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Abstract

The simulation of biological interfaces at the Living Cell scale relies on mem-
brane models that are a combination of a finite–strain elastic part, typically
modeling the contribution of a cytoskeleton, and a viscous part that models the
contribution of the lipidic bilayer. The motion of these membranes is driven by
a shape-dependent energy, modeled by means of the Canham–Helfrich formula
or variants thereof. In this article we review the finite element formulation of
elastic membranes, and then extend it so as to deal with the viscous behavior of
lipidic bilayers. The resulting numerical method, which is easily implemented on
codes developed for solid membranes, is assessed on the simulation of dynamical
prolate–to–oblate transitions of simplified red blood cells under tweezing.

Keywords: Viscous membrane, lipidic bilayer, inextensibility,
Canham-Helfrich energy, finite elements, Boussinesq-Scriven operator.

1. Introduction

Fluidic behavior is characterized by the impossibility of rest under shear.
Both in Nature and in biomedical applications there exist highly–deformable
membranes that exhibit fluidic behavior. The most important example is that of
lipidic bilayers, which are a basic constituent of the living cell membrane. They
consist of two molecular layers of amphiphilic phospholipids, each layer exposing
the hydrophilic ends of their molecules to the adjacent water and thus also
keeping the hydrophobic ends away from it. The molecules in lipidic membranes
exhibit very high tangential mobility, with relatively low layer–to–layer transfer
rate. Molecular simulations have greatly improved the understanding of these
systems, in particular of their tangential behavior [43, 50, 16, 38]. However,
for simulations at the scale of a whole Living Cell to be computable during
biologically significant time lapses, continuum models are mandatory. The best
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candidate model corresponds to a two–dimensional fluid, flowing on a time–
dependent, curved surface in three–dimensional space.

The actual rheological behavior of lipidic bilayers is predominantly viscous
(i.e.; Newtonian) and area-preserving [47, 32, 34], with a surface viscosity µ of
about 5− 13 × 10−9 Pa-s-m[55] that can take higher values, up to 2× 10−6 Pa-
s-m. Though some viscoelasticity may exist, recent rheometrical data suggest
that it is not significant [21, 22].

In this work we propose a method for the finite element simulation of viscous
membranes. It is strongly based on variational methods that are well established
in the field of Solid Mechanics, obtaining the discrete equations by perturbations
of the appropriate energy. The presentation begins with a brief review of the
finite element treatment of elastic membranes, for which details can be found
in [24] and biological applications in [41, 27, 52, 30, 28]. In a suitable limit, the
elastic operator tends to the viscous operator, to which the zero–tangential–
divergence (inextensibility) condition is added to arrive at a realistic approxi-
mation of the surface fluidic behavior. The inextensibility condition introduces
a Lagrange multiplier field P which plays the role of a non–homogeneous surface
tension. A stabilization term proportional to the surface Laplacian of P is added
to allow for the use of the same interpolants for all fields. As driving force for the
motion, the Canham-Helfrich model [11, 23] is added in order to study shape
evolutions typical of biological membranes. Overall, the method seems to be
the first to compute truly viscous and inextensible relaxation of membranes in
general 3D geometries. This is illustrated by simulating the dynamical response
of a (simplified) red blood cell under oscillatory tweezing.

Possible applications of the proposed method are numerous, such as dy-
namical studies of membrane adhesion [15], conformation [32], stomatocyte-
discocyte-echinocyte [31] and other shape transformations [48, 39], among many
others.

2. Elastic membranes

2.1. Membrane kinematics
The large–deformation kinematics of membranes is already well known but

will be reviewed here as a basis for the extensions made later on. The interested
reader is referred, for example, to the detailed articles by Holzapfel et al [24]
and Bonet et al [6].

Consider an open set T̂ in R2, which will typically be a master finite ele-
ment. The material points of some part of the membrane are associated to T̂ ,
which acts as a material configuration. The position, at some instant t, of the
material points of the membrane associated to T̂ is described by some injective,
continuously differentiable function

ϕt : T̂ → R3. (1)
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In the finite element implementation this function is defined elementwise as a
linear combination of basis functions on T̂ , i.e.,

ϕt(ξ) =
M∑

m=1

XXX(m)(t) N(m)(ξ) (2)

where XXX(m)(t) is the position, at time t, of the m-th node of the element (we
assume a Lagrangian finite element with M nodes for clarity). Notice that
ξ ∈ R2.

The image of T̂ by ϕt is denoted here by T t. Because of the injectivity of
ϕt, it is possible to define the (also of class C1) inverse mapping

ψt : T t → T̂ , such that ψt(ϕt(ξ)) = ξ ∀ ξ ∈ T̂ (3)

Without loss of generality, it is assumed that the relaxed configuration of
the membrane corresponds to t = 0. The deformation of the membrane is thus
characterized by the mapping

ζt : T 0 → T t, defined by ζt(xxx) := ϕt(ψ0(xxx)) (4)

To compute the deformation gradient some additional work is needed, since
the gradient of ϕt is, with cartesian coordinates for T t, a 3 × 2-matrix and
thus not invertible (if T̂ were an open set in R3, one would simply compute
∇ζt(xxx) = ∇ϕt(ψ0(xxx))

[
∇ϕ0(ψ0(xxx))

]−1
).

