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2 Finite Element Spaces

2.1 Introduction

A numerical method is a Galerkin finite element method if:

1. It is based on a variational formulation, i.e., Find uh ∈ Vh such that

a(uh, vh) = `(vh) ∀ vh ∈ Vh (2.1)

where a : Vh × Vh → R is linear in its second argument and ` : Vh → R is a linear functional. Both,
a and ` corresponds to the exact problem.

2. The discrete space Vh is a finite element space.

As an example, consider the 1D model problem previously introduced: “Determine uh ∈ Vh⊂ H1(0, 1),
such that uh(0) = 0 and that ∫ 1

0

(u′h v
′
h + θ uh vh) dx =

∫ 1

0

f vh dx (2.2)

holds for all vh ∈ Vh satisfying vh(0) = 0.”

In the following sections the aim is to construct finite element spaces Vh to solve this problem. We begin
with a few simple examples, introduce the concept of degrees of freedom and also some classical finite
element basis.
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2.2 1D examples

2.2.1 A space of polynomial functions in (a, b)

Consider the interval (a, b). We define the space as

Vh = Pk(a, b) = {v, v =
k∑
i=0

αk x
k} (2.3)

e.g. k = 1

P1(a, b) = {v, v = α + β x} (2.4)

This space has dimension 2. Once we have defined the space, we proceed like this:

1. Define a set of degrees of freedom {σ1, σ2} (i.e., a set of linear functionals of Pk in R).

2. Define {φ1(x), φ2(x)} by the relation: σi(φ
j) = δij

(this is the Kronecker delta property, i.e., δij = 1 if i = j and 0 otherwise).

For instance, we can consider as degrees of freedom the value of the function at the end points of the
interval:

σ1(v) = v(a) (2.5)

σ2(v) = v(b) (2.6)

To compute the basis, consider functions φj(x) = αj + βj x. In order to find αj and βj, j = 1, 2 we have
two 2× 2 systems to solve:
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a b

P1(a, b)

σ1(φ1) = α1 + β1 a = 1, σ1(φ2) = α2 + β2 a = 0

σ2(φ1) = α1 + β1 b = 0, σ2(φ2) = α2 + β2 b = 1
Therefore, the basis is:

φ1(x) =
b− x
b− a

, φ2(x) =
x− a
b− a

(2.7)

The last choice seemed arbitrary, but it is a very practical one. If we want to describe a function in that
space, the only thing I need is the value of the function at x1 = a and x2 = b, since φi(xj) = δij, i.e.

v(x) =
2∑
i=1

U j φj(x) = U1︸ ︷︷ ︸
v(a)

φ1(x) + U2︸ ︷︷ ︸
v(b)

φ2(x) = v(a)φ1(x) + v(b)φ2(x)

As an exercise, compute the matrix A for our model problem, i.e.

Aij = a(φi, φj), i, j = 1, 2
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a b

φ1(x) φ2(x)

We will write A as sum of two matrices

A = K + θM (2.8)

where

Kij = ad(φi, φj) =

∫ b

a

(φi)′(φj)′ dx, Mij = ar(φi, φj) =

∫ b

a

φi φj dx

calculating the integrals

K11 = ad(φ
1, φ1) =

∫ b

a

(φ1)′(φ1)′ dx =
1

b− a
,

K12 = K21 = ad(φ
2, φ1) =

∫ b

a

(φ2)′(φ1)′ dx = − 1

b− a

K22 = ad(φ
2, φ2) =

∫ b

a

(φ2)′(φ2)′ dx =
1

b− a
and similarly we compute

M11 = ar(φ
1, φ1) =

∫ b

a

φ1φ1 dx =
b− a

3
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M12 = M21 = ar(φ
1, φ2) =

∫ 1

0

φ1φ2 dx =
b− a

6

and so on ..., finally giving

A =

 1
b−a − 1

b−a

− 1
b−a

1
b−a

+ θ

 b−a3
b−a

6

b−a
6

b−a
3


All these computations at individual intervals or elements will be useful later on when we construct
aproximations on spaces defined on a collection of such elements.

Exo. 2.1 Compute the basis when we choose as degrees of freedom:

σ1(v) = v

(
a+ b

2

)
(2.9)

σ2(v) = v′
(
a+ b

2

)
(2.10)

Exo. 2.2 Consider the space P2(a, b) = {v, v = α0 + α1 x + α2 x
2} . Compute the basis {φ1, φ2, φ3} when

we choose as degrees of freedom

σ1(v) = v(a) (2.11)

σ2(v) = v

(
a+ b

2

)
(2.12)

σ3(v) = v(b) (2.13)
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2.2.2 A polynomial space by parts

Consider the intervals (a, b) and (b, c) and define the space

Vh = P disc

k = {v, v|(a,b) ∈ Pk(a, b), v|(b,c) ∈ Pk(b, c)}

Consider again the case k = 1 for simplicity. The space has dimension 4. This is more or less evident if
we notice that functions in this space are:

v =

{
α + β x if x ∈ (a, b)

γ + ε x if x ∈ (b, c)

a cb

Pdisc1

Notice that such functions are not necessarily continuous at x = b and therefore we have 4 degrees of
freedom. For instance, choose for them:
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σ1(v) = v(a)

σ2(v) = v(b−)

σ3(v) = v(b+)

σ4(v) = v(c)

Now, we can compute the basis by using the relation σi(φ
j) = δij. We write the basis function as

φj(x) =

{
αj + βj x if x ∈ (a, b)

γj + εj x if x ∈ (b, c)

For j = 1, . . . , 4 we have

σ1(φj) = αj + βj a = δ1j

σ2(φj) = αj + βj b
− = δ2j

σ3(φj) = γj + εj b
+ = δ3j

σ4(φj) = γj + εj c = δ4j


α1 + β1 a = 1

α1 + β1 b = 0

γ1 + ε1 b = 0

γ1 + ε1 c = 0

,


α2 + β2 a = 0

α2 + β2 b = 1

γ2 + ε2 b = 0

γ2 + ε2 c = 0

,


α3 + β3 a = 0

α3 + β3 b = 0

γ3 + ε3 b = 1

γ3 + ε3 c = 0

,


α4 + β4 a = 0

α4 + β4 b = 0

γ4 + ε4 b = 0

γ4 + ε4 c = 1

,

By inspection we find that the basis is:
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φ1(x) =


b− x
b− a

if x ∈ (a, b)

0 if x ∈ (b, c)

, φ2(x) =


x− a
b− a

if x ∈ (a, b)

0 if x ∈ (b, c)

φ3(x) =


0 if x ∈ (a, b)

c− x
c− b

if x ∈ (b, c)

, φ4(x) =


0 if x ∈ (a, b)

x− b
c− b

if x ∈ (b, c)

a cb a cb a cb

φ2(x) φ3(x) φ4(x)

a cb

φ1(x)

Now, if we define

V1 = {v, v|(a,b) ∈ P1(a, b), v(x) = 0 ∀x /∈ (a, b)}
V2 = {v, v|(b,c) ∈ P1(b, c), v(x) = 0 ∀x /∈ (b, c)}

which are the extensions by zero of the space P1 we have defined at the beginning of the section, we can
also define the space P disc

1 as their direct sum, i.e.

P disc

1 = V1 ⊕ V2 = {v, v = v1 + v2, vi ∈ Vi}
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This already illustrates the importance of working on individual elements to further define more general
spaces.

