 61. O
Notice that the previous theorem holds not just for simplicial elements but also for affine-equivalent quadri-
laterals, hexahedra, etc.

Exo. 2.6 Deduce from the theorem that, for Py and Q1 elements,
v = Zhv|l gy < Ch, lv = Zyv| r2(0) < C h?
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2.5 Inverse inequalities

Inverse inequalities are sometimes useful in the convergence analysis of finite element methods. They
provide bounds on operators that are unbounded in H™((2), with m > 0, but bounded in V}, due to its
finite-dimensionality. Intuitively, in a shape-regular mesh for a derivative duy/0z; to be “very large” the
nodal values of the u, must also be “very large”. R
Let (K , P,3) be the “reference” or “master” element. Let K be an element that is affine-equivalent to K,

as defined before, with F : K — K the corresponding linear mapping:
FK(I') = AKZE—f-bK

In such a setting, we have

Lemma 2.14

(a) K| h h
det A| = =,  [lAx] <=5, AR < =K
‘ | Pr PK

(b) There exists C, depending on s and p but independent of K, such that for allv € W*P(K),
~ s 1
|U|W~$P(I/€) < Ol Ag||* |det Ag | [v|wsr (k) (2.20)

C1us 1
vlwer) < CllAR | |d6tAK|p|U|Ws,p(f<) (2.21)

Proof. See, e.g., Ciarlet [5], p. 122. O
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Let us show how to take advantage of this result to prove some simple estimates.

Prop. 2.15 There exists C' > 0, independent of K, such that
C
IVurll 2y < — llonlle2cx (2.22)
PK
for any v, € Pg.
Proof. This proof uses the so-called scaling argument. From (2.21)) we have, taking s = 1 and p = 2,
_ 1o~
IVorllrae) < C AR I 1det Axl2 [ VO]l 2z (2.23)
Now let us show that there exists a constant C' such that
HVUAhHB(f() < CHUAhHm(f() (2.24)

For this, consider the set § = {w € Px | || 2z, = 1}, which is bounded and closed in the finite-

dimensional space Px. Let C be the maximum that the continuous function |V 12(k) attains in
S

Then, denoting by
1

- ||UAh||L2(f<)

~

Zh @

and noticing that z;, € S, we have that R
IVZull o) < C

and thus (2.24]) is proved. Inserting it into (2.23) and using (2.20]) one gets
~ 1, -~ _ 1 _1
IVorllra) < C C AR | |det A |2[|0h]| 12y < CF C | AR ([ Idet Ag|? |det Agc| ™2 [Jon]l 2y <
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C2Ch-
< CORR) e
PK

and the proof ends noticing that the product inside the parentheses is a constant independent of K and
Uh- O

Notice that there does not exist a constant C' that makes
C
[Vol[zexy £ — vl 2 (k) (2.25)
PK

in the infinite dimensional case, i.e., for any v in H'(K).

Exo. 2.7 Let K be the unit interval (0,1) in 1D. Build a sequence {¢y,} of functions such that ||y || L2(x) =
L and [V | L2y = n.

Argue that the existence of such a sequence is a counterexample to .

With a scaling argument one can prove the following discrete trace estimate.
Prop. 2.16 There exists C' > 0, independent of K, such that
_1
||UhHL2(F) S ChK2 ”Uh“L?(K) V’Uh € PK (226)
where F' is an edge (face in 3D) of K.

The proof is left as an optional exercise. Notice that, again, there is no chance of (2.26]) holding for all v
in an infinite-dimensional space, such as C*°(K) for example (build a sequence that shows this!).

Several other inverse inequalities can be extracted as particular cases of the following theorem (see, e.g.,
[ p. 75).
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Theorem 2.17 Let T, be a shape-reqular family of meshes in @ C R?. Then, for 0 < m < ¢ and
1 <p,q < oo, there exists a constant C' such that, for all h > 0 and all K € Ty,

noted(3=t)

[vllwerry < Chy || wm.acx) (2.27)

for allv € Pk.

This local estimate, to be made global, puts the restriction on the family of meshes that, as h — 0 the
diameter ratio between the largest and smaller hg in 7, remain bounded.