The tangential deformation gradient is a rank–2 tensor from the tangent
plane at xxx = ϕ0(ξ) to the tangent plane at yyy = ζt(xxx) = ϕt(ξ). Take a cartesian
basis (ěee(1), ěee(2)) at T̂ , which is nothing but the canonical basis at the master
element. Two linearly independent vectors (GGG(1),GGG(2)) tangent to T 0 at xxx are
defined as the infinitesimal images of the basis:

ϕ0(ξ + ε1 ěee(1) + ε2 ěee(2)) = ϕ0(ξ) + ε1 GGG(1) + ε2 GGG(2) +O(ε21 + ε22) (5)

and are calculated in cartesian components as

{
GGG(i)

}
j

=
∂ϕ0

j

∂ξi
=

M∑
m=1

X(m)j(0)
∂N(m)

∂ξi
i = 1, 2; j = 1, 2, 3 (6)

the normal ŇNN to T 0 at xxx is given by

ŇNN =
GGG(1) ×GGG(2)

‖GGG(1) ×GGG(2)‖
(7)

thus defining an orthonormal basis of R3 such that its two first vectors are
tangent to T 0 (and thus a basis of the tangent plane) as

VVV (1) =
GGG(1)

‖GGG(1)‖
, VVV (2) = ŇNN × VVV (1), VVV (3) = ŇNN (8)
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Analogous vectors can be defined at yyy by replacing ϕ0 with ϕt in the previous
definitions. They will be denoted by lowercase letters: ggg(1), ggg(2), ňnn, vvv(1), vvv(2)

and vvv(3).
The tangential deformation gradient is thus given by the infinitesimal defor-

mation (by ζt) of the vectors VVV (1) and VVV (2), which is given by

ζt(xxx+ε1 VVV (1)+ε2 VVV (2)) = ζt(xxx)+(F11ε1+F12ε2) vvv(1)+(F21ε1+F22ε2) vvv(2)+O(ε21+ε22)
(9)

where the matrix F is given by

F11 =
‖ggg(1)‖
‖GGG(1)‖

(10)

F12 =
ggg(2) · vvv(1)

GGG(2) · VVV (2)
− ‖ggg(1)‖

‖GGG(1)‖
GGG(2) · VVV (1)

GGG(2) · VVV (2)
(11)

F21 = 0 (12)

F22 =
ggg(2) · vvv(2)

GGG(2) · VVV (2)
(13)

Remark 2.1. In fact, the left-hand side of (9) should read

ζt
(
Π0(xxx + ε1 VVV (1) + ε2 VVV (2))

)
where Π0 : R3 → T 0 is the closest-point projection onto T 0, because xxx+ε1 VVV (1)+
ε2 VVV (2) does not belong to T 0 and thus ζt is not defined at it.

Equation (9) defines the deformation–gradient tensor Ft which maps de tan-
gent plane at xxx ∈ T 0 onto the tangent plane at yyy ∈ T t as the only linear
operator satisfying, for all tangent vectors ttt,

ζt (Π0(xxx + ε ttt)) = yyy + ε Ft ttt + O(ε2) (14)

To prove that (14) indeed holds, one starts from the identities (true by
construction)

ggg(i) = Ft GGG(i) i = 1, 2 (15)

so that, since F11 is, from (9), equal to

F11 = vvv(1) · Ft VVV (1)

it results that

F11 = vvv(1) · Ft VVV (1) =
ggg(1)

‖ggg(1)‖
· Ft

(
GGG(1)

‖GGG(1)‖

)
=

ggg(1) · Ft GGG(1)

‖ggg(1)‖ ‖GGG(1)‖
=
‖ggg(1)‖
‖GGG(1)‖

From the identity GGG(2) = GGG(2) ·VVV (1) VVV (1) +GGG(2) ·VVV (2) VVV (2), applying Ft to both
sides and rearranging, we obtain

Ft VVV (2) =
1

GGG(2) · VVV (2)

(
ggg(2) − GGG(2) · VVV (1)

‖GGG(1)‖
ggg(1)

)
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and this yields

F12 = vvv(1) · Ft VVV (2) =
vvv(1) · ggg(2)

GGG(2) · VVV (2)
− GGG(2) · VVV (1)

GGG(2) · VVV (2)

‖ggg(1)‖
‖GGG(1)‖

The other two components of F are obtained similarly.
The right tangential Cauchy-Green tensor Ct = (Ft)T Ft, expressed in the

basis (VVV (1),VVV (2)), has components that are straightforward to calculate,

Ct = FT F =
(

F2
11 F11F12

F11F12 F2
12 + F2

22

)
(16)

and the Green–Saint Venant tensor Et = (Ct − I)/2, in the same basis, is given
by the matrix

Et =
1
2

(
Ct − I

)
(17)

with I the identity matrix. The energy density at yyy = ζt(xxx) of an isotropic
elastic material is a function of the invariants of Ct (such as its eigenvalues, λ2

1

and λ2
2, always positive) or of Et (with eigenvalues 1

2 (λ2
1− 1) and 1

2 (λ2
2− 1)). If

the deformation preserves area, then det (Ct) = λ2
1 λ2

2 = 1. Also notice that the
first invariant (the trace) is given by tr (Ct) = λ2

1 + λ2
2.