Now, let us try to find an approximation uh of u from this space to solve our model problem when θ = 0,
but, first of all, recall the exact problem we are dealing with: “Determine u ∈ V = H1(0, 1), such that
u(0) = 0 and that ∫ 1

0

u′ v′ dx =

∫ 1

0

f v dx

holds for all v ∈ V satisfying v(0) = 0.” In this case we are taking a = 0, c = 1. Notice that the integral
above can be written as ∫ 1

0

u′ v′ dx =

∫ b

0

u′ v′ dx+

∫ 1

b

u′ v′ dx

and similarly for the integral in the right hand side. Motivated by this, consider the following Galerkin
formulation: “Determine uh ∈ Vh = P disc

1 , such that uh(0) = 0 and that∫ b

0

u′h v
′
h dx+

∫ 1

b

u′h v
′
h dx =

∫ b

0

f vh dx+

∫ 1

b

f vh dx

holds for all vh ∈ Vh satisfying vh(0) = 0.”

The discrete solution we are looking for is uh ∈ Vh and can be written as

uh =
4∑
i=1

Ujφ
j(x)

(i) First, we have to include the boundary condition in the definition of the space, for which we define

Vh0 = {v ∈ P disc

k , v(0) = 0}
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Notice that this removes one degree of freedom, so this subspace has dimension 3 and it is spanned
by {φ2, φ3, φ4}. This is like taking U1 = 0 above.

(ii) Second, we have to compute the coefficients ad(φ
i, φj) of the matrix K ∈ R3×3 appearing in the linear

system

K U = F

Considering the basis of Vh0 to be the set of functions {ψ1, ψ2, ψ3} = {φ2, φ3, φ4}, we compute the
matrix:

K =


ad(φ

2, φ2) ad(φ
3, φ2) ad(φ

4, φ2)

ad(φ
2, φ3) ad(φ

3, φ3) ad(φ
4, φ3)

ad(φ
2, φ4) ad(φ

3, φ4) ad(φ
4, φ4)

 (2.14)

and calculating the integrals we obtain ...

K11 = ad(φ
2, φ2) =

∫ b

0

(φ2)′(φ2)′ dx+

∫ 1

b

(φ2)′(φ2)′ dx =

∫ b

0

(φ2)′(φ2)′ dx+ 0 =
1

b
,

K12 = K21 = ad(φ
3, φ2) =

∫ b

0

(φ3)′(φ2)′ dx+

∫ 1

b

(φ3)′(φ2)′ dx =

∫ b

0

0 (φ2)′ dx+

∫ 1

b

(φ3)′ 0 dx = 0

K13 = K31 = ad(φ
4, φ2) =

∫ b

0

(φ4)′(φ2)′ dx+

∫ 1

b

(φ4)′(φ2)′ dx =

∫ b

0

0 (φ2)′ dx+

∫ 1

b

(φ4)′ 0 dx = 0

11



... and so on, giving

K =


1
b

0 0

0 1
1−b − 1

1−b

0 − 1
1−b

1
1−b

 (2.15)

Notice that the term K11 = ad(φ
2, φ2) is exactly what we had computed before when introducing the

P1(a, b) space simply with a = 0, so, we could just have reused that result. Similarly for the second
diagonal 2× 2 block of (2.15),  1

1−b − 1
1−b

− 1
1−b

1
1−b


which is exactly the matrix we have computed before but in the interval (b, c) instead of (a, b) and taking
c = 1.

Finally, notice also that K is singular!

• Why did it fail?

• Is the space that we used a subset of H1(0, 1)?

Answer: Functions in this space are discontinuous at x = b, therefore this space is not in H1(0, 1).
Actually we have the following important theorem:

12



Theorem 2.1 Let v be a piecewise-polynomial function on a partition of a domain Ω, then

v ∈ H1(Ω) ⇐⇒ v ∈ C0(Ω̄)

A more general version of the theorem as well as a proof for the 2D case and P1 elements will be given
later.

In the previous example, since functions in the space are discontinuous, their derivatives appearing in the
integrals are Dirac delta functions at x = b, so, the integrals are not defined, however, since we partitioned
the integrals, we naively proceed with the calculations and obtained a singular matrix. Following with this
naive approach, it is interesting also to perform the computation of the system matrix when θ = 1 and see
what happens, for which it only remains the computation of matrix M

Mij =

∫ 1

0

φi φj dx =

∫ b

0

φi φj dx+

∫ 1

b

φi φj dx

Again, we can reuse the results already obtained when describing the space P1 for a single interval. The
final matrix will be the sum of the previously computed K and M .

A = K +M =


1
b

+ b
3

0 0

0 1
1−b + 1−b

3
− 1

1−b + 1−b
6

0 − 1
1−b + 1−b

6
1

1−b + 1−b
3

 (2.16)

In this case, the matrix is not singular. For instance, if we take the function in the right hand side of the
variational formulation to be the constant function f = 1 and we calculate the coefficients `(φi) of vector
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F ∈ R3 we get

F1 = `(φ2) =

∫ 1

0

φ2 dx =
b

2

F2 = `(φ3) =

∫ 1

0

φ3 dx =
1− b

2

F3 = `(φ4) =

∫ 1

0

φ4 dx =
1− b

2

Taking now e.g. b = 0.5 and finally solving AU = F we obtain U =
[
0.1154 1 1

]T ⇒ uh = 0.1154φ2(x)+
φ3(x) + φ4(x), which is plotted below and compared with the exact solution for this problem.

This last example serves to illustrate that even when we are able to obtain some result, the approximation
we are obtaining lacks of meaning as a consequence of an incorrect choice of the discrete space considered
to solve the problem.

In the next section we remedy this by defining a space of continuous functions.
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2.2.3 A P1 continuous space

Consider the intervals (a, b) and (b, c). In the previous example “glue” the degree of freedom at x = b, of
the interval to the left and to the right of this point, by imposing the restriction v(b−) = v(b+). In this
case we only have three degrees of freedom:

σ1(v) = v(a)

σ2(v) = v(b)

σ4(v) = v(c)
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a cb

P1

a cb

Pdisc1

therefore the space has dimension 3. This choice automatically leads to a space of continuous functions in
(a, c) which we describe as

Vh = {v, v|(a,b) ∈ P1(a, b), v|(b,c) ∈ P1(b, c)} ∩ C0(a, c)

Again, considering

v(x) =

{
α + β x if x ∈ (a, b)

γ + ε x if x ∈ (b, c)

By inspection we find that the basis is:

φ1(x) =


b− x
b− a

if x ∈ (a, b)

0 if x ∈ (b, c)

, φ2(x) =


x− a
b− a

if x ∈ (a, b)

c− x
c− b

if x ∈ (b, c)

, φ3(x) =


0 if x ∈ (a, b)

x− b
c− b

if x ∈ (b, c)
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which clearly satisfies that σi(φ
j) = δij.

a cb

φ2(x) φ3(x)

a cb

φ1(x)

a cb

Exo. 2.3 Compute the matrix A for the model problem in this case and compare it with the one obtained
when using the P disc

1 space. By computing the solution you will notice how good the approximation from
this space is as illustrated below.

Now, we generalize this to partitions of the interval with an increasing number of subintervals:

2.3 1D finite element meshes

Let consider a partition Th of Ω = [0, 1], i.e., an indexed collection of intervals

Ω̄ =
N⋃
j=1

Ij

where Ij = [xj, xj+1] and the Nv nodes (arbitrarily numbered) are 0 = x0 < x1 < x2 < · · · < xN < xN+1 =
1. Define hi = xi+1 − xi and

h = max
j
hj

which is a measure of how fine the partition is.
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2.3.1 A P disc
1 (Th) (totally discontinuous) space in 1D

With the partition of Ω just defined, we begin by defining the spaces:

Vi = {v, v|Ii ∈ P1(Ii), v(x) = 0 ∀x /∈ Ii}

where P1(Ii) = P1(xi, xi+1) is the space P1 for an individual interval the we introduced before.

