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Abstract

The Multiscale Robin Coupled Method (MRCM) is a recent multiscale numerical method based on a non-overlapping domain
decomposition procedure. One of its hallmarks is that the MRCM allows for the independent definition of interface spaces for
pressure and flux over the skeleton of the decomposition. The accuracy of the MRCM depends on the choice of these interface
spaces, as well as on an algorithmic parameter β in the Robin interface conditions imposed at the subdomain boundaries. This work
presents an extensive numerical assessment of the MRCM in both of these aspects. Two types of interface spaces are implemented:
usual piecewise polynomial spaces and informed spaces, the latter obtained from sets of snapshots by dimensionality reduction.
Different distributions of the unknowns between pressure and flux are explored. Two non-dimensionalizations of β are tested. The
assessment is conducted on realistic, high contrast, channelized permeability fields from a SPE benchmark database. The results
show that β, suitably non-dimensionalized, can be fixed to unity to avoid any indeterminacy in the method. Further, with both types
of spaces it is observed that a balanced distribution of the interface unknowns between pressure and flux renders the MRCM quite
attractive both in accuracy and in computational cost, competitive with other multiscale methods from the literature
c⃝ 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Multiscale domain decomposition methods have received considerable attention from the scientific community
due to their potential to solve efficiently elliptic problems with rapidly varying coefficients in parallel multi-core
computers. This class of methods approximates the exact solution by solving uncoupled local problems on non-
overlapping subdomains, along with one global problem (or interface problem) associated with the coupling between
subdomains through their boundaries. In fact, consistency conditions require the imposition of some form of continuity
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of fluxes and of pressures at interfaces between neighbor subdomains. Different methods have been developed based
on distinct approaches to address the continuity issue. We mention, for instance, the Multiscale Mortar Mixed Finite
Element Method (MMMFEM) [2] and the Multiscale Hybrid-Mixed Method (MHM) [1,17], as some well known
procedures of this type. In the MMMFEM, the pressure continuity is weakly satisfied in the fine-grid scale (the scale
of the local grid of each subdomain, usually denoted by h), while normal flux continuity is ensured in a much larger
scale (H ≫ h), usually associated with the size of the subdomains. Conversely in the MHM, continuity of the normal
fluxes is satisfied at the fine-grid h scale, while pressure continuity is only imposed at the larger H scale.

The design of accurate multiscale domain decomposition methods for channelized, high-contrast porous media,
remains as an important challenge because in typical problems posed by the oil industry existing multiscale methods
may produce inaccurate numerical approximations [15].

In our search for more accurate procedures, here we investigate an improved version of the recently proposed
Multiscale Robin Coupled method (MRCM) [15]. This method is based on the domain decomposition of Douglas
et al. [12] and on the Multiscale Mixed Method (MuMM) of Francisco et al. [13], and ensures weak continuity of both
normal fluxes and pressures through the imposition of Robin-type boundary conditions, namely

−βi ui
· ňi

+ pi
= β j u j

· ň j
+ p j , (1)

at the interface Γi j between subdomains (identified by i and j), usually in a scale that is larger than the fine-grid scale.
In Eq. (1)pi and ui are pressure and velocity of subdomain i at the interface, and ňi

= −ň j is the outwards unit
normal. The MRCM can be seen as a generalization of the above mentioned methods depending on the parameter βi :
the MMMFEM (respectively, the MHM) is recovered as βi → 0 (respectively, βi → +∞) for all i .

The accuracy and cost of multiscale domain decomposition methods are mainly determined by the choice of the
interface space, i.e., the space on which the global problem is posed. This space consists of functions defined on the
collection of interfaces between subdomains, or skeleton of the partition, Γ = ∪i ̸= jΓi j , where Γi j denotes the interface
between nearest-neighbor subdomains. For the MMMFEM the interface space is a pressure space PH , while for the
MHM it is a flux space UH . A salient feature of the MRCM, with βi different from 0 and +∞, is that its global
interface problem is posed on the direct product PH × UH of a pressure space and a flux space, both defined on the
skeleton and which can be chosen independently. This allows us to explore an interesting question: Assume that one
decides to allocate k unknowns at each interface Γi j of the skeleton. How does their distribution between pressure
unknowns and flux unknowns affect the accuracy and cost-effectiveness of the method?