2.2. Computing the elastic energy
From the previous section one can extract a systematic procedure to compute

the elastic energy of an isotropic material. To do this with the minimal notation
effort, let us first restrict the class of transformations to those depending linearly
on a set of vector coefficients XXX, which for Lagrangian finite elements are in fact
the positions of the nodes; i.e., which can be written as

ϕ(ξ) =
M∑

m=1

XXX(m) N(m)(ξ) (18)

For Lagrangian finite elements, clearly, {N(m)} is the set of basis functions on
the master (unit) element. In this way, since the elastic energy Ee depends on
both the relaxed configuration YYY (that we adopted arbitrarily as corresponding
to t = 0, i.e., YYY = XXX0) and the current configuration (time t), we write it as

Ee(YYY ,XXXt) =
∫

Γ(t)

ρ ee dΓ (19)

where Γ(t) is the surface occupied by the membrane at time t and ρ the surface
mass density. For an isotropic material the dependence above reduces to a
simple formula involving the eigenvalues of Ct. For example, for a Mooney–
Rivlin material,

ee = c1 (λ2
1 + λ2

2 − 2) + c2 (λ2
1λ

2
2 − 1) (20)

Given a relaxed configuration YYY and a current configuration XXXt, we proceed
to evaluate ee at point ξ of the master element as follows:
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Step 1: Compute the four vectors

GGG(1) =
M∑

m=1

YYY (m)

∂N(m)

∂ξ1
(ξ) (21)

GGG(2) =
M∑

m=1

YYY (m)

∂N(m)

∂ξ2
(ξ) (22)

ggg(1) =
M∑

m=1

XXXt
(m)

∂N(m)

∂ξ1
(ξ) (23)

ggg(2) =
M∑

m=1

XXXt
(m)

∂N(m)

∂ξ2
(ξ) (24)

and the normals

ŇNN =
GGG(1) ×GGG(2)

‖GGG(1) ×GGG(2)‖
; ňnn =

ggg(1) × ggg(2)

‖ggg(1) × ggg(2)‖
(25)

Step 2: Compute the right Cauchy–Green tensor as the 2× 2-matrix

Ct = FTF (26)

with F given by (10)-(13).

Step 3: Compute the eigenvalues of the right Cauchy–Green tensor and then
the energy ee using the constitutive law, for example (20). This gives
the elastic energy density at point ξ, which is then integrated over the
element using a quadrature rule and then summed over elements to obtain
Ee. Since the energy only involves first derivatives of the deformation, no
contribution to the energy arises at the interelement boundaries, as long
as one works with C0 finite elements.

2.3. Elastic membrane dynamics: Virtual work principle
Considering just the elasticity of the membrane and its inertia, the virtual

work principle states that the virtual power of the internal forces equals the
virtual power of the acceleration. Since the internal forces are elastic, their
virtual power equals minus the derivative of the elastic energy with respect to
the geometrical degrees of freedom XXX, that is

lim
ε→0

Ee(XXX
0,XXXt + εwww)− Ee(XXX

0,XXXt)
ε

+
∫

Γ(t)

ρaaa · www dΓ = 0 (27)

where the configuration XXXt + εwww is defined by perturbing the position of the
interface along the virtual velocity field www (in Lagrange elements this is typically
done one node at a time) and aaa is the acceleration.

6



  

Of course the first term of (27) may be represented as a distribution of forces
on the membrane, but this would require the introduction of more involved
differential operators. We thus prefer, for clarity, to leave the computation of
the elastic term as the limit of finite differences. Notice, however, that (27) is the
classical momentum equation for the membrane, and that it can be replaced by
any equivalent equivalent equation as obtained, for example, from a formulation
based on forces or on tangential stress tensors.

We emphasize that (27) is a non–linear system of ordinary differential equa-
tions for the unknowns XXXt, since the correspondence ϕt ↔XXXt is one–to–one and
the nodal accelerations are given by d2XXXt/dt2. To build the 3 ×M equations,
the virtual velocity field www is, as usual, successively taken as

www = ěeei N(m), i = 1, 2, 3; m = 1, . . . ,M (28)

so that, remembering (2) and defining

DDD(i,m) =
{

ěeei for node m
0 for nodes other than m

(29)

one arrives at the system of equations (for all nodes m and coordinates i)

lim
ε→0

Ee(XXX
0,XXXt + εDDD(i,m))− Ee(XXX

0,XXXt)
ε

+
M∑

`=1

[∫
Γ(t)

ρ N(`) N(m) dΓ

]
d2Xt

(`)i

dt2
= 0

(30)
where Xt

(`)i is the i-th coordinate, at time t, of node `, always considering
Lagrangian elements. The bracketed term is the usual mass matrix on Γ(t),
which will be denoted by A, with components Ak`. In the above, the basis
functions N(m) are as usual evaluated not at xxx ∈ Γ(t) but at ψt(xxx) ∈ T̂
(the master element), as is common finite element practice. If the mass of the
membrane is conserved (ρ dΓ independent of t) the mass matrix does not depend
on time.

2.4. Effect of the adjacent fluid
In general, to consider the full effect of the adjacent fluid one needs to solve

the 3D Navier–Stokes equations coupled to (30), in which the forces exerted by
the fluid need to be added. If fluid inertia is neglected, the boundary element
formulation based on fundamental solutions of the Stokes equations has gained
much popularity [41, 27, 52, 30]. Its advantage is that all computations are
performed on the interface Γ, with no need of a volumetric mesh. We however
prefer to leave this issue outside the scope of this article, which for viscous
membranes can be physically justified if the size is smaller than 10 microns, as
discussed later. We thus limit the discussion to the incorporation of gravitational
energy and pressurization effects.