Def. 2.18 A family of meshes {Ty, }n>o is said to be quasi-uniform if it is shape-reqular and there exists
¢ such that
Vh, VK € T, hx >ch (2.28)

Exo. 2.8 Does the quasi-uniformity of the mesh imply the existence of C' > 0 such that
||V'Uh||L2(Q) S Ch_l ||Uh||L2(Q) V’Uh € Vh ? (229)
Exo. 2.9 Does the quasi-uniformity of the mesh imply the existence of C > 0 such that

thHLQ(BQ) S Ch_% ||UhHL2(Q) Vvh c Vh ? (230)
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3 Galerkin treatment of elliptic second-order problems

3.1 The continuous problem

We consider the following problem:

—div(KVu)+p-Vu+ou = f in Q2 (3.1)
u = g on I'p
(KVu) - n = H on I'y

where I'p and 'y are disjoint parts of 92, and I'p U 'y = 0S2.

Notice that, since K (x) is a n x n symmetric matrix and 3(x) is an n-vector, the problem above is a general
second-order partial differential equation.

Integrating formally by parts we get

/Q(Vv‘ (KVu)+vp-Vu+ouv) dQ = /va dQ—l—/ann- (KVu) dI'
We thus consider the bilinear form
a(u, v) = /Q (Vo (KVu) + v 8- Vu + ou) d0 (3.4)
Prop. 3.1 If K € (L®(Q))™", B € (L®(Q))" and 0 € L>®(Q), then a(-,-) is continuous on H'(Q).
Exo. 3.1 Prove the proposition.
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It is clear that, for the problem to admit a solution, the data g and I'p must be regular enough for a
function u, € H(Q) to exist satisfying u, = g on I'p. Such a function is called a “lifting” function, and
if it exists one says that g belongs to a “trace space”.

We now change the unknown to w = u — ug, so that

a(w,v) = / fo dQ +/ vn - (KVu) dl' — a(ug, v)
Q o9
and w = 0 on I'p. This leads us to consider the following problem: Find w € Hp,(2) such that
a(w,v) = / fudQ+ Huv dl' — a(ug,v) = £(v) (3.5)
Q 'y

where Hp, = {v € H'(Q),v =0on 'p}.

Prop. 3.2 Assume the data f,g, H,I'y and I'p are reqular enough for the right-hand side of to
be a continuous linear functional on H}y(Q). Assume further that the hypotheses of Prop. hold,
and that

divg € L>*(Q), p(x)-n(zx)>0 ae only
£ (K(x)€) > Ky |§|2 VE € R a.e. in ()

o(z) — %dwﬁ(x) > Smin a.e. in S (3.8)

where Ko and sy, are strictly positive constants. Then s well-posed.
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Proof. Notice first that H},(Q) is a closed subspace of H'(). To see this, consider the applications
Yo : HY(Q2) — L?(99) (the boundary trace operator, which is continuous as proved for example in Adams,
Brenner-Scott, etc.) and rp : L*(9Q) — L*(T'p), the restriction to I'p of a function in L*(Q2), which is
also continuous. The value of any function f € H*(Q2) on I'p is, then, yop(f) = rp(70(f)). The subspace
H},y(Q) is the pre-image of zero by 7op, and is thus closed.

To conclude the proof, it remains to show that a(-,-) is weakly coercive. In fact, a direct calculation shows
that a(-,-) is strongly coercive and thus Lax-Milgram lemma guarantees well-posedness. [

The condition

¢ (K(2)€) > Ko |¢]* > 0, Vé € R"; ae. in Q

is essential to the previous well-posedness result, as it applies only for elliptic second-order PDEs (not
hyperbolic, not parabolic). The condition Sy, > 0 is not essential, in the sense that if $,,;, < 0 what may
happen is that the homogeneous problem defined by f = g = H = 0 admits non-trivial solutions. It may
also happen that for certain data the solution does not exist, in much the same way as a linear system

A4z = b

with det(A) = 0 either does not have a solution, or has infinitely many (the solution is determined only
up to the addition of an arbitrary element of Ker(A)).

Exa. 3.3 The simplest and very important case that is not covered by Prop. is the purely diffusive
problem with Neumann data, corresponding to

=0 (no convection), o =0 (no reaction), Iy = 90Q (no Dirichlet boundary). (3.9)
The differential formulation is

— div(KVu) = f in (KVu)-n = H on 0N (3.10)
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which only admits a solution if

[ref =0
Q oN

and, in this case, the solution is determined up to an additive constant. Notice that the constant functions
are indeed solutions of the homogeneous problem (f = H = 0), and in fact the only solutions if 0 is
connected.

