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b Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”,
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Highlights

• Most popular fractional step methods are analyzed for highly viscous flows.
• Most incremental methods develop a spurious transient, independent of mesh size.
• Non-incremental methods do not develop spurious transients, but require small time steps.
• Time step bounds are proposed as to avoid artifacts produced by spurious transients.

Abstract

The temporal behavior of projection methods for viscous incompressible low-Reynolds-number flows is addressed. The methods
considered result from algebraically splitting the linear system corresponding to each time step, in such a way that the computa-
tion of velocity is segregated from that of pressure. Each method is characterized by two (possibly equal) approximate inverses
(B1 and B2) of the momentum-equation velocity matrix, plus a parameter γ which renders the method non-incremental (if γ = 0)
or incremental (if γ = 1). The classical first-order projection method, together with more sophisticated methods (Perot’s second-
order method, Yosida method, pseudo-exact factorization method) and their incremental variants are put into the same algebraic
form and their accuracy numerically tested. Splitting errors of first, second and third order in the time step size δt are obtained,
depending on the method. The methods are then discussed in terms of their ability and efficiency to compute steady states. Non-
incremental methods are impractical because extremely small time steps are required for the steady state, which depends on δt ,
to be reasonably accurate. Incremental methods, on the other hand, either become unstable as δt is increased or develop a re-
markable spurious transient which may last an extremely long time (much longer than any physical time scale involved). These
transients have serious practical consequences on the simulation of steady (or slowly varying), low-inertia flows. From the physical
viewpoint, the spurious transients may interfere with true slow processes of the system, such as heat transfer or species transport,
without showing any obvious symptoms (wiggly behavior in space or time, for example, do not occur). From the computational
viewpoint, the limitation in time step imposed by the spurious transient phenomenon weighs against choosing projection schemes
for microflow applications, despite the low cost of each time step.
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1. Introduction

All along the history of the numerical simulation of incompressible flows, much attention has been devoted to
pressure-segregation methods, which are methods that avoid the solution of linear systems in which the velocity un-
knowns are coupled to the pressure unknowns. Many pressure-segregation methods have been developed since the
early work of Harlow and Welch [1]. We consider here a class of pressure-segregation methods known as projection
methods [2–7], pressure-correction methods [8,9] or fractional step methods [10,11]. They have in common that the
update of velocity unknowns is obtained from the momentum equation, while the update of pressure unknowns results
from solving a Poisson-like equation.

Let us recall the incompressible Navier–Stokes equations, which can be written as

∂t u + ∇ · (uu)− ν∇2u + ∇ p = f in [0, T ] × Ω , (1)

∇ · u = 0 in [0, T ] × Ω , (2)

where t is time, u is the velocity vector field, p is the pressure, ν is the kinematic viscosity of the fluid, f is a body-force,
all defined in a domain Ω ⊂ Rd (d = 2 or 3) for t ∈ [0, T ].

Formally, the above equations are equivalent to

∂t u = ΠZ


f − ∇ · (uu)+ ν∇2u


(3)

where ΠZ is the projection operator onto the subspace Z of divergence-free vector fields in Ω . Notice that p does not
appear in (3). The early works of A. Chorin [3] and R. Temam [4] exploited the projection structure of the problem
to define projection methods which successfully accomplish pressure segregation. The underlying mathematics is
rooted on the Helmholtz–Hodge theorem (see [12]) about the decomposition of a vector field into gradient and
solenoidal components, which allows for the computation of the projection operator by solving a Poisson equation for
the pressure.

Over the years, many authors [5,13–17] studied the effects of different update schemes for the pressure to obtain
higher-order (in time) methods. The treatment of boundary conditions also focused research efforts, as they impact on
the time accuracy [15,18,19,7,20–22].