Of course the approximation capabilities of the interface space depends not just on its dimension (i.e., number
of unknowns) but also on the functions it consists of. The first reported implementations of MMMFEM, MHM and
MRCM adopted piecewise polynomial spaces over the interfaces, which are the simplest to code and analyze. It is
however accepted nowadays that polynomial spaces are not optimal for highly heterogeneous problems, and different
kinds of problem-dependent approximation spaces (informed spaces, in short) have been proposed for multiscale finite
element [3,8] and finite volume [18] methods. The latter was extended to several nonlinear complex cases, including
the compressible and compositional cases as well as fractures [4,11,19,20]. The combination of informed spaces with
the MMMFEM has recently been studied by Chung et al. [10], while it remains unexplored for the MHM. In line with
this trend, this work explores a strategy for building informed spaces at the interfaces for the MRCM. In this way, we
explore the question of optimal allocation of unknowns between pressure and flux not just with polynomials but also
with spaces that are more suitable for highly heterogeneous media. Moreover, once the MHM is a particular case of
the MRCM, a first study of combining the MHM with informed spaces is also produced.

Our numerical results indicate that, typically, the optimal accuracy is attained somewhere in between the
MMMFEM (all unknowns for pressure) and the MHM (all unknowns for flux). In other words, the solution of minimal
error is produced by the MRCM for some specific choice of its algorithmic parameters. Further, it is shown that
through appropriate dimensional analysis it is possible to fix all parameters of the MRCM automatically, resulting in
a fully-determined method that is competitive with known ones. In particular, it is recommended that the number of
unknowns for interface pressure is equal to (or slightly smaller than) the number of unknowns for interface flux. In
this way we arrive at a method that is effective for all layers in the SPE10 database. The construction of the informed
spaces needs however to be improved, since the method exhibits comparable overall accuracy with polynomial and
informed interface spaces. There exist multiscale iterative methods, that include global information on the multiscale
basis functions and show improvements in terms of accuracy (see e.g. [9,16]). The development and discussion of
such procedures for the MRCM is out of the scope of this article and is left for future work. However, we remark
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that informed interface spaces do show improved approximation of fluxes in regions of the domain with high-contrast
formations.

The plan of this article is as follows: The MRCM is briefly recalled in Section 2, adopting a fine grid discretization
consisting of lowest order Raviart–Thomas finite elements RT0 and general spaces PH and UH at the skeleton Γ .
The reader should recall that the RT0 elements are equivalent to the popular cell-centered finite volume method with
two-point flux approximation. The strategy adopted for building the interface spaces is described in Section 3. It
is similar to strategies proposed by other authors, such as the empirical interpolation technique used by Calo et al.
[5,6] in the context of multiscale finite elements. With these elements at hand, Section 4 is then devoted to numerical
experiments addressing the questions of selection of optimal algorithmic parameters and of optimal allocation of
interface unknowns between pressures and fluxes. The geological data used in the experiments are two-dimensional
layers of the SPE10 benchmark database, with different degrees of channelization.

2. The multiscale Robin coupled method

2.1. Discrete variational formulation

Let us consider a fine grid Th , i.e., a subdivision of the domain Ω ⊂ Rd consisting of d-dimensional cuboids of size
h, and a decomposition of Ω in subdomains {Ωi }i=1,...,m , of characteristic size H ≫ h, such that each element K ∈ Th

belongs to one and only one of the subdomains. Moreover, let Γ be the skeleton of the domain decomposition, as the
union of all interfaces Γi, j = Ω i ∩Ω j . The discrete variational formulation of the MRCM is written over the discrete
lowest order Raviart–Thomas spaces for velocity and pressure, defined as

Vi
h = {v ∈ H (div,Ωi ) , v j (x)|K = p j1(x1)p j2(x2) . . . , ∀ K ∈ T i

h ,

with p jk ∈ P1 if j = k , p jk ∈ P0 if j ̸= k } , (2)

Vi
hy = {v ∈ Vi

h , v · ň = y on ∂Ωi ∩ ∂Ωu} , (3)

Qi
h = {q ∈ L2(Ωi ) , q(x)|K ∈ P0} , (4)

with y being a piecewise constant function defined on the edges of ∂Ωu and Pk the usual space of polynomials of
degree up to k.