Exo. 3.2 Show that under the hypotheses of Prop. the bilinear form a(-,-) is indeed strongly coercive
(as claimed) and provide an estimate of the coercivity constant c.

Let now Hp, (Q) = {v € H'(Q);v = g ae. on I'p}. Setting u = uy + w it is clear that u solves the
following problem: Find u € Hp, () such that

a(u,v) = /va dQ + Huv dl' (3.11)

I'n

for allv € Hpo(9).

Further, if u belongs to H?(f2) integration by parts shows that the partial differential equation holds almost
everywhere in () and that the Neumann boundary condition is satisfied on I'y.

Notice that the Neumann boundary condition enters the right-hand side of , it is a natural condition
for this formulation, while the Dirichlet condition has to be imposed to the space in which the solution is
sought, it is an essential boundary condition. One could wonder whether the Neumann boundary condition
could also be imposed as an essential condition: The answer is that the set of functions in H'(2) which
satisfy n- (KVu) = H on 'y is not closed in H*(€2), implying that the tools we use to prove existence (the
Banach and Hahn-Banach theorems in the general case, the Lax-Milgram lemma in the strongly coercive,
Hilbertian case) do not apply.
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Exo. 3.3 Let Q= (0,1). Let p(z) = z. Show a sequence {p,} C H*(Q) such that ©,,(0) = 0 for all n and
such that o, — o strongly in H'(£2).
Hint: For 1/n =€ > 0 consider the “trimmed” function

(e if v <e
ﬂ¢”>‘{wu> o>

3.2 Ritz-Galerkin approximation

Let V,(€) be a finite element space contained in H'(£2), and let V},0(£2) be the subspace of V;,(§2) obtained
by putting to zero all degrees of freedom corresponding to values on I'p. Analogously, Vj,(€2) is defined
as the (linear) subset of V},(2) consisting of functions that coincide with some given interpolation I,g of g
on I'p. The Ritz-Galerkin approximation of u in V3(2) then solves:

Find u, € V3y(Q?) such that

alup,vp) = / fon dQ+ H vy, dT° (3.12)
Q a0

for all v, € Vio(92).

Applying Lax-Milgram lemma to the discrete problem immediately implies that it is well-posed. By Céa’s
lemma (Lemma [1.26]),

. N,
ol <2 int gl < =
8% v;LEth (%)) 0%

Thus, if the local space Pk on each element K of the mesh 7, contains all polynomials up to degree k and

the solution is smooth enough,
lu = uplls < Ch*fulps
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3.3 Aubin-Nitsche’s duality argument

The error bound in the H'(€2)-norm, as shown before, is naturally obtained in the Ritz-Galerkin formulation
of second-order PDEs. A first estimate in the L?(Q)-norm follows from the continuous injection of H'(£2)
into L*(2), yielding

lu = unllo < Ch*fuless

This estimate, however, is not optimal, since the interpolant of u (with u smooth) approximates u with
order h**! in the L?(Q)-norm. It is possible to obtain optimal-order estimates using a duality argument.
Let us show how it works in the simpler case 5 =0, g =0, ['p = 02. Let

Lu = —div(KVu) + ou

and assume that the domain is regular enough for £ to have a smoothing property, namely that the

continuous problem
Lw=F, w=0 onodd

satisfies
w2y < Csl| Fll 2 (3.13)

This latter inequality is sometimes called a reqularity estimate.
Exo. 3.4 Prove the smoothing property in 1D. More specifically, consider the problem
—(ku)Y 4+ou=f in Q= (0,1) (3.14)

with u(0) = u(1) =0, k,o0 € L>(Q) satisfying k(z) > v > 0 for all x and o(x) > 0 for all x. Further,
assume that k' € L>(Q), f € L*(Q). Notice that k'(x) must be bounded. Show that then there exists
C > 0 such that [[u"[r2) < C || fllr2) and provide an estimate for C. Show how this implies (3.13).