Let V(XXXt) be the volume enclosed by the (closed) surface Γ(t),

V(XXXt) =
∫

Γ(t)

1
3

xxx · ňnn dΓ (31)
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and assume it contains a fluid of constant density ρ` and that gravity is also
constant (equal to − g ěee3). Then the gravitational energy of the membrane
together with that of the enclosed fluid is given by

Egrav =
∫

Γ(t)

(
ρ x3 + ρ`

x2
3

2
n3

)
g dΓ (32)

Further, assume that the internal fluid is pressurized to some pressure p(t),
assumed known. Since the work of this pressure upon a virtual change in volume
is p(t) ∆V, for the purpose of virtual work calculations there appears the term
p(t)V(XXXt).

Remark 2.2. If the volume enclosed by the membrane is imposed, for example
because the inner fluid is incompressible, then the internal pressure p(t) becomes
an unknown (Lagrange multiplier). Denoting by V(t) the imposed value, the
additional equation is

V(XXXt) = V(t) (33)

This can be incorporated into the energy as the term

p(t) [V(XXXt)− V(t)] (34)

which does not change the dependence on XXXt but allows one to recover (33) by
simply taking variations with respect to p.

2.5. Obstacles and contact
The presence of unilateral constraints such as solid obstacles can also be

accounted for in the energy. In this work we adopt a simple penalty approach
of the form

Econ =
∫

Γ(t)

αcon

2
δ2 dΓ (35)

where δ is the penetration depth of the membrane into the solid obstacle.
The contact of the membrane with itself (self penetration) is dealt with in

the same way. Further details of the contact implementation are left out for the
sake of brevity, since in fact no contact takes place in the viscous membranes
examples that are the focus of this work.

2.6. An algorithm for elastic membranes
Gathering the results of the previous sections it is possible to build a com-

plete algorithm for the simulation of elastic membranes. For nodal positions XXX
of the membrane, we consider the energy

E = Ee(YYY ,XXX) + Egrav(XXX) + Econ(XXX) + p [V(XXX)− V] (36)

and assume V to be a given function of time, so that p(t) is unknown (the case
in which p(t) is given is easier). The relaxed configuration YYY is given and fixed,
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though not necessarily equal to the (given) initial configuration XXX0. Also given
is the initial nodal-velocity vector UUU0.
Continuous-in-time discrete problem: For t > 0, find (XXXt,UUU t, p(t)) such
that for all i and m,

dXXXt

dt
−UUU t = 0 (37)

E(XXXt + εDDD(i,m), p(t))− E(XXXt, p(t))
ε

+
M∑

`=1

Am`

dU t
(`)i

dt
= 0 (38)

V(XXXt)− V = 0 (39)

where ε is an algorithmic parameter chosen so as to provide a good approxi-
mation to (30). Typically we choose ε = h/100, with h the mesh size. The
equations above constitutes a system of 6M + 1 differential-algebraic equations
that can be solved by standard methods. Notice that the only algebraic equation
is (39).

2.7. Time discretization
For the purpose of illustrating the method, we implemented two numerical

schemes for (37)-(39), an explicit fourth-order Runge-Kutta scheme and a fully-
implicit backward Euler scheme.
Runge-Kutta scheme: Let X = (XXX,UUU) be the array of nodal positions and
velocities, and let Xn and pn be the already calculated unknowns at time tn.
Then, for each tentative value p∗ of the pressure at time tn+1, and by performing
one time step of the Runge-Kutta scheme for equations (37)-(38), one obtains
a different Xn+1. Formally, this can be written as

Xn+1(p∗) = (XXXn+1(p∗),UUUn+1(p∗)) (40)

The correct value of pn+1 is thus obtained by solving the volume-constraint
equation

V(XXXn+1(pn+1)) = V(tn+1) (41)

A regula-falsi method is used to efficiently solve this scalar equation at each
time step.
Backward-Euler scheme: In this case we simply discretize the time deriva-
tives by backward differences transforming (37)-(39) into a nonlinear algebraic
system. This system is then solved by Newton-Raphson iterations with a finite-
difference evaluation of the Jacobian matrix.

2.8. A numerical example
Figure 1 shows a fluid-filled membrane under gravity interacting with several

cylindrical obstacles. The initial radius is R = 1, the membrane mass is M = 1
and the density of the internal fluid is ρf = 1, under unit gravity g = 1. The
material is Hookean with shear modulus G = 1 and bulk modulus K = 2. A
small dissipative force, fff = −10UUU , is added to dampen out standing oscillations.
The time step is ∆t = 10−3

9



  

Figure 1: Elastic membrane under gravity interacting with solid obstacles.

3. Viscous membranes

3.1. Surface viscous behavior
A classical derivation of the viscous operator from conservation principles

can be found in the pioneering article by Scriven [45]. A geometric form of the
operator in the language of differential forms is derived in the article by Arroyo
and DeSimone [1], with interesting two–dimensional examples of budding. The
resulting equations turn out to be quite involved, with the additional compli-
cation of depending explicitly on the hard–to–discretize curvature tensor. As
a consequence, no Continuum–Mechanics–based algorithm is available for the
dynamic simulation of three–dimensional surface–viscous behavior. Most pub-
lished methodologies focus on the obtention of the equilibrium state by gradient

10



  

flow[19, 33, 17, 4, 18, 7], disregarding the relaxation dynamics. Others com-
pute the damping effect of the surrounding fluid but neglect the surface viscous
effects[8, 44].

Surface viscous dissipation is nevertheless dominant for small enough mem-
branes, more precisely for membranes smaller than the Saffman–Delbrück length[42]

`SD =
µ

µb

where µ is the membrane’s surface viscosity and µb the viscosity of the bulk
fluid. The dominance of surface dissipation over bulk-fluid dissipation for sizes
smaller than `SD has been argued by Arroyo & DeSimone [1] and confirmed by
Arroyo et al [2] by means of axisymmetric numerical simulations. Considering
µ = 10−8 Pa-s-m [55] and µb = 10−3 Pa-s, one obtains `SD = 10−5 m, or 10
microns. Typical sizes of red blood cells, for example, are thus smaller than
`SD, urging for surface viscous effects to be accounted for in simulations.