Now, we define a totally discontinuous space associated to the partition Th as the direct sum of these Vi’s:

Xh(Th) = V1 ⊕ V2 + · · · ⊕ VN = {v, v = v1 + v2 + · · ·+ vN , vi ∈ Vi}

This space has dimension equal to N × 2, but it is not in H1(0, 1).

18



Exo. 2.4 Which degrees of freedom can be chosen in this case?

2.3.2 P1(Th) conforming space in 1D

Now, if we “glue” the local degrees of freedom of the individual intervals at the corresponding common
nodes of Th, which is equivalent to choosing as degrees of freedom the values of the function at these
nodes, we naturally define a space of continuous functions

Vh = P1(Th) = Xh(Th) ∩ C0(0, 1)

and the basis functions will be

φi(x) =



x− xi−1

hi−1

if x ∈ Ii−1

xi+1 − x
hi

if x ∈ Ii

0 otherwise

• The dimension of Vh is equal to Nv;

• Since the degress of freedom are the values of the function at the nodes of Th and the φi’s are linearly
independent, any function in Vh is uniquely determined precisely by these values, i.e.

v =
N+1∑
i=0

U i φi(x) =
N+1∑
i=0

v(xi)φi(x)
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• These functions are linear on each interval (or element) and continuous, but their derivatives are not
defined in the classical sense at all points. Is Vh ⊂ H1(0, 1)?

The answer is YES, as theorem 2.1 states.

We can use this space (introducing first the boundary conditions into its definition) to solve our model
problem (see Exo. 1.16), and study ‖u − uh‖H1(0,1) as we refine the partition. One would expect that
the Galerkin approximation uh from this space will converge to the solution u when h→ 0, which for this
particular case is intuitive, because any continuous function can be approximated by polygonals with an
increasing number of nodes.

We will study this in a more general setting in the following sections.

Exo. 2.5 Do Exo. 1.16 and read Duran’s notes!
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2.4 2D examples

2.4.1 P1 element for a triangle

Consider a triangle K in R2 with vertices (x1,x2,x3). We want to find a basis for

Vh = P1(K) = {v : K → R, v = α + βx+ γ y} (2.17)

The space has dimension 3.

Again we start by defining the degrees of freedom. As done in previous examples we use the value of the
function at a set of points, the vertices in this case

σi(v) = v(xi) (2.18)

and the basis for P1(K) is defined by the relation σi(φ
j) = δij. The coefficients of the basis functions are

determined by solving the 3× 3 systems:

α1 + β1 x
1 + γ1 y

1 = 1, α2 + β2 x
1 + γ2 y

1 = 0, α3 + β3 x
1 + γ3 y

1 = 0

α1 + β1 x
2 + γ1 y

2 = 0, α2 + β2 x
2 + γ2 y

2 = 1, α3 + β3 x
2 + γ3 y

2 = 0

α1 + β1 x
3 + γ1 y

3 = 0, α2 + β2 x
3 + γ2 y

3 = 0, α3 + β3 x
3 + γ3 y

3 = 1

Notice that for simplicity of notation above we have used (xi, yi) instead of (xi1, x
i
2).
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Exo. 2.6 Write these functions for the master triangle K̂ having as vertices ((0, 0), (1, 0), (0, 1)).

Exo. 2.7 Repeat the calculations for quadrilateral elements considering the bilinear functions v(x, y) =
α0 + α1 x + α2 y + α3 x y and the value of the function at the vertices of the quadrangle as degrees of
freedom.

Exo. 2.8 The values of the function at the vertices are not the only possible choice as degrees of freedom.
Considering as degrees of freedom the line integrals

σ1(v) =
1

‖x2 − x3‖

∫ x3

x2

v(s) ds (2.19)

σ2(v) =
1

‖x3 − x1‖

∫ x1

x3

v(s) ds (2.20)

σ3(v) =
1

‖x1 − x2‖

∫ x2

x1

v(s) ds (2.21)

Calculate the basis for a P1(K)-triangle. This is called the Crouzeix-Raviart element.
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2.5 2D finite element meshes

Let consider a domain Ω ⊂ R2 and for simplicity assume its boundary ∂Ω is a polygonal curve. Now,
consider a partition Th = {Ki}Ni=1 of Ω, such that

Ω̄ =
N⋃
i=1

K̄i

where Ki ∩Kj = ∅ if i 6= j. Th is called a triangulation of Ω.
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Given a triangulation like those shown, which types of spaces Vh can be constructed?

• We can construct spaces of discontinuous functions. If the partition has Ne triangular elements
and we consider P1-triangles for instance, we will have 3 (local) degrees of freedom per single triangle.
Then a space of totally discontinuous functions associated to the partition Th will be the direct sum
of (local) P1 spaces VK = {v : K → R, v|K ∈ P1(K), v(x) = 0 ∀x /∈ K}, K = 1, . . . , Ne, i.e.,

Xh(Th) = V1 ⊕ V2 + · · · ⊕ VN = {v, v = v1 + v2 + · · ·+ vN , vi ∈ Vi}

and its dimension will be Ne×3, but, remember that this space will not be in H1(Ω) (see appendix).

• Also, we can construct spaces of continuous functions, but, it happens that this is not trivial in
general for the so called nonconforming meshes, for which we have the following definition:

Def. 2.2 A partition Th of a domain Ω is conforming if K̄i ∩ K̄j is either

• empty, or,

• a vertex, or
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• a complete edge.

otherwise the partition is said to be nonconforming
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2.5.1 P1(Th) conforming space in 2D

We proceed similarly to the 1D case. Given a conforming triangulation Th of a polygonal domain we
can build a space of continuous functions. Start with the space

X(Th) = {v, v|Ki
∈ P1(Ki) ∀Ki ∈ Th} (2.22)

where v|K denotes the restriction of v to K and P1(K) is the space of polynomial functions of degree ≤ 1
on triangle K that we have already defined in subsection 2.4.1

We define as degrees of freedom the value of the function at the nodes of the triangulation.

Since we are assuming now that Th is conforming, each vertex of any triangle can only be
a vertex of other triangles an cannot be on an edge. Thus, we can “glue” the (local) degrees of
freedom of the individual triangles. This naturally leads to the following description of the space we have
constructed

Vh = X(Th) ∩ C0(Ω̄) = {v ∈ C0(Ω̄), v|K ∈ P1(K) ∀K ∈ Th}

We can construct a basis for this space immediately. Let us assume Th has Nv vertices whose coordinates
are {xi}Nv

i=1. Let φi, i = 1, . . . , Nv be the functions that satisfies

φi(xj) = δij (2.23)

whose restriction to element K having j as one of its vertices is the corresponding function in P1(K) and 0
otherwise. Any function v =

∑Nv

i=1 v(xi)φi(x) ∈ Vh is uniquely determined by the degrees of freedom that
are precisely the values of the function at the Nv nodes of Th. Notice that

• {φj}Nv
j=1 are linearly independent;
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• Vh = span{φj} = {vh, vh =
∑Nv

j=1 a
j φj};

• dim(Vh) = Nv.

Exo. 2.9 Show that functions of Vh are actually continuous at the common edge between two triangles of
Th.

Exo. 2.10 Noticing that the support of function φj are all the elements sharing node j, what are the
consequences for the matrix A (Aij = a(φi, φj)), when choosing such space to compute an approximation
to u?
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2.6 More examples of finite elements and their associated global spaces

2.6.1 P2 triangular element

Consider a triangle K in R2 with vertices (x1,x2,x3). We want to find a basis for

Vh = P2(K) = {v : K → R, v = α0 + α1x+ α2 y + α3 x
2 + α4y

2 + α5 x y}
The space has dimension 6 since an element of P2(K) is determined by six independent parameters. Any
function is uniquely determined by its values at:

• the vertices of the triangle;

• the midpoints of the three edges.