Remark 3.4 The smoothing property holds in 2D /3D if the boundary is very reqular, of class C?,
or if it is a convex polygon/polyhedron.
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Prop. 3.5 Under the above hypotheses, there exists C' > 0 such that
lw = unllo < Chllu— unlly (3.15)
Proof. Let w be the unique solution of
Lw=u—u, w=0 on Jf)
where we have used the error e = u — uy, as source term. The corresponding variational formulation is
a(w,v) = (e,v)y Vv € Hy(Q)

Taking v = e we see that a(w,e) = ||e]|2, but also, since the bilinear form is symmetric (otherwise one
needs a smoothing property for the adjoint differential operator, but the proof is essentially the same),

a(w,e) = ale,w) = a(u — up, w) = alu — up, w — Zyw)

where we have introduced the interpolant of w and used the “orthogonality” property of the Galerkin
approximation (a(u — up, v) = 0 for all v). Finally

lu = unl3 = ale,w — Tyw) < NllellsJw = Zywlly < NallellihlJw]ls
where the last inequality follows from an interpolation estimate for w. Combining with ,
lu = unllg < CsNahllell1]lello
OJ

Exo. 3.5 Let F(v) = [, 9( ) dSY, where v is a function in L*(Q). For example, if 1 = 1 then F(v)
s simply the mtegral of v. How does F(uh) converge to F(u) when Vj, contains all piecewise polynomials
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of degree k and ||u — uy|; < C h*?
Hint: Use a variant of Nitsche’s trick. Let w be the solution of

a(w,v) = F(v) Vo € V= H)(Q)

which is the weak form of
Lw =1 in2, w=0 ond

so that, from the smoothing property, ||w| g2@) < C ||9||r2(q). Then use the following calculation
Fu—wup) = alw,u —up) = a(w — Zyw,u — up) < Ny|lw — Zhwl||1||u — up|s

to prove that, if ¢ is smooth (at least as smooth as f), then |F(u) — F(up)] < C h2*.
Another question: What is the expected order of convergence for F(u) = fwu dQ2, with w a region of the
domain? (Answer: h**1 why?).

3.4 The case s, = 0. Poincaré inequality.

In the case sy = 0 we have to prove strong coercivity without counting on the reaction term, so that we
start from the estimate

a(v,v) > / Vv (KVv)dQ  Yv € Hp(Q)
Q
which in turn implies

a(v,v) > Ky / |Vo? dQ = Ky |v]3
0

Essentially, we need an estimate of the form |v|; > ¢||v||; for some ¢ > 0. This is provided by Poincaré-
Friedrichs inequality:

Lemma 3.6 (Poincaré-Friedrichs inequality) In a connected bounded domain, if meas(I'p) > 0 then
there exists a constant cp > 0 such that [|[Vv|lo > cpllv|lo for allv € Hpy ().
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Proof. We will prove it in the case I'p = 9. We show it first for ¢ € D(Q) and then extend it to H} ()
by a density argument. We consider ¢ extended by zero to R" and assume that the domain is contained
in the strip a < z; < b (in other words, a < z; < b for all x € Q). Then, since

X1 a(p

o(T1, Ty ..., xy) = a—xl(t,xg,...,xn) dt

we have, using Cauchy-Schwarz inequality,

2

xr1
@2(']:171‘27' . an) < |$1 - Cl| / dt

dp
a—xl(t,l’g, . ,In)

integration over s to x, gives

/¢2dx2...dxn§\x1—a|/ /

A final integration over z; yields
2
Q 2 Q

proving that cp > £ Now we consider v € H}(Q) and ¢,, — v, then

Oy

2
ds?
(91’1

dtdzy ... dx, < |r; —a| —_—
Q| 0r

2

9% 1" 40

(9:1:1

1
ollo < llnllo + v = @nllo < ZlVeonllo + llv = nllo <

1 1 1 ) 1
—[[Vllo +[[v = @nllo + +—I[IVv = Viou[lo < —|[[V0|o + min {1, —} [l = @nlh
Cp Cp Cp Cp

and since ||[v — p,||1 can be made arbitrarily small, the claim is proved. O
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Remark 3.7 Using Poincaré-Friedrichs inequality, it is easily shown that the bilinear form
a(v,w):/[VU-(KVw)+UB-Vw+va] ds2 (3.16)
Q

is strongly coercive in H}p(Q2) whenever meas(I'p) > 0, B(z) -n(x) > 0 a.e. onTy, Ko > 0 and sy > 0.