The approach we propose here is based on Maxwell’s idea of viewing viscosity
as “fugitive elasticity” [36, 35]. It is best explained considering an elastic spring
for which the force depends on the current position x, on the elastic constant k
and on the equilibrium position a as

F (k, a;x) = −k(x− a) (42)

Defining the energy E(k, a;x) = 1
2k(x− a)2 it is readily seen that

F = − lim
δ→0

E(k, a;x + δ)− E(k, a;x)
δ

(43)

so that the forces can be computed using (43) for some sufficiently small δ. Now
assume that one wants to compute a viscous dashpot, i.e.; an element satisfying

F = −µ v, (44)

where v = dx/dt is the velocity, using the code developped for the elastic spring
above. Consider the elastic energy that results from taking the equilibrium
position as a = x− vτ , for some small time interval τ , and with elastic constant
k = µ/τ . Substituting into (43) one obtains

F = − lim
δ→0

E
(

µ
τ , x− vτ ;x + δ

)
− E

(
µ
τ , x− vτ ;x

)
δ

= −µ v (45)

which shows that the viscous behavior of the dashpot can be reproduced as the
behavior of a virtual spring which has relaxed configuration x− v τ and elastic
constant µ/τ , for τ sufficiently small. Notice that, in (45), the x appearing
in the equilibrium position a = x − vτ is not perturbed when evaluating F .
Applying this idea in an implicit dynamic algorithm, the relaxed configuration
of the virtual spring at time tn+1 would be xn+1 − vn+1 τ .
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Remark 3.1. A related procedure was used by Ma and Klug to regularize mesh
movements [33]. They determined the tangential displacements by solving an
elastic problem in which the relaxed configuration is continuously updated. Be-
sides their goal being preserving mesh quality and not simulating surface vis-
cosity, their algorithm differs from the one proposed here in that their relaxed
configuration is simply the last computed state xn.

The previous idea, generalized to approximate the viscous operator on a
membrane, is thus given by

A(XXXt,UUU t;www) ' Ee(XXXt − τUUU t,XXXt + εwww)− Ee(XXXt − τUUU t,XXXt)
ε

(46)

where the elastic energy must correspond to a material having shear modulus
G = µ/τ . Notice that when embedding the operator above into a time–stepping
scheme it is possible to take τ = ∆t and thus XXXt−τUUU t 'XXXt−∆t, which amounts
to taking the previously computed configuration as reference configuration. We
however leave τ as a free parameter to be tuned later on. This also emphasizes
the velocity dependence of the viscous term, which would be hidden into XXXt−∆t

otherwise.

3.2. The inextensibility condition
It is well–established that lipidic bilayers tend to be inextensible, in the

sense that the area of every part of the surface is preserved under deformation.
In most simulations up to now this condition has only been imposed globally
[19, 33, 17, 7], requiring that the total area is preserved.

Here we enforce (weakly) the inextensibility condition throughout the sur-
face. This has also been performed recently by Veerapaneni et al [53] in a
spectral formulation and by Boedec et al [5] in an unstructured boundary ele-
ment formulation. These authors, however, did not consider surface viscosity
effects.

A suitable weak form of the inextensibility condition is∫
Γ(t)

Q (dΓ− dΓYYY ) = 0 ∀Q ∈ L2(Γ(t)) (47)

where dΓYYY is the area differential in the reference configuration YYY . This con-
straint defines a Lagrange–multiplier field P t on Γ(t), which plays the role of
an unknown surface tension and whose virtual work must be accounted for in
the momentum equation. Once again, this can be incorporated into the global
energy from which the forces are computed by perturbation. The term to be
added is linear in P t, reads

B(YYY ,XXXt;P t) = −
∫

Γ(t)

P t (dΓ− dΓYYY ) (48)

and simply consists of the difference between the integrals P t over the current
and reference configurations (keeping values at the nodes fixed).
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3.3. Stabilization of the inextensibility constraint
Equation (47) is equivalent to∫

Γ(t)

QdivΓuuu dΓ = 0 (49)

where divΓ is the surface divergence operator and uuu the Eulerian velocity field. In
simple words, inextensibility is nothing but two–dimensional incompressibility
of the membrane material considered as a surface fluid. It is thus not surprising
that, when discretizing (47) with finite elements of the same polynomial degree
for XXX, UUU and P , violent oscillations appear in P indicative of spurious modes.
To stabilize the formulation, we add a surface diffusion term for P which turns
(47) into ∫

Γ(t)

Q (dΓ− dΓYYY ) +
∫

Γ(t)

ζ∇ΓP · ∇ΓQ dΓ = 0 (50)

where ζ is a mesh–dependent parameter taken as

ζ = cζ
h2

µ
(51)

from previous experience with finite element methods for Navier-Stokes equations[25,
12, 10, 13]. The algorithmic constant cζ is chosen as 1, which works well in all
tested cases. The surface gradient of a scalar field Q, denoted by ∇ΓQ, is the
3D vector

∇ΓQ = P∇Q̃ (52)

where P = I− ňnn⊗ ňnn is the tensor that projects onto the tangent plane and Q̃ is
any extension of Q to a 3D neighborhood of Γ. The surface gradient of a vector
field is defined by applying the same formula componentwise. More details about
these surface differential operators can be found in [46, 51, 40, 7, 9]. They are
vectors and tensors given in the global Cartesian basis of R3 and are thus easy
to compute and manipulate.