Take two points xi and xj. If a function v belongs to P2(K) then

v
(
(1− s) xi + sxj

)
∈ P2(s) = {w, w = β0 + β1 s+ β2 s

2}
where 0 ≤ s ≤ 1, this is, the function restricted to the straight segment joining xi and xj of the triangle,
is a parabolic function, which is uniquely determined by its values at the three points.

When considering the master triangle K̂ used above we have:

ψ̂1 = (1− x̂− ŷ) (1− 2x̂− 2ŷ), ψ̂2 = x̂ (2x̂− 1), ψ̂3 = ŷ (2ŷ − 1)

ψ̂4 = 4 x̂ ŷ, ψ̂5 = 4 ŷ (1− x̂− ŷ), ψ̂6 = 4 x̂ (1− x̂− ŷ)

(2.24)

These functions clearly satisfy φi(~pj) = δij, where ~pj corresponds to the vertices for j = 1, 2, 3 and to the
midpoints of sides for j = 4, 5, 6.
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Exo. 2.11 How the vertices are numbered in this master triangle?

Given a conforming triangulation Th, we want to construct a space of continuous functions as we did
before, i.e., “gluing” together the degrees of freedom of all the P2(K)-triangles in Th, that share a vertex
or a midpoint. In order to do so, simply fix the value of the function at all vertices and at all midpoints
(on edges shared by two triangles). The resulting function will be continuous and belong to the space:

Vh = P2(Th) = {v ∈ C0(Ω̄), v|K ∈ P2(K) ∀K ∈ Th}

Exo. 2.12 Which is the dimension of Vh?
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2.6.2 Triangular elements of arbitrary degree

We can generalize the finite element spaces we have considered to construct space of continuous piecewise
polynomial functions of arbitrary degree k on a triangle. The placement of the nodes on the triangle is
determined by:

(i) On each edge there must by k + 1 nodes since a one dimensional polynomial of degree k has k + 1
degrees of freedom. Each edge has two vertices and the other k − 1 nodes will be regularly spaces
between them;

(ii) A polynomial of degree k in two variables is determined by

1 + 2 + 3 + · · ·+ (k + 1) =
(k + 1)(k + 2)

2

parameters. Therefore, the number of interior nodes will be (k+1)(k+2)
2

− 3k.

When using these Lagrange triangles the stiffness matrix K (Kij = ad(φ
i, φj)) may become ill conditioned

as the finite element mesh is refined and is a consequence of the basis choosen. This problem can be
circunvented by choosing other basis functions.
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Given a triangulation of a domain Ω it is interesting to know the relation between the number of vertices
Nv, the number of edges Nedges, the number of elements Ne. This is given by the Euler relations:

Lemma 2.3 Euler relations.
Let Th be a conforming partition of a polygonal domain Ω ⊂ R2, then

Ne −Nedges +Nv = 1− I
N∂
v −N∂

edges = 0

where I is the number of holes in Ω. In particular, if the elements are polygons with ν vertices

2Nedges +N∂
edges = ν Ne
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2.7 General definition of a Finite element

Def. 2.4 (Ciarlet) A finite element in Rd (typically d = 1, 2 or 3) is a triplet (K,PK ,ΣK) where

(i) K is a closed bounded subset of Rd with a non-empty interior and Lipschitz boundary;

(ii) PK is a finite dimensional space of functions defined over K of dimension n;

(iii) ΣK is a set of n linear functionals {σi}i=1,...,n such that for any real scalars αi, i = 1, . . . , n there
exist an unique function p ∈ PK that satisfies

σi(p) = αi (2.25)

We say that ΣK is PK-unisolvent.

Def. 2.5 The linear forms {σ1, σ2, . . . , σn} that are a basis for P ′K are called the degrees of freedom.

Exo. 2.13 Show that (iii) is equivalent to:

σi(p) = 0⇔ p = 0, i = 1, . . . , n (2.26)

Prop. 2.6 There exists a basis {ψ1, ψ2, . . . , ψn} in PK such that

σi(ψ
j) = δij, 1 ≤ i, j ≤ n (2.27)
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Def. 2.7 {ψ1, ψ2, . . . , ψn} are called the basis functions.

Def. 2.8 Let {K,PK ,Σ} be a finite element. If there is a set of points {~a1, . . . ,~an} in K such that for all
p ∈ PK, σi(p) = p(~ai) i = 1, . . . , n, {K,PK ,Σ} is called a Lagrange finite element.
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2.8 Affine family of finite elements
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The concept of affine family of finite elements is important because:

• The computation of the coefficients of the linear systems is done on a reference finite element.

• For such affine families, the interpolation theory that is the basis of most convergence theorems is
easier to develop.

Def. 2.9 A family of finite elements is called an affine family if all its elements are affine equivalent to a
single reference or master element.

An affine transformation FK : K̂ → K of the reference element K̂ with vertices x̂i onto an element K with
vertices xi is defined by:

FK(x̂) = BK · x̂ + bK , BK ∈ Rd×d, b ∈ Rd (2.28)

We have

d = 1, BK = x2 − x1, bK = x1

d = 2, BK =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
, bK =

[
x1

y1

]
Note that in this case we have[

x
y

]
=

[
x1

y1

]
(1− x̂− ŷ) +

[
x2

y2

]
x̂ +

[
x3

y3

]
ŷ =

3∑
j=1

xj ψ̂j(x̂)

Exo. 2.14 Write the affine mapping for a tetrahedral element (see figure in previous slide to see the
definition of the master or reference element).
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2.8.1 Properties of the affine mapping

(a) Vertices are mapped onto vertices:

xi = FK(x̂i)

(b) Midpoints of sides are mapped onto midpoints of sides:

xij =
xi + xj

2
= FK

(
x̂i + x̂j

2

)
= FK(x̂ij)

(c) Barycenters are mapped onto barycenters

xijk =
xi + xj + xk

3
= FK

(
x̂i + x̂j + x̂k

3

)
= FK(x̂ijk)

(d) For a function ψ defined on K, we define ψ̂ on K̂ by

ψ̂(x̂) = ψ (FK(x̂)) = ψ(x)

Therefore, if function ψ is a polynomial of degree k on K, ψ̂ is also a polynomial of degree k on K̂.

(e) The derivatives of ψ and ψ̂ are related by

∇ψ(x) = B−TK · ∇̂ψ̂(x̂) (2.29)
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(f) |detBK | = meas(K)

meas(K̂)

Exo. 2.15 Show all the previous properties.

Proof. of property (e). First note that:

x̂ = B−1
K · x + b̃K

where b̃K = −B−1
K · bK . Using index notation

x̂k =
[
B−1
K

]
k`
x` +

[
b̃K

]
k
⇒ ∂x̂k

∂x`
=
[
B−1
K

]
k`

Now, applying the chain rule

∂ψ

∂xk
(x) =

∂ψ̂

∂x̂`

(
F−1
K (x)

) ∂x̂`
∂xk

=
∂ψ̂

∂x̂`

(
F−1
K (x)

) [
B−1
K

]
`k

=
[
B−TK

]
k`

∂ψ̂

∂x̂`

(
F−1
K (x)

)
or

∇ψ(x) = B−TK · ∇̂ψ̂
(
F−1
K (x)

)
The case of P1 linear elements is particularly simple

ψ̂1 = 1− x̂− ŷ, ψ̂2 = x̂, ψ̂3 = ŷ

whose gradients are:

∇̂ψ̂1 =

[
−1
−1

]
, ∇̂ψ̂2 =

[
1
0

]
, ∇̂ψ̂3 =

[
0
1

]
so, the only thing we have to do in order to compute ∇ψj, j = 1, 2, 3, is trasposing the inverse of BK and
multlying by those constant vectors.
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�

Prop. 2.10 If K and K̂ are affine equivalent and if the triplet (K̂, P̂ , Σ̂K) is a finite element, then we can
define (K,PK ,Σ) and it is a finite element.