We denote by Eh the set of all edges/faces of Th in the skeleton Γ . A unique normal ň is defined as

ň(e) .
= exterior normal to ∂Ωmin{i, j} , if e ∈ Γi, j (5)

for every e in Eh . The spaces for pressures and fluxes at subdomain interfaces that will be considered here consist of
functions that are constant on each e of Eh , i.e., they are subsets of

Fh(Eh) = { f : Eh → R | f |e ∈ P0 , ∀ e ∈ Eh} . (6)

To finally state the variational formulation of the MRCM, consider low-dimensional subspaces UH and PH of
Fh(Eh). The MRCM consists in finding (ui

h, pi
h) ∈ Vi

hz × Qi
h , for i = 1, . . . , m, and (UH , PH ) ∈ UH × PH such that(

K −1ui
h, v

)
Ωi

−
(

pi
h, ∇ · v

)
Ωi

+
(
PH − βiUH ňi

· ň + βi ui
h · ňi , v · ňi)

∂Ωi ∩Γ
= −

(
g, v · ňi)

∂Ωi ∩∂Ωp
(7)(

q, ∇ · ui
h

)
Ωi

= ( f, q)Ωi
(8)

m∑
i=1

(
ui

h · ňi , MH
)
∂Ωi ∩Γ

= 0 (9)

m∑
i=1

(
βi (ui

h · ňi
− UH ňi

· ň), VH ňi
· ň

)
∂Ωi ∩Γ

= 0 (10)

hold for all (v, q) ∈ Vi
h0 × Qi

h , ∀ i = 1, . . . , m , for all MH ∈ PH and for all VH ∈ UH . Above, the symbol (·, ·)A

denotes the scalar product of L2(A).
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The existence and uniqueness of the solution of this variational formulation is proved in [15]. It only requires that
m∑

i=1

(βi VH , VH ) > 0 , ∀ VH ∈ UH , VH ̸= 0 . (11)

This condition is easy to check, since
m∑

i=1

(βi VH , VH ) =

m∑
i=1

∫
∂Ωi ∩Γ

βi V 2
H =

∫
Γ

(
β+

+ β−
)

V 2
H , (12)

where the plus and minus superscript refer to the two sides of Γ . If the functions βi , assumed non-negative, are
not identically zero on both sides of Γ and on the whole support of some VH , then the solution is unique. In the
extreme case that all βi ’s are identically zero, then UH must be zero for the problem to be well-posed. This reduces
the formulation to the MMMFEM.

Remark 1. Actually, the variational formulation also holds without the conditions PH ⊂ Fh(Eh), UH ⊂ Fh(Eh). The
necessary and sufficient conditions are, in fact, (11) together with the same inf–sup compatibility of the MMMFEM,
namely that for each nonzero MH ∈ PH there exists i (1 ≤ i ≤ m) such that

sup
v ∈ Vi

h0

(
v · ňi , MH

)
∂Ωi ∩Γ

> 0 (13)

For the case of the RT0 velocity approximation, this is equivalent to

sup
Ah ∈ Fh (Eh )

(Ah, MH )Γ > 0 ,

which is automatically satisfied if PH ⊂ Fh(Eh). Otherwise condition (13) must be checked independently.

The implementation performed here strictly follows the one presented in [15], sharing similarities with the works
of Ganis & Yotov [14] and Francisco et al. [13]. Note that the linear system associated with Eqs. (7)–(10) is of a size
comparable to that of the original, undecomposed problem. However, the solution to the problem written in terms of
Eqs. (7)–(10) can be, locally, expressed in terms of linear combinations of multiscale basis functions. The construction
of such basis functions is naturally parallelizable.

By assuming that the interface variables (UH , PH ) are known, one can uncouple Eqs. (7)–(8) from Eqs. (9)–(10).
The first set of equations will produce local problems for the computation of the multiscale basis functions. The set of
multiscale basis functions is then used on Eqs. (9)–(10) to generate a global linear system to be solved for the interface
variables, coupling the local solutions while ensuring the compatibility conditions between subdomains. The final
solution is then obtained by linear combination of the previously computed multiscale basis functions. The interested
reader is referred to Guiraldello et al. [15] for a thorough explanation of the implementation of this numerical scheme.