An interesting viewpoint of projection methods is that of approximate factorization, or algebraic splitting
[11,23–25]. In this approach, the decoupling is performed on the spatially and temporally discretized equations by
replacing the system matrix of the monolithic method (also called all-at-once method) by an approximate factorization
of it. This approach leaves the treatment of the boundary conditions implicit in the approximate matrix factors, much
simplifying the analysis. Interesting applications of the approximate factorization approach can be found in the studies
by Quarteroni et al. [26], Badia and Codina [27], Lee et al. [20], Chang et al. [28], Griffith [29], among others.

From the cited references it becomes clear that most of the existing projection methods are in fact equivalent to
some algebraic splitting method. We have thus chosen to focus this article on algebraic splitting methods, considering
them as representative of most projection-like methods.

Section 2 of this article contains an overview of several algebraic splitting methods for viscous incompressible
flows, similar to that performed in [25]. The methods are described within a uniform algebraic setting and numerically
tested in the benchmark problem of decaying vortices in a periodic domain at Re = 10−2. A detailed study of the
convergence of the time discretization is conducted, which serves both as verification of the implementation and as
direct comparison of the different variants in a low-inertia flow. A similar study involving monolithic and segregated
methods for incompressible fluid flows was presented by Elman [30], though in that paper the goal was to investigate
the performance of preconditioning strategies (see also [31]).

The convenience of segregating the velocity from the pressure unknowns without sacrificing temporal accuracy
is quite significant, as in a mesh with N cells in 3D one solves four N × N matrices instead of one large matrix
of dimensions 4N × 4N . Unfortunately, there exist serious time-step restrictions on the applicability of projection
methods to low-inertia incompressible flows.

Section 3 discusses these restrictions, which arise from either accuracy or stability considerations. In particular, it
is shown that incremental projection methods suffer from severe spurious transients in the computation of pressure-
driven viscous-dominated flows. These spurious transients may easily last thousands of time steps. They may become
larger than the physical time scale of the process being simulated and completely pollute the numerical results.
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An explanation of these spurious transients is provided both by an algebraic argument and by analyzing an analo-
gous thin-film problem. Then the various implemented methods are numerically assessed in what regards the spurious-
transient phenomenon. The assessment reveals the importance of the phenomenon, of which CFD practitioners should
be aware at the time of selecting simulation methods and parameters (time step in particular) for microfluidic applica-
tions. The issue is further discussed, drawing practical conclusions, in Section 4.

2. Overview of discretizations

Our objective here is to describe pressure-segregation techniques for the numerical approximation of (1)–(2). These
techniques are obtained by algebraically splitting the monolithic discretization, which in matrix form reads

A G
D 0

 
U n+1

Pn+θ


=


rn

0


, (4)

where

A =
1
δt

Iu − θ ν L (5)

rn
= NU n

− T(U n)+ bn (6)

and

N =
1
δt

Iu + (1 − θ) ν L. (7)

Above, U n
∈ RN+M is the vector of velocity unknowns, assumed to be N for x-velocity components and M for

y-velocity components, and Pn+θ
∈ RQ is the vector of pressure unknowns. Although the time location of the

algebraic unknown P is irrelevant (P being a Lagrange multiplier), we kept the superscript for consistency with the
employed time discretization, as in [25]. In fact, for a fixed spatial discretization, as δt → 0, the sequence of vectors P
converges to a smooth time-dependent vector Pref(t), which will be further discussed later on (smooth forcings are of

course assumed). Taking θ =
1
2 (and assuming negligible inertia for simplicity), the unknown Pn+

1
2 that is computed

from (4) converges to Pref((n +
1
2 )δt), as δt → 0, with order O(δt2). It converges with lower order O(δt) to either

Pref(n δt) or Pref((n + 1)δt), thus justifying the preference of the notation Pn+
1
2 over Pn or Pn+1.

Notice that the presentation assumes the problem to be 2D for simplicity. The parameter θ is positive and not greater
than one. On the right side of (6), T(U n) represents the discrete operator of the nonlinear terms. Since we focus on
low Reynolds numbers in this work, this term is explicitly approximated (and sometimes neglected altogether).