Proof. Let FK : K̂ → K be the affine mapping. We have to show how to contruct PK and Σ based on P̂
and Σ̂. We define for any v̂ ∈ P̂ the function v ∈ PK by v(x) = v̂

(
F−1
K (x)

)
PK = {v : K → R, v̂ ∈ P̂} (2.30)

and
ΣK = {σ : PK → R, σ(v) = σ̂(v̂) ∀ v̂ ∈ P̂ and σ̂ ∈ Σ̂} (2.31)

�

Two comments are in order here:

• As we said before, computation of the coefficients of A when solving discrete variational problems

is easily done when working in the master element K̂. We rarely compute the basis functions on
the real element K. All the information we need regarding the element geometry is in the affine
mapping.

• When constructing the degrees of freedom in this way, the only ones that are preserved when passing
from one element to the other are the degrees of freedom involving the values of the function at a set
of points, i.e., the Lagrangian degrees of freedom. The case of the so called Hermitian elements,
involving the derivatives of the function at a set of points as degrees of freedom, have to be considered
differently.
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2.9 Practical aspects

Now, we discuss practical aspects and introduce some “technology” needed for the actual computation
of matrix A considering some of the finite element spaces constructed. Here, we will be using affine
families of finite elements.

Computation of matrix A tyically involves integrals of the type

Aij = a(φi, φj) =

∫
Ω

[
φi(x)φj(x) +∇φi(x) · ∇φj(x)

]
dΩ

So, consider now a finite element partition Th of Ω, i.e.

Ω̄ =
N⋃
i=1

K̄i

Let us consider the first term in the integral above. We can compute then the integral summing over all
the elements

Mij =

∫
Ω

φi(x)φj(x) dΩ =
∑

Km∈Th

∫
Km

φi(x)|Km φ
j(x)|Km dK (2.32)

The notation above is redundant, because we are integrating on Km. Now, we make use of the affine
mapping we have previously introduced. The idea is to transform the integral over Km into an integral
over K̂ which is easier to handle. By doing the change of variables∫

Km

φi(x)|Km φ
j(x)|Km dK =

∫
K̂

φi(FK(x̂))φj(FK(x̂)) |JKm | dK̂

where
|JKm| = |detBKm|
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i.e., the determinant of the Jacobian of the affine transformation for element K.

The idea is to use the basis functions defined on the master element and not the functions defined on the
real element. As an example, consider the case of a triangular mesh Th and P1 linear elements. We have
constructed basically two types of spaces (see figure below):

• Space of totally discontinous functions

Xh(Th) = P disc

1 (Th) = {v, v|Ki
∈ P1(Ki), v(x) = 0 if x /∈ Ki ∀Ki ∈ Th}

which is spanned by a set of n = 3 × Ne basis functions {φ1, φ2, . . . , φn} = {ψ1
K1
, ψ2

K1
, ψ3

K1
, . . . ,

ψ1
KNe

, ψ2
KNe

, ψ3
KNe
}, where there is a correspondence between the supraindex of φi and the supraindex

and subindex of ψrKm
, say i = iglob(r,Km). Each set {ψ1

Km
, ψ2

Km
, ψ3

Km
} is a a set of local basis

functions on Km, for which we have the set {ψ̂1
K̂
, ψ̂2

K̂
, ψ̂3

K̂
} of functions defined on the master element

K̂ because both are affine equivalent, i.e.

ψrKm
(x) = ψrKm

(FKm(x̂)) = ψ̂r
K̂

(x̂), r = 1, 2, 3

Now, A will be constructed by summing over all the elements, however, in this case the support of
any function is a single element, so, if supp (φi) = supp (φj) = Km, we have

Aij =

∫
Km

φi|Km φ
j|Km dK =

∫
Km

ψ r
Km

ψ s
Km

dK =

∫
K̂

ψ̂ r
K̂
ψ̂ s
K̂
|JKm | dK̂

otherwise Aij will be zero.

Exo. 2.16 How the structure of matrix A will be in the last case?
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• Space of continous functions

Vh(Th) = P1(Th) = X(Th) ∩ C0(Ω)

which is spanned by a set of n = Nv basis functions {φ1, φ2, . . . , φn}. Again, A will be constructed
by summing over all the elements. In this case the support of basis function φi are all the triangles
that share vertex i, so, coefficient Aij will be

Aij =
∑
Km ∈

(supp(φi) ∩
supp(φj))

∫
Km

φi|Km φ
j|Km dK

but φi|Km = ψrKm
and φj|Km = ψsKm

for some r and s, then∫
Km

φi|Km φ
j|Km dK =

∫
Km

ψ r
Km

ψ s
Km

dK =

∫
K̂

ψ̂ r
K̂
ψ̂ s
K̂
|JKm| dK̂

As seen, in either case, what just need to compute elemental contributions to matrix A by integrating the

basis functions defined on the master element K̂.
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K̂

ψ̂r
K̂

Km

φi (or ψrKm
)

ii

φi (s.t. φi|Km
= ψrKm

)P1(Th) Pdisc1 (Th)

Km

s

r

FK

r

r

t ts

s

t

i =iglob(r,Km) corresponds to a global index

r, s, t correspond to local indices

FK
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Now consider the term involving the derivatives of the basis functions. We have

Kij =

∫
Ω

∇φi(x) · ∇φj(x) dΩ =
∑

Km∈Th

∫
Km

∇φi(x)|Km · ∇φj(x)|Km dK (2.33)

Exo. 2.17 Is the last operation legal for any φ?

Once again, we transform the integral over Km into an integral over K̂, for which we need the previous
result obtained in 2.29,∫

Km

∇φi(x)|Km · ∇φj(x)|Km dK =

∫
Km

∇ψrKm
(x) · ∇ψsKm

(x) dK =

=

∫
K̂

[B−TKm
· ∇̂ψ̂r

K̂
(x̂)] · [B−TKm

· ∇̂ψ̂s
K̂

(x̂)] |JKm| dK̂

Again, we work with the local basis functions.

2.9.1 Numerical integration

Although, the master element K̂ has a simpler shape, integrals are sometimes difficult to be perfomed
exactly. Even when the coefficients of matrix A involve the integration of polynomial functions, the right
hand side may involve any function u:

Fi =

∫
K

u(x)φi(x)|K dK =

∫
K̂

u(FK(x̂))ψrK(FK(x̂)) |JK | dK̂ =

∫
K̂

û(x̂) ψ̂r
K̂

(x̂) |JK | dK̂

In theses cases we use numerical integration.

Def. 2.11 Let K̂ be non-empty compact connected subset. Let ng be an integer. A quadrature on K̂ with
ng points consists of:
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(i) A set of ng real numbers {w1, w2, . . . , wng} called quadrature weights;

(ii) A set of ng points {x̂1, x̂2, . . . , x̂ng} called Gauss points or quadrature nodes.

The largest integer such that

∀p̂ ∈ P̂k
∫
K̂

p̂(x̂) dK̂ =

ng∑
g=1

wg p̂(x̂g)

is called the quadrature order and is denoted by r. It can be shown that

1

meas(K̂)

∣∣∣∣∣
∫
K̂

f(x) dK̂ −
ng∑
g=1

wg f̂(x̂g)

∣∣∣∣∣ ≤ c hr+1

K̂
sup

x̂∈K̂, |α|=r+1

|Dαf(x̂)|

where hK̂ is the diameter of K̂ (the largest side) and c > 0 is a constant.

Here we see again the practicity of working on the master element, since in this case we
define the rules only once and for all.