Exo. 3.6 Prove the previous remark in detail.
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4 Finite elements for linear elasticity

4.1 Introduction and differential formulation

We recall the usual notations for the Cauchy stress tensor o and the linearized strain tensor
1
€(u) = 5 (Vu+ Vu) (4.1)

where u in this case is a vector field corresponding to the displacement of the body. We also recall the
elastic constitutive law for small deformations,

o = Ar(e(u)) I+ 2ue(u) = Adivu I+ p (Vu+ Vu') (4.2)
where A and p are the Lamé coefficients, which in general depend on the point x and by thermodynamic
reasons are constrained to satisfy, for almost all x,

2
ple) >0 M) + g p(w) 20 (4.3)

Differential Formulation: The governing equation follows from the static equilibrium balance, which reads

dive+ f =0 (4.4)

where f is a vector field of applied forces. Replacing the expression of o in terms of u one obtains an
equation for the displacement field. This problem admits both Dirichlet and Neumann boundary conditions
on u:

u=g on I'p; o-n=F on 'y (4.5)

where F is a field of surface forces applied on 'y, Iy NI'p = 0 and 'y UT'p = 9Q. The domain
corresponds to the region of space occupied by the body under consideration, both before and after the
application of the forces since just problems with small displacements are being considered.
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Exo. 4.1 Let uy, us be the components of u in a planar elasticity case in which the domain is the unit
square. The boundary conditions are: zero displacement on the bottom boundary (o = 0), and a normal
force equal to P on the rest of 0S). Write down the system of two equations and two unknowns for uy and
uy considering A and p independent of x1 and xs.

Hint: Equation , written in Cartesian indices, becomes

d
Zﬁjaij—l—fi:() \V/Zzl,,d

J=1

and (4.2) becomes,

Oij = /\(81114 + 82u2) (5@' + 1% (ﬁyul + @uj) .

It remains to replace the latter into the former. For the boundary force we have that, if x = (x1,25) € 0Q
then at x we have

(O' . Il)l = [()\ + 2[1)81114 + /\82U2] ny + 12 (agul + 8111,2) Ng = — Pn1

(o -n)y = [Aorug + (N + 2u)0us] ng + g (Goug + d1uz) ng = — Pngy

As a consequence, along x; = 0 (left boundary), the boundary conditions are
()\ + 2#)8111,1 + )\82U2 = —P, 02U1 + 01U2 =0

the conditions at the other boundaries are analogous.
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4.2 Variational Formulation

The variational formulation of this problem can be obtained from the corresponding PDE by integration
by parts. In Mechanics, however, it is considered a fundamental principle: The Principle of Virtual Work

(or of Virtual Power)

Principle of Virtual Power: The internal virtual power of the stresses ([,o : €(v)) plus the
virtual power of the acceleration ( fQ pa-v) equals the virtual power of the applied forces. This holds
for all virtual velocity fields, that is, all vector fields v that are kinematically admissible variations of

the body motion.

/a':e(v)+/pa-v:/f-v—l— F v Vv € VAR (4.6)
Q Q Q Tn

The kinematically admissible motions must belong to

KIN = Vp, ={v € [H'(Q)]"v=gon'p} (4.7)
so that their variations must belong to

VAR = Vpy={v € [H'( Q)] v=0o0nTp} (4.8)

The variational formulation of linear elastostatics then reads:
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“Find v € Vp, such that
a(u,v) = / frvdd+ F-vdl =:{(v) (4.9)
Q I'n
for all v € Vpy”, where
a(u,v) = / o(u) : €(v) dQ :/ Adivu divoe + 2ue(u) : €(v)] d (4.10)
Q Q

4.3 Well-posedness and Galerkin approximation
Theorem 4.1 (Korn’s inequality) Let Q2 be a domain in R™. There exists C > 0 such that
[olly < Cxlle(@)]lo Yo € Hy(Q)" (4.11)

It is not necessary that v be zero on the whole of 0€2, the same result holds if meas(I'p) > 0 (in connected
domains), so that we have strong coercivity of the bilinear form on V. This gives the result below.

Theorem 4.2 Let Q) be a reqular domain on which the elasticity problem is posed with meas(I'p) > 0,
f € L2Q)" and F € L*(Tn)". We assume that the Lamé coefficients are bounded and satisfy (4.5). Then

there exists a unique solution u, and there exists ¢ > 0 such that

[ully < ¢ ([lfllo + [[Fllo.ry) (4.12)

Proof. V= Vpg is a Hilbert space, the bilinear form is continuous with

CL(U, ’U) < CmaX{Amam,U/maX} HVUHO HVUHO
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From Korn’s inequality we also have

a(v,v):/Q[A(divv)2—i—2ue(v):e(v)] 40 > cppl|v]?