3. Interface spaces: Polynomial and informed

The original implementation of the MRCM used piecewise polynomial spaces over the skeleton Γ of the domain
decomposition, both for pressure PH and flux UH . More precisely, we have considered spaces made up of the
elementwise constant fine grid representation of polynomials over the interface elements

UH = U pol,ℓU +1
H = {VH , VH |e = Π0(q), q ∈ PℓU (e), e ∈ TH }, (14)

PH = Ppol,ℓP +1
H = {MH , MH |e = Π0(q), q ∈ PℓP (e), e ∈ TH }, (15)

where Pk, k = ℓU or ℓP , is the space of polynomials of degree ≤ k and Π0 is the L2–projection of a function of Pk(e)
onto the space Fh(e), e ∈ TH . The superscript added to the symbol for each space contains the class of functions
adopted (“pol” for polynomials, “inf” for informed) followed by the number of degrees of freedom on each edge of
TH . Notice that UH and PH are defined independently at each edge (face in 3D), with no continuity at corner points.

One alternative to polynomial spaces is, as previously mentioned, informed spaces, whose construction is a two-
step process: (i) construction of the so called snapshot space by solving local problems on regions containing the
interfaces Γi, j of the domain decomposition (i.e., oversampling) and considering some parameterization (for example,
on the boundary conditions of these local problems) and (ii) selection of the final informed space by applying a
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Fig. 1. Computational domain decomposition and oversampling regions.

dimensionality reduction technique (SVD, POD, etc.) to end up with a coarsened interface problem of affordable size
and whose solution approximates well the fine grid solution.

By oversampling, we associate to each subdomain Ωk a new region ωk that contains it. Fig. 1 shows a few examples
of the oversampling regions ωk for an interior subdomain and for a subdomain that intersects the boundary of Ω . This
way, the ωk’s clearly contain the whole of ∂Ωk ∩ Γ . This decomposition essentially follows the original domain
decomposition of Ω by slightly augmenting the size of the local problems by just a few layers of fine grid cells that
are now shared by several processes. This is expected to be efficient in terms of message passing and avoids dealing
with more than one decomposition of Ω . Although in the linear case this would not be a serious drawback since this
stage of the computation is done offline, in the non-linear case periodic recomputation of the basis functions is needed
and switching dynamically between very distinct domain decompositions would lead to an undesirable computational
burden.

Consider interface Γi, j and corresponding subdomains ωk , k = i, j . Their boundaries are formed by a collection
of fine grid faces em ∈ Th , m = 1, 2, . . . , Nk . In order to build the snapshot space for interface Γi, j we solve NK local
Darcy problems on each oversampling region ωk (k = i, j), i.e.,

uk,m
h = −K∇ pk,m

h in ωk

∇ · uk,m
h = Ck,m in ωk

B(uk,m
h , pk,m

h ) = δm(x) on ∂ωk

(16)

The function δm(x) takes the value 1 if x ∈ em and 0 otherwise. In (16), B is a boundary operator which enforces
either pressure boundary conditions on ∂ωk , i.e.,

B(uk,m
h , pk,m

h ) = pk,m
h (17)



108 R.T. Guiraldello, R.F. Ausas, F.S. Sousa et al. / Mathematics and Computers in Simulation 164 (2019) 103–119

in which case the source term Ck,m is identically equal to zero, or flux boundary conditions on ∂ωk , i.e.,

B(uk,m
h , pk,m

h ) = uk,m
h · ň∂ωk (18)

and the source term Ck,m satisfies the compatibility condition∫
ωk

Ck,m =

∫
∂ωk

δm . (19)

After solving these problems, we retrieve the corresponding fluxes through the faces e ∈ Γi j as

U k,m
e = uk,m

h (e) · ň(e) . (20)