These quadratures are tabulated. In 1D we have the so called Gauss-Legendre quadratures. Considering
the master element being the interval (−1, 1) quadratures of order r = 3, 5 and 7 are displayed in the table
below. The quadrature points are zeros of Legendre polynomials.
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n Points ξi Weights wi
2 0.5773502692 1.0000000000
−0.5773502692 1.0000000000

3 0.7745966692 0.5555555556
0.0000000000 0.8888888889
−0.7745966692 0.5555555556

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549
−0.3399810436 0.6521451549
−0.8611363116 0.3478548451

5
.

• These rules can be adapted to other intervals rather than the reference one by simple change of
variables ∫ b

a

f(x) dx =
b− a

2

∫ 1

−1

f

(
a+ b

2
+
b− a

2
ξ

)
dξ

• The cartesian product of 1D quadratures can be used in 2D and 3D so as to construct quadratures
on quadrilateral and hexahedral elements.
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2.10 1D Hermite elements

For the so called Lagrangian elements, proposition 2.10 shows how to construct a finite element (K,PK ,ΣK)
based on (K̂, P̂ , Σ̂). We used these elements to construct global spaces of functions associated to partitions
of Ω made of intervals in 1D, triangles or quadrilaterals in 2D, etc.. When constructing such spaces we
enforce some continuity restrictions at the interfaces between adjacent elements. In more general situations,
when using as degrees of freedom the values of the derivates of the functions at a set of points, we need
to add a modification which is called scaling. Since the master element is always the same but the real
elements can have different sizes or shapes, if we want to preserve the derivatives of the functions at certain
point when passing from K̂ to different elements K’s so as to create a space with C1 continuity, we need
to ensure that derivates are continuous at interlement boundaries.

We will restrict to the 1D case for simplicity sake. Set P̂ = P3(K̂), being the master element K̂ = (0, 1)
and consider the degrees of freedom

σ̂1(v̂) = v̂(0), σ̂2(v̂) = v̂′(0)

σ̂3(v̂) = v̂(1), σ̂4(v̂) = v̂′(1)

The local basis functions are therefore

ψ̂1
K̂

= (2 x̂+ 1) (x̂− 1)2, ψ̂2
K̂

= x̂ (x̂− 1)2

ψ̂3
K̂

= (3− 2 x̂) x̂2, ψ̂4
K̂

= (x̂− 1) x̂2

This is called the Hermite element.

Exo. 2.18 Check that σ̂i(ψ̂
j
K) = δij
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Remember how we defined ΣK : considering a basis of linear functionals σ̂i ∈ Σ̂, i = 1, . . . , n, we define
σi ∈ ΣK as:

σi(v) = σ̂i(v̂) ∀ v̂ ∈ P̂
Instead of doing this, the idea is to perform a scaling, this is, define a set of coefficients αi, i = 1, . . . , n
and the degrees of freedom σi ∈ Pk such that

σi(v) = αi σ̂i(v̂) ∀ v̂ ∈ P̂

In this way (K,PK ,ΣK) will also be a finite element. Consider now a partition Th of Ω, i.e., a 1D finite
element mesh made of nonoverlapping intervals. In this case, we choose as coefficients αi on each element
K the followings:

α1 = α3 = 1, α2 = α4 =
1

hK
where hK is the size of element K. The local basis functions defined on K are therefore, for any x ∈
K, x = FK(x̂)

ψ1
K(x) = ψ̂1

K̂
(x̂), ψ2

K(x) = hK ψ̂
2
K̂

(x̂)

ψ3
K(x) = ψ̂3

K̂
(x̂), ψ4

K(x) = hK ψ̂
4
K̂

(x̂)

We may now define a space of functions associated to this partition which will be C1. The space is described
by

Vh = {v, v|K ∈ P3(K), ∀K ∈ Th} ∩ C1(Ω)

At node i, shared by the subintervals (or elements) Kl (left) and Kr (right), we define two basis functions

φi,0(x) =



ψ3
Kl

if x ∈ Kl

ψ1
Kr

if x ∈ Kr

0 otherwise

, φi,1(x) =



ψ4
Kl

if x ∈ Kl

ψ2
Kr

if x ∈ Kr

0 otherwise
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The set {φ0,0, φ0,1, φ1,0, φ1,1, . . . , φNv ,0, φNv ,1}, where Nv is the number of nodes, is a basis for Vh.

Exo. 2.19 Show that a function vh ∈ Vh is defined by its value and that of its derivative at the nodes of
Th.
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3 Projection of functions onto Finite element Spaces

We have to use the previous ingredients to solve our discrete variational problems. This is a good excuse
to introduce a particular type of variational problem of interest to us, that is related to the problem of
finding the best approximation of a function u from a finite element space Vh. In the next section we
introduce these problems and show how they are computationally solved.

3.1 Definitions

We begin by recalling the definition of scalar or inner product.

Def. 3.1 Scalar product Let V be a vector space. A mapping (·, ·) : V ×V → R is called a scalar product
in V if for any f , g and h ∈ V holds:

(i) (f, g) = (g, f) (symmetry)

(ii) (αf + βg, h) = α(f, h) + β(g, h) (linearity in the first argument)

(iii) (f, f) ≥ 0, (f, f) = 0 if and only if f = 0 (positive definition)

These inner products are actually bilinear forms.

Examples:

• L2(Ω)-inner product

(f, g)L2(Ω) =

∫
Ω

f g dΩ
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• H1(Ω)-inner product

(f, g)H1(Ω) =

∫
Ω

(f g +∇f · ∇g) dΩ

Exo. 3.1 Check that the L2(Ω) and H1(Ω) inner products satisfy the definition of inner product.

Def. 3.2 Orthogonality: Two vectors f and g are said to be orthogonal if (f, g) = 0

We have already mentioned some norms that are induced by these inner products, (i.e. ‖x‖ = [(x, x)]
1
2 ):

• L2(Ω)-norm

‖f‖L2(Ω) =

√∫
Ω

f 2 dΩ

• H1(Ω)-norm

‖f‖H1(Ω) =

√∫
Ω

(f 2 + ‖∇f‖2) dΩ

We can also define a distance d(·, ·) between elements of the space as:

d(f, g) = ‖f − g‖ =
√

(f − g, f − g)
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3.1.1 The best approximation from a finite element space

Now, consider a space V and a finite dimensional subspace Vh like those finite element spaces introduced
in the previous sections. Given a function u ∈ V , we want to find the best approximation to u from this
subspace Vh. The ideia is to find uh ∈ Vh such that the distance to u is minimum.

Theorem 3.3 There exists one and only one element uh ∈ Vh such that

d(u, uh) ≤ d(u, vh) ∀vh ∈ Vh (3.1)

and uh is the orthogonal projection of u over Vh.

We want to see how to construct uh. So, let us suppose that uh that satisfies (3.1) exists. In that case, the
functional

j(s) = d(u, uh + s vh)
2 = ‖u− (uh + s vh)‖2 (3.2)

will have a minimum at s = 0 ∀vh ∈ Vh, i.e., if uh minimizes d(u, uh)
2, then j(0) ≤ j(s) ∀s ∈ R. Using the

linearity and symmetry of the inner product we show that

j(s) = d(u, uh + s vh)
2 = (u− (uh + s vh), u− (uh + s vh)) = (u− uh, u− uh)− 2 s (u− uh, vh) + s2 (vh, vh)

= ‖u− uh‖2 − 2 s (u− uh, vh) + s2 ‖vh‖2

Now, to have a minimum of this functional for all vh ∈ Vh when s = 0, its derivative with respect to s is
necessarely equal to zero at that value of s, i.e.,

dj

ds
(0) = −2 (u− uh, vh) = 0 ∀ vh ∈ Vh

So uh satisfies

(uh, vh) = (u, vh) ∀vh ∈ Vh
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This means that the difference between u and uh is necessarely orthogonal to all vh ∈ Vh.