It only remains to apply Lax-Milgram lemma.

O
Let B
Vi, ={w, € CO(Q)”,Uh|K € (Pg)",vp =0o0n I'p}. (4.13)

Since V,, C V| we have well-posedness and convergence of the discrete problem.
Prop. 4.3 The solution u, € Vi4 satisfying
a(uh,vh) = K(Uh) Yo, € Vi (414)

exists and is unique. It satisfies limy,_so ||u — up|l1 = 0. If u € HY(Q)" for some ¢ < k, with k such that
Py(K) C Pk, then there exists ¢ > 0 such that

lu = unlly < ¢ hflule (4.15)

Exo. 4.2 Build an extremal formulation of the linear elasticity problem.
Hint: Consider

A
J(w) = / [— (divw)? + pe(w) : e(w)] Q) — / frwdQ— F-wdl (4.16)
aQl?2 Q I'n
where the first integral is the “strain energy” of the body. The solution u is the displacement field that
minimizes J over Vp,,

J(u) = inf J(w) (4.17)

wGVDg
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4.4 Implementation aspects

A significant difference between the elastostatics problem and the convection-diffusion-reaction problem
discussed earlier is that the elasticity unknown is a vector field.

Let {N7} (j = 1,..., M) be the scalar basis functions associated to a mesh 7,. The space V}, is now of
dimension n X M, as to each node j correspond n basis functions:

N/ (2) = N (z) &' = (NV(x),0) o N/ () = N7 (z) &" = (0, N7 (x)) (4.18)

where we have chosen the local basis {&*} equal to the canonical basis (€5 = d,p), but any other can be
chosen and sometimes is.

Exo. 4.3 Compute the following in terms of the scalar basis {N7}:
o div(N/*) (Answer: = O,N7)
o e(N/)
o [, div(N?) div (N*F)
o [ €(NJ2) : ¢(NFF)
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5 Finite elements for mixed problems

5.1 Constraints and Lagrange multipliers

It is typical of applications of the FEM involve constraints on the admissible set of solutions. Let us briefly
describe some examples.

5.1.1 Incompressible elasticity

There exist elastic materials which behave as incompressible, in the sense that they preserve their volume
in every deformation. Under the hypothesis of small deformations, the preservation of volume is equivalent
to the deformation field having zero divergence,

divu =0 a.e. in () (5.1)
Considering the energy functional (where )\ is assumed independent of = for simplicity)
A
J(w) =2 /(divv)2 40 + /MHG(U)H? d0 — / fovdo— [ Fovdr (5.2)
2 Ja ) Q I'y

the incompressible behavior corresponds rigorously speaking to A — 400 and, in practice, to a very large
value of A\, much larger than the shear modulus pu.
Incorporating the divergence-free constraint into the set of admissible displacement fields,

Zp, S {0 € Vi, | dive = 0 ae. in Q) (5.3)

and dropping the irrelevant first term in J, i.e., defining

J(v):/ﬂ,ue(v):e(v) dQ—/Qf-de— A F v dl, (5.4)

we have
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Extremal Formulation of incompressible elasticity: Find u € Zp, that minimizes J over Z Dgs 1.€.,

J(u) < J(v) Vv € Zp, (5.5)
Notice that nothing changes if J is replaced by J in 1) Defining
a(u,v) = / 2 €e(u) : e(v) dQ, and ((v) = / f-vdQ+ F-vdl (5.6)
Q Q 1B
we have )
J(v) = 55(7},2}) —{(v) (5.7)
and also the
Variational Formulation of incompressible elasticity: Find v € Zp, such that
a(u,v) = L(v) Vv € Zpo (5.8)

It can be shown that problem (/5.8)) is indeed well posed, so that a unique solution u exists. However, the
imposition of the zero-divergence constraint on the space creates several difficulties for the finite element

discretization.
It is thus convenient to replace the EF by the following equivalent one:
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Mixed Extremal Formulation of incompressible elasticity: Let b(-,-) : H*(2)4 x L*(©2) — R be defined
by

b(v,q) = /quivv s (5.9)

and let us introduce the Lagrangian £ : H'(Q)? x L*(Q) — R as

L(v,q) = J(v) —blv,q) = %ZL’(U,U) —l(v) — b(v,q) (5.10)

Then (5.5) is equivalent to “Find (u,p) € Vp, x L*(Q2) that is an extremal point (saddle point) of £”,
or, in other words,

L(u,p)=J(u)= inf Jw)= inf sup L(v,q) (5.11)

VE Zpy vEVDy q€L2(Q)

The extremality conditions for £ are
L(u + tv,p) — L(u,p)

dE(U,O) :111% : =0 Yv € Vpo (512)
t —
dL(0,q) = lim Llup+ qt) Ewp) o vy e 2o (5.13)

lead to the mixed variational formulation.