3.4. Bending energy of viscous membranes
It is quite intuitive that inertial and gravitational forces do not play a sig-

nificant role in the biological interfaces modeled as viscous membranes. This
leaves the model presented up to now with no driving force to generate motion,
making any initial configuration a trivial solution.

Let us thus add a bending component to the previous ingredients, so that
the membrane will be driven towards minimizers of the bending energy. The
most accepted model is the Canham–Helfrich energy[11, 23], with variants intro-
duced by Seifert and coworkers [47]. The minima of this energy reproduce with
astonishing realism the shapes encountered in living cells and lipidic vesicles
[32, 48, 31, 54, 47].

In its simplest form the Canham-Helfrich energy is given by

ECH =
CCH

2

∫
Γ(t)

H2 dΓ (53)
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with H the mean curvature of the surface and CCH a dimensional constant.
It is not obvious how to discretize (53), since a convergent approximation

for H in L2(Γ(t)) must be devised. We refer to the literature[3, 19, 33, 17, 7]
for some options. In this work, since the emphasis is on the surface viscous and
incompressibility operators, we adopted the simple discretization of H proposed
by Meyer et al [37], leaving further improvements on this topic for later work.

3.5. An algorithm for viscous membranes
Summing up the several contributions defined in the previous sections and

neglecting inertial and gravitational terms, the algorithm for viscous membranes
reads:

For XXXn given, compute XXXn+1, UUUn+1, pn+1 and Pn+1 satisfying, for all i, m
and Q:

XXXn+1 −XXXn

∆t
−UUUn+1 = 0 (54)

E(YYY ,XXXn+1 + εDDD(i,m), p
n+1, Pn+1)− E(YYY ,XXXn+1, pn+1, Pn+1)

ε
= 0 (55)

V(XXXn+1)− V(tn+1) = 0 (56)

B(YYY ,XXXn+1;Q) +
∫

Γn+1
ζ∇ΓPn+1 · ∇ΓQ dΓ = 0 (57)

where YYY = XXXn+1 − τ UUUn+1 and

E(YYY ,XXX, p, P ) = Ee(YYY ,XXX) + ECH(XXX)− p[V(XXX)− V(t)] + B(YYY ,XXX,P ) (58)

This variational formulation is discretized with P1 conforming finite elements
for the fields XXX, UUU and P . Only initial conditions for XXX are needed, since no
time derivatives of UUU , P or p appear. The numerical parameter ε is chosen as
0.01 h, while τ is chosen such that τ‖UUU‖max < 0.01 h, where the maximum is
taken ovel all nodes of the mesh. The one–sided finite difference in (55) is in
practice replaced by a fourth–order centered finite difference, yielding a more
reliable scheme. The resulting non–linear system is solved all at once by means
of a Newton–Raphson algorithm with a finite–difference approximation of the
Jacobian matrix.

4. Numerical examples

4.1. Cylinder under traction
Consider a circular cylinder of radius R and length L, and thus area A =

2 π R L, subject to a longitudinal total traction force F uniformly distributed
over its boundaries, as sketched in Fig. 2. The bending energy is taken as
zero to test just the viscous operator. This problem has as exact solution a
uniform extensional flow, in which the axial stresses equal F/(2π R) and the
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circumferential stresses equal R ∆p, with ∆p the pressure difference across the
membrane. The exact solution for P is a uniform field of value

P = −1
2

(
F

2π R
+ R ∆p

)
and the exact extension rate is

dL

dt
=

L

4µ

(
F

2π R
−R ∆p

)
Taking ∆p = 0, F = 8, R(0) = L(0) = µ = 1 one obtains

L(t) =
1

1− t
π

, R(t) = 1− t

π
, P (t) = − 2

π − t

In Fig. 3 we perform a mesh convergence study for this problem. We use
structured meshes of 16×8, 32×16 and 64×32 subdivisions (each quadrilateral
then divided into two triangles), with the nodal positions perturbed so that
the edges are not aligned with the longitudinal or circumferential directions
(otherwise superconvergence is achieved). A small membrane mass (0.05) is
added, since otherwise the problem is ill-posed (the zero-dissipation-modes of
the Stokes operator on a cylinder are infinitely many, and not just the rigid-body
modes). The simulations are carried out with ∆t = 10−2.

Good agreement with the exact solution is observed both for L(t) and for
P (t) (the average of P over Γ(t)). Numerical fluctuations are observed in Ph,
as depicted in Fig. 3 (bottom). Their amplitude seems to converge to zero with
order O(h).

Convergence as ∆t → 0 is also observed. An upper bound for ∆t arises from
the lack of convergence of the Newton iterations. For ∆t = 10−1, for example,
the algorithm ceases to converge at t ' 2.

4.2. Vesicle tweezing
Optical tweezing is an experimental method by which a laser beam can exert

a force and move a bead attached to a membrane [49]. It is one of the emerging
technique for the study of cell mechanobiology [26]. Continuum Mechanics
simulations of red blood cells under tweezing have been reported by Dao et
al [14] using an elastic membrane model in commercial software ABAQUS. A
similar model was adopted for the immersed boundary simulations of Le et al
[28]. The Canham–Helfrich bending energy was considered by Lee and coworkers
[29] in their study of DOPC giant unilamellar vesicles. More complex, multiscale
models have been recently advocated by Peng et al [39] for accurate simulation
of red blood cells.