We also retrieve the corresponding pressure at Γi j , but since for the RT0 element the pressure nodes are located at
the center of the computational cells, face pressure values must be recovered by using Darcy’s law. This amounts to
compute a face pressure at each fine grid cell that intersects the boundary Γi, j . For instance, for an east boundary and
fine grid cell I, J (see Fig. 1), we obtain the face pressure π

k,m
h (e) by solving

U k,m
e = −K I,J

π
k,m
h (e) − pk,m

h,I,J

h/2
. (21)

In this way we end up, for each Γi, j , for each k = i or j , and for each m = 1, . . . , Nk , with two column arrays Ũ
k,m

and P̃
k,m

, each of dimension Mi j (the number of fine grid faces in Γi, j ), whose components are U k,m
e and π

k,m
h (e),

respectively. We define new column arrays denoted by U k,m and Pk,m by subtracting the constant component of Ũ
k,m

and P̃
k,m

which are finally used to build the snapshot matrices

AΓi j
U =

[
U i,1, . . . , U i,Ni , U j,1, . . . , U j,N j

]
AΓi j

P =
[
P i,1, . . . , P i,Ni , P j,1, . . . , P j,N j

]
The next step is to perform the SVD decomposition on the two matrices above. The SVD decomposition of a given

matrix A ∈ Rm×n reads

A = XΣ YT

where X ∈ Rm×m and Y ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a diagonal matrix given by

Σ = diag(σ1, . . . , σq , 0, . . . , 0) (22)

where σ1 ≥ σ2 ≥ · · · ≥ σq > 0 are the singular values of the decomposition and q is the rank of matrix A. This
procedure is executed on both AΓi j

U and AΓi j
P .

Finally, the informed space U inf,k
H (respectively, P inf,k

H ) is defined locally on each Γi, j as the space of linear
combinations of the first k −1 right singular vectors of AΓi j

U (respectively, AΓi j
P ) augmented with the constant function

on the corresponding interface.
Two comments are in order for the procedure just described. First, the number of local problems of type (16)

to be solved can be reduced significantly by adopting a different strategy to parameterize the solution, for instance,
by grouping together several fine grid faces on ∂ω on which some specified boundary conditions can be applied.
Also randomly sampling these fine grid faces is a possibility [6]. Second, in the proposed approach, the solutions of
the local problems are considered all equally probable prior to computing the SVD decomposition. However, some
strategy could be devised to discard solutions of small norm on the interface. These topics will be the subject of future
studies.

4. Numerical experiments

We have performed a series of numerical experiments in a quarter of a 5-spot geometry in a rectangular 2D region
with dimensions [0, 11/3] × [0, 1]. We consider no-flow boundary conditions with an injection (production) well
positioned at the top left (bottom right) corner of the computational region. For the absolute permeability we take
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Fig. 2. Effect on α position for L = h (solid lines) and L = H (dashed lines) for a sequence of fine mesh refinement.

Fig. 3. Relative pressure errors (top) and relative flux errors (bottom) for a collection of SPE10 layers with L = H .

distinct layers of the SPE10 project (http://www.spe.org/web/csp) [7]. These are realistic, very heterogeneous fields
typical of petroleum reservoirs.

The interface spaces are either polynomials or informed spaces obtained with oversampling of size h. We consider
the flux boundary operator given by Eq. (18) and the average pressure is set to zero. The results are given in the form
of graphs that display the relative L2(Ω ) error norm (computed with respect to the fine grid solution) for the pressure
and flux variables. We first investigate the adequate characteristic length scale for the nondimensionalization of the
numerical parameter β, and then explore the accuracy of the MRCM compared with the MMMFEM and the MHM
with same number of interface unknowns. Finally, we perform an exhaustive comparison study covering all the SPE10
layers.
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Fig. 4. Relative pressure error as function of α for layers 33, 36, 42 and 45 with 5 dof’s. Solid lines: polynomial spaces; Dashed lines: informed
spaces, for the MRCM formulation.

4.1. The characteristic length scale

Dimensional analysis indicates that the Robin coefficient of subdomain i can be written in terms of a dimensionless
α as

βi (x) =
α (x) L
K (x)

.