Mixed Variational Formulation of incompressible elasticity: Find (u,p) € Vp, x L*(Q) such that
a(u,v) —b(v,p) = L(v) Vv € Vpo (5.14)
blu,q) = 0 Vg € L*(Q) (5.15)
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The enforcement of incompressibility in this formulation is not built in the space for w, which is Vp, and
not Zpy, but instead in equation (5.15)), because

b(u,q) = / qdivudQ=0 Vqe L*(Q) <& divu=0 ae. in Q (5.16)
Q

Integrating by parts the left-hand side of ([5.14]) one arrives at the

Differential Formulation of incompressible elasticity:

—dive(u) + Vp = f, where o (u) =2 pe(u) (5.17)
divu = 0 (5.18)

u = g on I'p (5.19)

(—pI+o) n = F on I'y (5.20)

It is important to notice that the incompressibility constraint “materializes” in the equilibrium equation
(5.17)) as the gradient of the unknown pressure p, and at the force boundary as a normal contribution —p n.
In mechanical terms, this means that the Cauchy stress tensor of an incompressible elastic material is

oc=—-pl + 0 = —pI + 2p€(u) (5.21)

Exo. 5.1 Show that the extremality conditions — are equivalent to the mized formulation equa-
tions -(5.15).

Exo. 5.2 Show that, with sufficient regularity of u and p, implies and .
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5.1.2 Dirichlet conditions as constraints

Up to now we have imposed the Dirichlet condition directly on the formulation space, but this condition
can also be seen as a constraint and given a treatment similar to that of the previous paragraph.

Let us illustrate this possibility in the case of a purely diffusive problem, for which the DF, VF and EF
read

Differential Formulation:

—div (KVu)=f in Q, u=g on 0N (5.22)

Variational Formulation: Find u € V, = {v € H'(Q), v =g on 90N} such that

a(u,v):/QKVwVU dQ:/QfU dQ = L(v) Vo e W (5.23)

Extremal Formulation: Find u that minimizes J over V,, where

J(v) = = a(v,v) — £(v) (5.24)

N | —

To remove the Dirichlet constraint from the space, we introduce the Lagrangian
L(v,¢) = J(v) = b(v —g,() (5.25)

where

b(v—g,¢) = (v =9) dl' = (¢, v = 9) 1200y (5.26)

¢
o0
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In fact, the mixed formulation that will soon be introduced is defined on a larger space than L*(92),
denoted by H~/2(92). The scalar product of L?(92) can be continuously extended as a “duality pairing”
(¢, w) between ¢ € H~Y2(0Q) and w which is in the space of traces of functions belonging to H'(f2),
denoted by H'/2(0€2). Whenever ¢ belongs to L*(9Q), b(w, () = ({,w)2(s0) but, in general,

b(w,¢) = (w,¢) (5.27)

Now we can write down the mixed extremal formulation of the Dirichlet problem and the mixed variational
formulation that results from the corresponding extremality conditions.

Mixed Extremal Formulation: Find (u, \) that minimizes £(-,-) over H'(Q2) x H~Y/2(08), i.e.,

L(u,\) =J(u) = inf sup  L(v,() (5.28)
ve HY(Q) ¢e H-1/2(09)

Mixed Variational Formulation: Find (u,\) € V x Q = H'(2) x H~Y/2(0%) such that

a(u,v) —blv,\) = {(v) Yo eV (5.29)
b(u,¢) = b(g,Q) V(e Q (5.30

and integrating by parts a(u,v) we arrive at the
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Mixed Differential Formulation:

—div (KVu) = f in Q (5.31)
ou

K o A =0 on 0N (5.32)

u = g on 0% (5.33)

which brings as new information that the Lagrange multiplier A is in fact equal to the diffusive flux Ko, u
across Of).

Exo. 5.3 Show how to derive the mixed VF from the mized EF.