In this section we report a simulation of a viscous membrane in an optical
tweezing configuration, with a time–dependent, sinusoidal applied force. We
study a vesicle of reduced volume v = 0.807, for which the stationary shape
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L (t)

F

F

Figure 2: Viscous cylinder under traction. Sketch of the geometry and contour levels of Ph

at t = 0.44.

of minimal energy is a prolate shape [47] with a normalized Canham–Helfrich
energy of

Eprolate =
1

16π

∫
Γ

H2 dΓ ' 1.37

There exist however several other local minima, in particular there is an oblate
shape with slightly higher energy

Eoblate ' 1.44
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Figure 3: Viscous cylinder under traction. Mesh convergence study. Top: L(t). Middle: Ph(t)
averaged over the membrane. Bottom: Difference between maximum and minimum values of
Ph over the membrane.
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Our purpose is to assess the performance of the proposed algorithm in simulating
transitions between these two shapes as induced by a tweezing force of the form
F = A sin((2π t/T ). This force is applied on two opposite sides of the vesicles
(uniformly distributed over a small set of elements), such that F > 0 is defined
as traction and F < 0 as compression.

In Figs. 4 and 5 the normalized energy E is plotted as a function of time,
together with the shapes corresponding to some instants. The vesicle starts
from an arbitrary configuration, which in fact corresponds to a prolate shape
oblique to the force direction. It is stretched sideways up to t ' 0.2 T , when
a transition occurs towards a prolate shape aligned with the force. This shape
then relaxes towards equilibrium at t = 0.5 T , when the applied force returns to
zero. The value of E decreases to a value quite close to Eprolate, the difference
being attributed to discretization errors. This prolate shape is then compressed
by the force, and it consequently deforms increasing its energy until at t ' 0.7T
a second transition takes place that takes the vesicle to an oblate shape. This
oblate shape persists after the compression force goes to zero at t = T , at which
time E ' 1.416, in good agreement with Eoblate.

After t = T the force pushes the concave sides of the disk outwards. This
configuration renders the shape soon unstable and a transition back to the
aligned prolate shape is observed at t ' 1.16 T . This shape again relaxes to
equilibrium at t = 1.5 T and then undergoes axial compression up to t ' 1.7,
when it transitions again to oblate. The transitions at t ' 0.7 T and t ' 1.7 T are
quite alike. In particular, they consist of first a relatively slow evolution towards
a square–tile–like shape, followed by a sudden transition to the metastable,
circular disk–like shape (metastable oblate).

Looking at the plot of E(t), one observes the time scale of the applied force
itself (of order T ) and the time scales of oblate–to–prolate and prolate–to–
oblate transitions, which is much smaller. An estimate of these time scales can
be obtained from Fig. 6, in which E(t) and the internal pressure p(t) are plotted
from t = 0.7 to t = 0.8. By visual inspection one may conclude that the time
yielded by the simulation for the transition is, roughly, τ ∼ 10−2T = 80. This
is consistent with dimensional analysis. In fact, from the surface viscosity µ = 1
[force-time/length], and the adopted CCH = 10−3 [energy], and assuming from
the graphs that a typical length scale for the transitions is L ' 0.3 (the radius
of the equilibrium prolate shape), the dimensional combination that renders a
characteristic time is

µ

L2 CCH
' 100

not far from the predicted τ .
Further studies on the dynamical aspects of these shape transitions are the

subject of ongoing work. The purpose here is just to illustrate the applicability
of the proposed algorithm to extract qualitative and quantitative information
of vesicle mechanics.
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Figure 4: Vesicle tweezing with a force F = A sin(2 π t/T ) (positive/negative on trac-
tion/compression, respectively). Normalized energy ( 1

16π

R
Γ H2dΓ) as a function of t/T .

Several instantaneous shapes show the transitions from oblate shape (metastable) to pro-
late shape (stable) and viceversa. The colors correspond to the local mean curvature (blue:
minimum, red: maximum).

4.3. Surface viscous flow versus L2-gradient flow
Several recent studies of biological membranes modeled by means of the

Canham-Helfrich energy (or variants thereof) have focused on gradient flows
evolving towards equilibrium [19, 33, 17, 7]. More specifically, this amounts to
replacing the viscous operator A defined in (46) by an L2-projection P, i.e.;

P(UUU t;www) = γ

∫
Γ(t)

UUU t ·www dΓ (59)

Notice that this is equivalent to replacing the surface-viscous forces by a drag
force of the form −γ UUU t, with γ the drag coefficient.

For comparison purposes, gradient flows were implemented in the same code
with which the previous simulations were performed. Together with the drag
forces (59), the volume and inextensibility constraints are active in much the
same way as before. Further, cases in which the inextensibility constraint was
only enforced globally (preservation of the total area alone) were considered.
This is easily done by selecting for Pn+1 the one-dimensional space of constant
functions over Γn+1, instead of the P1 finite element space.
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Figure 5: Continued.
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Figure 6: Energy E and internal pressure p plotted between t = 0.7T and t = 0.8T .
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Simulations were run for several values of µ and γ starting from the de-
formed shape corresponding to t/T = 0.74 in the tweezing simulation (Figs.
4-6) and without any external forces (pure relaxation). Curve 1 in Figs. 7 and
8 correspond to a gradient flow, with γ = 0.1, µ = 0 and global inextensibility
constraint (Pn+1 uniform over Γn+1). Curve 5 in those figures, on the other
hand, corresponds to viscous relaxation, with γ = 0, µ = 1 and local inexten-
sibility (Pn+1 in P1). The evolution of these two cases is completely different.
The main reason is that the mesh deteriorates very rapidly in gradient flow,
the maximum angle in the mesh rises steeply and the simulation explodes. The
surface viscous operator, on the other hand, is much nicer to the mesh and
allows for the shape to evolve towards equilibrium with angles smaller than 145
degrees. This has already been exploited by Ma & Klug [33], who used a vis-
cous regularization of the mesh in gradient flow computations. It is clear that
the urgency for remeshing is much alleviated in surface viscous flow, though for
large shape deformations remeshing is eventually needed.