Note that A ∈ R(M+N )×(M+N ), while Iu is the identity matrix. If finite elements were used instead of finite
differences, one would have A =

1
δt M − θνL, where M stands for the mass matrix.

Moreover, L ∈ R(M+N )×(M+N ) is the sub-matrix corresponding to the discretization of the viscous operator,
G ∈ R(M+N )×Q corresponds to the discrete gradient operator and D ∈ RQ×(M+N ) is the discrete divergence operator.
The vector rn

∈ R(M+N ) in (6) contains all the quantities known at the current time level n, and additional information
regarding the discretization of forces and boundary conditions, assumed contained in vector bn

∈ R(M+N ).
In all the numerical examples the spatial discretization is performed with a Marker-and-Cell scheme [1], in which

velocities (in x- and y-direction) are stored at the cell edges (positions (i +
1
2 , j) and (i, j +

1
2 ), respectively) while

the pressure is stored at cell centers (positions (i, j)). This scheme is known to be div-stable, in the sense that spatial
convergence is attained without the appearance of spurious pressure modes. It is widely used and has been extensively
documented in the literature.

2.1. Algebraic splitting

A numerical approach that solves system (4) is said to be coupled or monolithic. The large associated computational
cost motivates the algebraic splitting of the system into subsystems of smaller size. Typically, matrix A is symmetric
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and positive, since −L (upon enforcing the boundary conditions) and Iu are as well. The point of departure of algebraic
splitting methods is an exact factorization of the matrix

H =


A G
D 0


(8)

into two, three or four factors [20]. Considering the standard block LU factorization (see [23]) of H, we have

H =


A 0
D −DA−1G

 
Iu A−1G
0 Ip


, (9)

where Ip ∈ RQ×Q is the identity matrix corresponding to the pressure unknowns. Thus the system (4) can be rewritten
as 

A 0
D −DA−1G

 
Iu A−1G
0 Ip

 
U n+1

Pn+θ


=


rn

0


. (10)

Note that the system (10) can be solved in two stages:
A 0
D −DA−1G

 UP


=


rn

0


, (11)

and 
Iu A−1G
0 Ip

 
U n+1

Pn+θ


=

UP

, (12)

where the vectors U and P are often regarded as intermediate velocity and pressure, respectively.
Systems (11) and (12) constitute an exact algebraic splitting method for the numerical solution of the Navier–Stokes

equations. Unfortunately, it involves the matrix A−1 which is unaffordable to compute.
Algebraic splitting methods are approximations of the exact splitting above. These methods define matrices B1

and B2 which will approximate A−1 in its first and second occurrences, respectively. The numerical method is then
defined by

A 0
D −DB1G

 UP


=


rn

− γGPn+θ−1

0


, (13)

and 
Iu B2G
0 Ip

 
U n+1

Pn+θ


=

U + γ B2G Pn+θ−1P + γ Pn+θ−1


, (14)

where γ ∈ {0, 1} is a parameter introduced to make P “incremental”. If γ = 0 then P = Pn+θ and the method is said
to be “non-incremental”. If γ = 1 then P = Pn+θ

− Pn+θ−1 and the method is said to be “incremental”.
Notice that, abusing notation, we kept in (13)–(14) the same letters for the velocity and pressure unknowns as that

used for the discrete solution of (11)–(12), which is nothing but the solution of the monolithic system (4). From now
on the solution of the coupled system will be denoted by U n

coupled and Pn+θ
coupled. The sequence of velocity and pressure

solutions generated by the different algebraic splitting schemes will only coincide with the monolithic solution if
B1 = B2 = A−1 (interestingly, the value of γ is irrelevant because it cancels out). In all other cases there appears a
splitting error, both in velocity (i.e.; U n

− U n
coupled) and in pressure (i.e.; Pn+θ

− Pn+θ
coupled).