Exo. 5.4 Show how to derive the mixed DF from the mized VF.
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5.2 Abstract mixed formulation

Generalizing the previous examples, one considers the problem

Abstract Mixed Problem: Find (u,p) € V x @ such that

a(u,v) —b(v,p) = {(v) Yo eV (5.34)
b(u,q) = g(q) Vg€ Q (5.35)

where a: V xV = R, b:V x @ — R are continuous bilinear forms, £ € V', g € @'.
When a(-, ) is symmetric, it is equivalent to the extremization of

J(v) = %a(v, V) — £(v) (5.36)

over the (constrained) set
Zy={v € V| bv,q) = g(q) Vq € Q} (5.37)

and to the extremization over V' x @ (i.e., unconstrained) of the Lagrangian

L(v,q) = J(v) —bv,q) + g(q) (5.38)

The first logical question is whether ((5.34)-(5.35) is well-posed. We consider both the cases where V' and
@ are infinite-dimensional (the continuous case) and finite-dimensional (the discrete case).
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Theorem 5.1 If a(-,-) is strongly coercive in Zy,
a(v,v) > a|v|[¥ Yo € Zy (5.39)

with o > 0, and Z’
b

IO BN (5.40)
€Qvev ldllg [lvllv

then -[5-38) is well-posed.

The proof of this result relies on applying Thm. to the setting defined by the product space W =V x Q,
the bilinear form B : W x W — R defined by

B((u7p)7 (U7 Q)) = CL('LL, ’U) - b(U,p) - b(ua Q) (541>
and the linear form S € W’ defined by

S(v,q) = L(v) — g(q). (5.42)

Exo. 5.5 The Abstract Mized Problem - is equivalent to the problem: Find (u,p) € W
such that
B((u,p), (v,q)) = S(v,q) V(v.g) € W (5.43)

Now it only remains to prove that,
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Theorem 5.2 (Brezzi) Under hypotheses and (5.40), the bilinear form B(-,-) is weakly coercive
on'V x Q.

Proof. To simplify things we assume that (5.39)) holds Vv € V. Taking (u,p) arbitrary in V x @, we
choose w € V such that ||w|yv = ||pllg and —b(w, p) > 7||p||*>. Then, taking n = ay/N2, we get
2

Bl o) = 5 min {1, 25 )l
Besides,
It )l < (14 5 ) Hwp)lvs

so that

inf sup B((u,p), (v,q)) > inf B((u, p), (u+nuw,p)) S %min{l’%}
o) oy T D) T @) = o s ) o)l = 1+ 53

and condition ([1.21)) is satisfied. Since B is symmetric, the proof is complete. As a by-product, we observe
that the coercivity constant of B(,-) can be chosen as

>0

. 2
S min {1, Xf—a}
g = a (5.44)
1+ 32
0
Exo. 5.6 Prove that, for all (u,p) and (v,q) inV X Q,
B((u,p), (v, q)) < (Na + 2Ny) [[(u, p)llvxq [[(v; @) llvxq (5.45)
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5.3 Abstract Galerkin approximation
Now we consider the following setting:
H1 Let (u,p) € V x @ be a solution of
B((u, p), (v,q)) = S(v,q) V(v,q) € VxQ (5.46)
with the definitions (5.41)-(5.42), assuming all linear and bilinear forms involved are bounded.
H2 Let V;, € V and @), C @ be subspaces satisfying
b(vn, qn)

0l ooh Tonlle Ny — ™" (547
and
a(vp, vy) > ap ||onlli- Vo, € Zy, (5.48)
with oy > 0 and
Zn =A{vn € Vi | b(vp,qn) =0 Yaqn € Qn}- (5.49)

Theorem 5.3 Under the hypotheses H1 and H2 above, the Galerkin approzimation (up,pn) € VixXQp
defined by
B((un, pr); (s qn)) = S(vn, qn) V (vn,qn) € Vi X Qn (5.50)

exists and is unique. Further, there exists C' = C(Ngy, Ny, o, ) such that

o= wllv+ =l < € ( inf lu=vlly + inf o= aile) (5.51)
vp €V, qn €Qn
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Exo. 5.7 Prove the previous theorem. Hint: Use Lemma m The hypothesis H2, together with ([5.44)
applied to the discrete problem and ((5.45)) allow to estimate

C=14+4+——=1+ 2
Bn ay, mm{ N—h}

N, + 2N, 2 (No + 2Ns) ( “”’L) (5.5)
1
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