Notice that this is a variational problem like those we have presented: “Determine uh ∈ Vh, such that

a(uh, vh) = l(vh)

holds for all vh ∈ Vh”. In this case, the bilinear form a(·, ·) and the linear form `(·) are based on the inner
product: 

a(uh, vh) = (uh, vh)

`(vh) = (u, vh)

Examples:

• Best approximation in the L2(Ω)-norm: “Determine uh ∈ Vh, such that∫
Ω

uh vh dΩ =

∫
Ω

u vh dΩ

holds for all vh ∈ Vh”. The solution uh of this problem will minimize ‖u− vh‖L2(Ω) over Vh.

• Best approximation in the H1(Ω)-norm: “Determine uh ∈ Vh, such that∫
Ω

(∇uh · ∇vh + uh vh) dΩ =

∫
Ω

(∇u · ∇vh + u vh) dΩ

holds for all vh ∈ Vh”. The solution uh of this problem will minimize ‖u− vh‖H1(Ω) over Vh.

We are familiar with these problems, the only difference is that function u is given to us. We
also know under which conditions the problems are well-posed so as their solution exists and is unique, we
require:
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(i) The linear functional ` to be continuous;

(ii) The bilinear form a to be continuous and strongly coercive;

For instance, for the L2(Ω)-inner product, it is easy to show that the bilinear form is strongly coercive,
since

a(uh, uh) =

∫
Ω

u2
h dΩ = ‖uh‖2

L2(Ω) ⇒
a(uh, uh)

‖uh‖2
L2(Ω)

= 1 ∀uh ∈ Vh

so, the coercivity constant is simply α = 1.

Exo. 3.2 What about the continuity of ` in the last case?

Another way of seeing this is by looking at the associated linear system. Consider a basis {φ1, φ2, . . . , φn}
of the finite dimensional space Vh and write uh as linear combination of theses functions

uh =
n∑
i=1

Uj φ
j (3.3)

we end up with a linear system of equations as already shown in previous lectures

AU = F

whose matrix A (Aij = (φi, φj)) is nonsingular. To prove that matrix A is nonsingular for any scalar
product on Vh we will show that A is symmetric and positive definite. The symmetry is obvious because
the inner product is symmetric by definition. Now, for any wh =

∑
iWi φ

i ∈ Vh, wh 6= 0 we have

W T AW =
∑
i,j

WiAijWj =
∑
i,j

Wi (φ
i, φj)Wj =

(∑
i

Wiφ
i,
∑
j

Wjφ
j

)
= (wh, wh) > 0
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then A is positive definite.

For the L2(Ω) best approximation we have

Aij =

∫
Ω

φi(x)φj(x) dΩ, Fi =

∫
Ω

u(x)φi(x) dΩ

For the H1(Ω) best approximation we have

Aij =

∫
Ω

[
φi(x)φj(x) +∇φi(x) · ∇φj(x)

]
dΩ, Fi =

∫
Ω

[
u(x)φi(x) +∇u(x) · ∇φi(x)

]
dΩ

Computation of these integrals we have already learned in previous sections by using the affine mapping.
We will apply that to solve a few examples.

Exo. 3.3 What about continuity and coercivity of a in the last case?
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3.2 Assembly of finite element matrices

In this section we explain the assembly process used to construct the linear system of equations associated
to one of the variational problems described above.
The ingredients involved in this construction are:

1. A partition Th of Ω made up of elements Km, m = 1, . . . , Nel that are affine equivalent to a master
element K̂.

2. A space of functions associated to the partition: Vh(Th), dimVh = N (it can be a space of totally
discontinuous or continuous functions).

3. An incidence or connectivity matrix conec of dimension Nel × nloc that describes the relation
between the elements in Th and the global unknowns (see figure below).

4. A quadrature rule on K̂: {(wg, x̂g)}, g = 1, . . . , ng.

Given the function u to be projected over the space V (Th), with these ingredients the global matrix A
denoted by Aglo below and the global right hand side vector F denoted by RHS can be assembled as shown
in the pseudo-code below.
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1 2 3

11 101 17

6 4 5

66 67 68

77 78 79

27 88 99

40 42 46

22 33 44

7 8 9

1 22 8

22 43 8

43 5 8

8 5 61

8 61 723

conec =

K1

K6

K2
K3

K4

K5

conec =

K7

K8

K9

K3

K4

K2

K1

K5

K6

Conforming mesh Nonconforming mesh

9
3

1

11

101
4

5

6 68

66
67

77

99
17

2
7

448

46
88

40

78

79 27

42

22

33

43

22

1
723

61

5

8
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1: function [Aglo RHS] = Assembly( ... )

2: for g = 1, . . . , ng do . Basis functions and derivatives at Gauss points on K̂

3: Calculate ψ̂r
K̂

(x̂g) and ∇̂ψ̂r
K̂

(x̂g), r = 1, . . . , nloc
4: end for

5: Initialize RHS and Aglo to zero
6: for m = 1, . . . , Nel do . Loop over elements

7: Calculate |JKm| and B−TKm

8: Initialize rhse and ae to zero
9: for g = 1, . . . , ng do . Loop over Gauss points

10: for r = 1, . . . , nloc do

11: rhse(r) = rhse(r) + |JKm | ∗ wg ∗
[
u(FK(x̂g)) ∗ ψ̂rK̂(x̂g) +∇u(FK(x̂g)) ·B−TKm

· ∇̂ψ̂r
K̂

(x̂g)
]

12: for s = 1, . . . , nloc do

13: ae(r, s) = ae(r, s)+|JKm|∗wg∗
[
ψ̂r
K̂

(x̂g) ∗ ψ̂sK̂(x̂g) +B−TKm
· ∇̂ψ̂r

K̂
(x̂g) ·B−TKm

· ∇̂ψ̂s
K̂

(x̂g)
]

14: end for
15: end for
16: end for . End loop over Gauss points

17: for r = 1, . . . , nloc do . Assembly elementary matrix into global matrix

18: I = conec(Km, r)
19: RHS(I) = RHS(I) + rhse(r)
20: for s = 1, . . . , nloc do

21: J = conec(Km, s)

22: Aglo(I, J) = Aglo(I, J) + ae(r, s)
23: end for
24: end for
25: end for . End loop over elements

26: end function
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Km

s

r

t

r, s, t correspond to local indices

Ir = conec(Km, r) corresponds to a global index

Is

It

Jr Js Jt

a31

a21

a12

a32

a22

a13

a33

a23ae =

a11

Aglo(Ir, Js) + = ae(r, s)

r

s

Aglo = Ir
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3.2.1 Examples

In the following examples we find the best approximation from different spaces to function u(x) = e4 (x−0.5)2 .

(i) u continuous and Vh made up of piecewise continuous functions;

(ii) u continuous and Vh made up of continuous functions;

(iii) u piecewise continuous and Vh made up of continuous functions;

The last one is a common procedure to post-process a function wh ∈ Vh(Th) ∈ H1(Ω). Let us suppose we
have

wh(x) =
n∑
i=1

Wj φ
j(x)

its gradient

∇wh(x) =
n∑
i=1

Wj∇φj(x)

will be only elementwise continuous, so the derivatives are not necessarely continuous at the inter-element
nodes/edges. In this case, we perform the so called gradient recovery in order to find an approximation
of this gradient from a space of continuous functions. In this last example we construct an elementwise
constant function whose value on each element is made equal to the function u used above evaluated at
the midpoint of the corresponding element. The result of projecting such function is illustrated below.
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Exo. 3.4 Using the code provided in the classroom:

(i) Play with the different options available in the code to project a function.

(ii) Add the necessary lines to compute the error in the L2 and H1 norms.

(iii) Using the previous item perform a mesh refinement study and plot the error as function of the mesh
size.