In [15], we set L = h, h being the mesh size. Here we show that a better choice is L = H , where H is the size of
Γi j = ∂Ωi ∩ ∂Ω j . To see this we fix the decomposition of the computational region and perform a mesh refinement
study inside subdomains. Although α could in general depend on x, we adopt a fixed value for it that holds for all
x and all i . For the choice L = H the value of α for which the MRCM yields minimum error remains essentially
unaltered under the refinement study. In order to illustrate our findings, we consider layer 36 (that contains a high
contrast channel) divided into 22 × 6 rectangular subdomains with size H × H , being H = 1/6. For this domain
decomposition we consider a sequence of mesh refinements inside each subdomain starting with 10 × 10 (mesh size
h = H/10) and increase each direction by a factor of 2 until we reach h = H/80. For the interface spaces we consider
here polynomials of degree one, i.e., UH = U pol,2

H and PH = Ppol,2
H .
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Fig. 5. Relative flux error as function of α for layers 33, 36, 42 and 45 with 5 dof’s. Solid lines: polynomial spaces; Dashed lines: informed spaces,
for the MRCM formulation.

As can be seen in Fig. 2, where we report the errors against the parameter α, if one sets L = h (solid lines) the
optimal value for α increases for both pressure and fluxes as the mesh is refined. On the other hand, if one sets L = H
(dashed lines) the value of α for which the error is minimal turns out to be quite independent of h, with α ∼ 0.3 to
minimize pressure error and α ∼ 1 to minimize flux error. This suggests that one could simply assign a fixed value to α.

To further confirm this, we solve the same problem with another decomposition given by 11 × 3 subdomains
(H = 1/3) and a fixed mesh of 20 × 20 elements per subdomain (i.e., h = H/20). Further, we consider several
permeability fields taken from different layers of the SPE10 data. As before, the interface spaces are U pol,2

H and Ppol,2
H

(piecewise linear polynomials). In Fig. 3 we illustrate the relative errors for pressure and flux as functions of α. Note
that the minimum error remains close to α = 1, especially for the flux error, in all cases.

Given the results reported above, from now on we adopt L = H in the definition of the Robin parameter.

4.2. Comparison of multiscale mixed methods

Here we focus on numerical solutions computed with the MRCM, in comparison to those provided by the
MMMFEM and the MHM. Through numerical simulations we have shown (see [15]) that as α → +0 the flux
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Fig. 6. Pressure solution for the optimal global α and interface spaces with 5 dof’s for polynomials and the fine pressure solution for layer 36.

interface space UH becomes irrelevant and the MRCM produces results that tend to those of the MMMFEM with the
interface space PH . On the other hand, as α → +∞, PH becomes irrelevant and the MRCM produces results that
tend to those computed with the MHM with the interface space UH . In conclusion, one can view the MRCM as a
generalization of the two other known procedures.

The comparison among the three methodologies will be conducted as follows: For each numerical study we fix a
number k of degrees of freedom (dof’s) per interface Γi, j to be employed in solutions computed with all methods.
For the MMMFEM we set PH = Ppol,k

H in the case of piecewise polynomial spaces, and PH = P inf,k
H in the case

of informed spaces. Similarly, for the MHM we set UH equal to either U pol,k
H or U inf,k

H . For the MRCM we take the
interface spaces to be Ppol,kP

H (or P inf,kP
H in the informed case) and U pol,kU

H (or U inf,kU
H ), with kU + kP = k.

Initially we set k = 5 dof’s per interface and take some representative layers of the SPE10 database. We select
layer 33 that does not exhibit a strong channelized structure, layer 36 with one well defined channel, and layers 42
and 45 with an intricate channel structure. In our studies we set Kmax/Kmin ≃ 106. In Figs. 4 and 5 we display
the relative L2(Ω ) error norms for pressure and flux variables, respectively, as functions of α. When comparing the
MRCM pressure with that of the MMMFEM (left dots) and that of the MHM (right dots) it is clear that one can
always find a combination of (kP , kU ) and α such that the MRCM produces a more accurate result than MMMFEM
and MHM for both polynomial (solid lines) and informed (dashed lines) interface spaces. This observation is valid
except for layer 45, for which the MMMFEM solution for the polynomial space is superior. This conclusion remains
the same when comparing the flux errors. Exceptions to this finding occur on layers 33 and 42, for which the MHM
produces the most accurate results for the case of informed spaces. In order to exhibit the quality of the solution,
Figs. 6 and 7 display the pressure solution and the streamlines for the best global α compared to the fine solution for
layer 36 for the polynomial case. In Figs. 8 and 9 we illustrate the relative L2(Ω ) error norms for pressure and flux
variables, respectively, as a function of α for the case of k = 4 with layers 30, 63, 67 and 75, which were selected
using the same criterion as adopted above, although none of the fields with channelized structure (layers ≥ 63) present
one well-defined channel as in layer 36. In the numerical studies just discussed, that focus on global errors, we have
shown that one can often find a combination of kP , kU and α for the MRCM that produces a better numerical solution
than that provided by MMMFEM and MHM.