Curves 2, 3 and 4 in Figs. 7 and 8 correspond to intermediate cases between
gradient flow and inextensible viscous flow. Curve 2 corresponds to gradient flow
with local inextensibility, which somewhat improves the mesh quality but still
leads to collapse. Curves 3 and 4 corresponds to locally inextensible gradient
flow with some added surface viscosity (µ = 0.01 and µ = 0.1, respectively).
The surface viscosity penalizes tangential shear and thus leads to better-behaved
meshes.

The shapes corresponding to Curves 4 and 5 are shown in Fig. 9 for sev-
eral intermediate times. The left of each figure corresponds to the viscous case
(Curve 5) and the right to the gradient case with added viscosity 0.1 (Curve
4). Both evolutions first approach the (metastable) oblate shape and end up in
the (stable) prolate shape, though not following the exact same path. Viscous
flow lingers for more time close to the oblate shape before transitioning (more
abruptly) to the prolate shape. Though gradient and viscous flows will in gen-
eral tend to the same equilibrium, the physically realistic viscous simulation is
essential to evaluate any biological process associated to the relaxation path of
a lipidic membrane.

5. Concluding remarks

Nature, at the length scale of the Living Cell, is a complex combination of
some fundamental structures or building blocks. One such fundamental struc-
ture is a bidimensional arrangement of lipidic molecules that constitutes an im-
portant part of the cell’s membrane and of several intracellular agents: Lipidic
bilayers. In Mechanical terms, this bidimensional material admits a remarkably
simple mathematical model: That of a bidimensional Newtonian fluid of surface
viscosity µ, with a shape–dependent energy density proportional to the square
of the local mean curvature. The need for accurate simulation procedures for
this material is increased by the existing possibility of creating and manipulating
lipidic bilayers for biochemical applications.
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Figure 7: Normalized bending energy vs. time for relaxation with initial shape corresponding
to t/T = 0.74 in Figures 4-6. Relaxation is simulated for different values of µ and γ. The
first curve corresponds to imposing the inextensibility constraint only globally (preservation
of total area).

Two–dimensional viscous behavior over a curved, evolving surface is practi-
cally inexistent in the macroscopic world. The simulation method for viscous
membranes proposed in this article is built starting from well–established tech-
niques used for macroscopic elastic membranes, from which viscous behavior
can be obtained as elastic response with respect to an evanescent, continually
updated reference configuration. The elastic energy “stored” with respect to
this evanescent configuration is “forgotten” at each time step, which leads to
an effective loss of energy or dissipation. This is an effective way of simulat-
ing a two-dimensional viscous fluid with well-established codes built to simulate
two-dimensional elastic solids. The proposed method is also advantageous for
modeling membranes that have both an elastic component and a viscous com-
ponent.

Another, more CFD-like, methodology that is currently under evaluation is
to directly discretize (in both time and space) the tangential viscous operator.
It is given by [20]

A(XXXt,UUU t;www) =
∫

Γ(t)

2 µDΓUUU t :DΓwww dΓ (60)

where, for any field www defined on Γ(t),

DΓwww =
1
2

(
∇Γwww +∇ΓwwwT

)
(61)
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Figure 8: Maximum angle in the triangulation vs. time for relaxation with initial shape
corresponding to t/T = 0.74 in Figures 4-6. Relaxation is simulated for different values of µ
and γ, as explained in Fig. 7.

If inertia is neglected, the exact formulation can be seen as the autonomous
evolution equation

dXXX

dt
= U(XXX) (62)

where the operator U is the solution of the tangential Stokes problem (or
Boussinesq-Stokes-Scriven problem) for the given shape XXX (eventually con-
strained to preserve internal volume) with the Canham-Helfrich forces driving
the motion. These forces, which act along the normal to the surface, are given
by

FFF = CCH

(
∇2

ΓH +
1
2

H3 − 2 K H

)
ñnn (63)

(with K the Gaussian curvature) and thus only depend on the configuration XXX
of Γ. Effective time-integration algorithms can then be applied to (62). Care
must be taken, however, in that U is defined up to a rigid-body motion in
general. A word of caution: In two dimensions (meaning that Γ is a curve) the
operator U is ill defined, and for the problem to be well posed some inertia must
be retained, or the viscosity of the internal fluid accounted for.

The version of the surface viscous operator given by (60) is advantageous
for Eulerian methods such as volume-of-fluid or level set formulations. In these
formulations, however, the implementation of the inextensibility condition is far
from being obvious.

Future work involves the incorporation of a remeshing algorithm, since oth-
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Figure 9: Shapes and meshes corresponding to Curves 4 and 5 of Figs. 7 and 8. The left side
of each frame corresponds to viscous flow (Curve 5) and the right to gradient flow with added
viscosity 0.1 (Curve 4). The time (in units of T ) is given in each frame.

erwise phenomena involving very large deformations (e.g.; tethering) are un-
tractable.
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