(iv) (Optional) Program the P2 element.
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4 Local estimates of interpolation error

Remember the best approximation property (Céa’s lemma)

Lemma 4.1 If a(·, ·) and `(·) are continuous in V and a(·, ·) is strongly coercive, then

‖u− uh‖V ≤
Na

α
‖u− vh‖V ∀ vh ∈ Vh (4.1)

in other words ‖u− uh‖V ≤ C infvh∈Vh ‖u− vh‖V .

In order to prove convergence of uh to u we have to choose appropriate finite element spaces Vh and show
that there are good approximations to u from Vh. The usual way of doing this is by using an interpolant
Ihu ∈ Vh (e.g. the Lagrange interpolant), since

‖u− uh‖V ≤ C ‖u− Ihu‖V (4.2)

and the idea is to study how ‖u− Ihu‖V behaves.

So, the plan for the following sections is to introduce:

• The interpolation operators;

• The local estimates of the interpolation error;

• The global error estimates;

• Some issues about regularity of meshes;
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4.1 The local interpolation operator

The local interpolation operator IK : V (K)→ PK is defined as

IKv =
n∑
i=1

σi(v)ψi ∀v ∈ V (K) (4.3)

IK has the following properties:

(i) It is linear;

(ii) It is a projection: IK(p) = p ∀p ∈ PK (PK is invariant under IK).

Exo. 4.1 Prove the previous properties.

Exo. 4.2 For the P1-Lagrange element, show that
3∑
j=1

ψj(x) = 1 and xk =
3∑
j=1

Xj
kψ

j(x).

4.2 Local error estimates in L∞

For simplicity sake we consider from now on P1 triangular elements. This is enough to introduce
the main ingredients involved and several important results. The idea is to study at the element level the
difference between u and its interpolant IKu (see figure below).
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In the figure we have hK , which is the diameter of K (the largest side) and ρK which is the inner diameter
of K (the largest ball inscribed in K).

Now, we can present an importan theorem:

Theorem 4.2 Let K be a P1-triangle, hK its diameter and ρK its inner diameter. Then, for all v ∈ C∞,

(a) ‖v − IKv‖L∞(K) ≤ 2h2
K max
|α|=2
‖Dαv‖L∞(K)

(b) max
|α|=1
‖Dα(v − IKv)‖L∞(K) ≤ 6

h2
K

ρK
max
|α|=2
‖Dαv‖L∞(K)
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Proof. Let {ψ1, ψ2, ψ3} be the basis for P1(K) and let xj = (Xj
1 , X

j
2) be the position of the j-th node of

the element, then

IKv(x) =
3∑
i=1

v(xj)ψj(x), x ∈ K (4.4)

Now, we perform a Taylor expansion around x ∈ K

v(y) = v(x) +
2∑

k=1

∂v

∂xk
(x) (yk − xk) +R(x,y), (4.5)

where the rest R is:

R(x,y) =
1

2

2∑
k,`

∂2v

∂xk∂x`
(ξ) (yk − xk) (yl − xl) (4.6)

and ξ is a point on the line segment between x and y. Now, evaluate the expansion at y = xj

v(xj) = v(x) + pj(x) +Rj(x), (4.7)

where pj(x) =
2∑

k=1

∂v

∂xk
(x) (Xj

k − xk) and Rj(x) = R(x,xj).

Now, since ‖Xj
i − xi‖ ≤ hK , j = 1, 2, 3, i = 1, 2, we have

|Rj(x)| ≤ 2h2
K max
|α|=2
‖Dαv‖L∞(K) (4.8)

Inserting v(xj) into the definition of the interpolant:
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IKv(x) =
3∑
j=1

v(x)ψj(x) +
3∑
j=1

pj(x)ψj(x) +
3∑
j=1

Rj(x)ψj(x) (4.9)

Let us consider each term separately:

3∑
j=1

v(x)ψj(x) = v(x)
3∑
j=1

ψj(x) = v(x) (4.10)

since
3∑
j=1

ψj(x) = 1 (see Exo. 4.2). For the second term

3∑
j=1

pj(x)ψj(x) =
3∑
j=1

2∑
k=1

∂v

∂xk
(x)(Xj

k − xk)ψ
j(x) =

2∑
k=1

∂v

∂xk
(x)

{
3∑
j=1

Xj
kψ

j(x)− xk
3∑
j=1

ψj(x)

}
(4.11)

But, we can show that
3∑
j=1

Xj
kψ

j(x) = xk (see Exo. 4.2), therefore the second term vanishes. We have

then

IKv(x) = v(x) +
3∑
j=1

Rj(x)ψj(x) (4.12)

and thus

|v(x)− IvK(x)| ≤ max
j
|Rj(x)|

3∑
j=1

ψj(x) = max
j
|Rj(x)| ≤ 2h2

K max
|α|=2
‖Dαv‖L∞(K) (4.13)

implying assertion (a). Now, by differentiating IKv(x) =
3∑
i=1

v(xj)ψj(x) with respect to xm and using the

Taylor expansion again evaluated at xj we obtain
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∂IKv
∂xm

(x) =
3∑
j=1

v(x)
∂ψj

∂xm
(x) +

3∑
j=1

pj(x)
∂ψj

∂xm
(x) +

3∑
j=1

Rj(x)
∂ψj

∂xm
(x) (4.14)

On the right-hand side, the first term vanishes. The second term is

3∑
j=1

pj(x)
∂ψj

∂xm
(x) =

∑
j,k

∂v

∂xk
(x) (Xj

k − xk)
∂ψj

∂xm
(x) =

2∑
k=1

∂v

∂xk
(x)

[
3∑
j=1

Xj
k

∂ψj

∂xm
(x)− xk

3∑
j=1

∂ψj

∂xm
(x)

]
=

=
2∑

k=1

∂v

∂xk
(x)

∂

∂xm

3∑
j=1

Xj
kψ

j(x) =
2∑

k=1

∂v

∂xk
(x)

∂

∂xm
xk =

2∑
k=1

∂v

∂xk
(x)δkm =

∂v

∂xm
(x) (4.15)

Finally, taking the absolute value and using previous results for |Rj(x)|

∣∣∣∣ ∂v∂xm (x)− ∂IKv
∂xm

(x)

∣∣∣∣ =

∣∣∣∣∣
3∑
j=1

Rj(x)
∂ψj

∂xm
(x)

∣∣∣∣∣ ≤ max
j
|Rj(x)|

3∑
j=1

∣∣∣∣ ∂ψj∂xm

∣∣∣∣ ≤ 6
h2
K

ρK
max
|α|=2
‖Dαv‖L∞(K) (4.16)

since
∣∣∣ ∂ψj

∂xm

∣∣∣ ≤ 1
ρK

(by looking at the figure in the beginning of this section, the reader can convince himself

that the derivative of a P1 function which equals 1 at a given node and is zero on the oposite side can
never be grater than 1/ρK).
�
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4.3 Local error estimates in Sobolev spaces W s,p

The previous theorem gives estimates of the interpolation error in the L∞(K)-norm, but what we need are
estimates in L2(K) and H1(K). The aim is to be able to show the following important theorem:

Theorem 4.3 Let (K,PK ,ΣK) be a finite element, affine-equivalent to a master element (K̂, P̂ , Σ̂). As-
sume, P̂ = P1(K̂). Then, there exists a constant C > 0, independent of K, such that

(a) ‖v − IKv‖L2(K) ≤ C h2
K |v|H2(K) ∀v ∈ H2(K)

(b) ‖v − IKv‖H1(K) ≤ C
h2
K

ρK
|v|H2(K) ∀v ∈ H2(K)

Using this results and summing over the elements we can show that the global interpolation error is:

‖v − Ihv‖L2(Ω) ≤ C h2
∑
K

|v|H2(K)

This will be the topic of the following lecture.
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