Next, we investigate how the error is distributed aiming at assessing the importance of informed spaces in
approximating the velocity field in high-contrast realistic channelized formations. We take the permeability field
with the most pronounced channel (layer 36), k = 5, and the best combination of (kP , kU ) and α for polynomial and
informed spaces that minimize the corresponding global error, as depicted on Figs. 4 and 5.

In Figs. 10 and 11 we show the pointwise absolute errors for pressure and flux, respectively. From these results one
can see that both strategies provide comparable approximations for the pressure field (see Fig. 10). However, Fig. 11
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Fig. 7. Streamlines for the optimal global α and interface spaces with 5 dof’s for polynomials and the fine solution for layer 36.

Fig. 8. Relative pressure error as function of α for layers 30, 63, 67 and 75 with 4 dof’s. Solid lines: polynomial spaces; Dashed lines: informed
spaces, for the MRCM formulation.
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Fig. 9. Relative flux error as function of α for layers 30, 63, 67 and 75 with 4 dof’s. Solid lines: polynomial spaces; Dashed lines: informed spaces,
for the MRCM formulation.

indicates that informed spaces produce a better approximation of the flux variable than its polynomial counterpart.
Moreover, the error is larger on the main channel structure of the permeability field for the polynomial compared to
the informed case. Thus, informed spaces show great potential to be applied in reservoir simulation.

The studies discussed above illustrate that the accuracy of results produced by the MRCM depend on the choice of
(kP , kU ) and α. They also confirm, as noted by Guiraldello et al. [15], that intermediate values of α are “safe”, in the
sense that they lead to errors that are never larger, and usually smaller, than the errors produced by the extreme values
α = 0 (MMMFEM) and α = +∞ (MHM). In order to avoid the need of selecting (kP , kU ) and α at each run of the
MRCM, we adopt the following strategy that has worked well in numerous tests:

• If k is even, we take kP = kU = k/2;
• if k is odd, we take kP = (k − 1)/2 and kU = kP + 1 = k − kP ;
• set α = 1.

In this way there are no free parameters for the MRCM. To justify such choices we perform an exhaustive comparison
of MRCM, MHM and MMMFEM, with the same number k of dof’s per interface for all methods, considering all
SPE10 layers. Both polynomial and informed spaces are considered and the three methods can be compared on an
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Fig. 10. Absolute pressure error for the optimal global α and interface spaces with 5 dof’s for polynomial and informed interface spaces for layer
36.

equal footing. Figs. 12 and 14 show, respectively, the results for k = 4 and k = 5 for polynomial interface spaces.
Note that when a curve corresponding to any of the methods appears in the shadowed region of another curve with a
larger error, the color gets darker. For this choice of parameters the MHM is the least accurate method in the pressure
variable for the channelized layers (layer number > 35), the MMMFEM being the most accurate. For the flux variable,
however, the most accurate is the MRCM, while the MMMFEM behaves quite poorly for some of the layers around
layer 40. The corresponding study for informed spaces is given in Figs. 13 and 15. For these spaces the MHM is
again the least accurate procedure in the pressure variable (especially in layers 65–75), while the MMMFEM and
MRCM behave similarly. For the flux variable the MHM and MRCM yield similar accuracy, better than that of the
MMMFEM, which again is considerably worse than the others for the layers around layer 40.

Although the focus of previous experiments is accuracy, another equally important aspect is the efficiency of the
numerical methods. In order to illustrate this aspect, Fig. 16 displays the number of GMRES iterations to convergence
to solve the interface problem for each method with k = 5 for all the SPE10 layers with polynomial functions for
the MMMFEM and MRCM and informed functions for the MHM. The GMRES was set with a relative tolerance of
10−9 and an ILU preconditioner with a drop tolerance of 10−4. From the results one can observe that the MMMFEM
and the MRCM have comparable number of GMRES iterations, with a slight advantage for the MRCM, and converge
with half of the iterations required for the MHM. In these experiments the linear systems being solved have 260
unknowns. Another important point is that all of the above experiments are based on a fixed domain decomposition
of 11 × 3 subdomains. In order to explore other configurations, Fig. 17 displays the relative error to convergence for
many different domain decomposition geometries with k = 5 for layer 36. Notice that, as the global fine mesh is
fixed and each subdomain is a collection of fine elements, the number of elements for each domain decomposition
geometry are different, e.g., each subdomain of the 5 × 6 domain decomposition geometry has a fine mesh of 44 × 10
elements.
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Fig. 11. Absolute flux error for the optimal global α and interface spaces with 5 dof’s for polynomial and informed interface spaces for layer 36.

Fig. 12. Relative pressure and flux error for all the SPE10 layers considering k = 4 and polynomial functions to build the interface spaces.

The results shown in Figs. 12–17 allow us to conclude that the proposed MRCM is a competitive alternative to
MMMFEM and MHM, both with polynomial and informed interface spaces. It should however be noted that the error
obtained with informed spaces is roughly the same as that obtained with polynomial spaces. The only salient effect is
the reduction of the pressure error, and just for the MHM.

Overall, the numerical results reported here indicate that the MRCM, with suitable choices for the spaces and
parameters, is able to produce more accurate solutions than the other two procedures for problems defined for realistic,
very heterogeneous permeability fields.

5. Concluding remarks

We have reviewed the recently introduced Multiscale Robin Coupled Method and described its implementation
with informed spaces (or empirical interpolation spaces, obtained by oversampling) for the interface variables. We
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Fig. 13. Relative pressure and flux error for all the SPE10 layers considering k = 4 and informed functions to build the interface spaces.

Fig. 14. Relative pressure and flux error for all the SPE10 layers considering k = 5 and polynomial functions to build the interface spaces.

Fig. 15. Relative pressure and flux error for all the SPE10 layers considering k = 5 and informed functions to build the interface spaces.

Fig. 16. Number of GMRES iterations to convergence for all the SPE10 layers with k = 5.

have compared the accuracy of the solutions of two well known multiscale methods, the Multiscale Mortar Mixed
Finite Element Method and the Mixed Hybrid Method, with that of the MRCM in realistic, very heterogeneous
permeability fields given by layers of the SPE10 project. The comparison was carried out with the same number of
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Fig. 17. Relative pressure and flux errors and number of GMRES iterations, indicated below the labels, to convergence for different domain
decomposition geometries indicated at top of each graph with the number of unknowns being solved in parenthesis, for the layer 36 with k = 5.

unknowns for all methods, with interface spaces given by polynomial and informed functions. It should be mentioned
that no such comparison is available even if restricted to MMMFEM and MHM, and that no previous implementation
or assessment of the MHM with informed spaces has been reported in the literature.

Our numerical results indicate that the MRCM, fixing its algorithmic parameter α to the value 1 and with a balanced
distribution of the unknowns between interface pressures and interface fluxes, is a competitive alternative to the two
previous methods. In fact, it is more accurate than MHM (which behaves better than MMMFEM) for the flux variable
in highly channelized cases, without the large pressure errors produced by MHM.

Further work is needed to establish new, effective strategies for the construction of informed spaces. The simple
procedures explored in this work have been useful for studying the optimal distribution of unknowns between interface
pressures and fluxes, but the reduction in the solution global error was not significant, although it shows improved
local approximations for the fluxes in channelized formations. Moreover, it was also shown that the MHM, when the
interface spaces are switched from polynomial to informed (with the specific spaces proposed), exhibits essentially
the same flux error but with a noticeable decrease of the pressure error. The identification of informed spaces with
similar positive effects on the MRCM are left for future studies.
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