Remark 1. Applying the discrete divergence D to the first equation of (14), one can deduce that

DU n+1
= D(U − B2GP)

and combine with the second equation in (13) to get

DU n+1
= D (B1 − B2)GP
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which is exactly zero if both approximations to the inverse of A are the same (B1 = B2). This makes the scheme to
exactly enforce the incompressibility constraint after each time step. Whenever B1 = B2 the approximate inverse will
be denoted by B.

The system of algebraic equations to be solved at each time step for the algebraic splitting methods considered
here can thus be summarized as

AU = rn
− γGPn+θ−1, (15)

DB1G


Pn+θ
− γ Pn+θ−1


= DU , (16)

U n+1
= U − B2G


Pn+θ

− γ Pn+θ−1

. (17)

It is worth looking at the evolution matrix of system (15)–(17) when inertia and forcing terms are neglected, i.e.;
when

rn
= NU n . (18)

Eliminating U one arrives at the equivalent system
A AB2G
D D(B2 − B1)G

 
U n+1

Pn+θ


=


NU n

− γ (Iu − AB2)G Pn+θ−1

γD(B2 − B1)G Pn+θ−1


(19)

and inverting the matrix in the left hand side, one finally gets the matrix evolution equation
U n+1

Pn+θ


=


A AB2G
D D(B2 − B1)G

−1 N −γ (Iu − AB2)G
0 γD(B2 − B1)G


  

S


U n

Pn+θ−1


(20)

with S given by

S =

Iu − B2G(DB1G)−1D


A−1N −γ

Iu − B2G(DB1G)−1D


A−1G

(DB1G)−1DA−1N −γ

(DB1G)−1DA−1G − Ip

  . (21)

The evolution equations of the algebraically split method should be contrasted with those of the monolithic method,
which in this (linearized and homogeneous) case reads

A G
D 0


U n+1

coupled

Pn+θ
coupled


=


NU n

coupled
0


. (22)

Its matrix evolution equation is thus given by
U n+1

coupled

Pn+θ
coupled


=


A G
D 0

−1 N 0
0 0


  

Scoupled


U n

coupled

Pn+θ−1
coupled


(23)

with

Scoupled =


Iu − A−1G(DA−1G)−1D


A−1N 0

(DA−1G)−1DA−1N 0


. (24)

The splitting error can be estimated by assuming U n
= U n

coupled and Pn+θ−1
= Pn+θ−1

coupled and subtracting (23) from
(20), but this is quite involved and will not be detailed here.

In the next sections we recall several algebraic splitting methods of the type discussed above. Analyses of their
temporal accuracy can be found in the literature [17,22,25,26,32,33].
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2.2. First-order projection scheme

From Eq. (5), one can expand A−1 as

A−1
= δt Iu + δt2θ ν L + · · · = δt Iu +

∞
i=1

δt i+1 (θ ν L)i , (25)

a series that is known to be convergent if δt < ∥θ ν L∥
−1
2 (see [34]).

The first-order projection method is defined by the choices γ = 0 and B1 = B2 = B as the first term of the
expansion (B = δt Iu), which corresponds to the algebraic system

AU = rn (26)

δtDGPn+θ
= DU (27)

U n+1
= U − δtGPn+θ (28)

and, eliminating U ,

AU n+1
+ δt AGPn+θ

= NU n (29)

DU n+1
= 0. (30)

As its name suggests, this method has splitting error of order O(δt).

2.3. Incremental projection scheme

This method corresponds to taking γ = 1 and B = δt Iu, and is thus the incremental version of the previous method.
The equations that define the method are

AU = rn
− GPn+θ−1 (31)

δtDGP = DU (32)

U n+1
= U − δtGP (33)

Pn+θ
= Pn+θ−1

+ P. (34)

Its splitting error is of order O(δt2), so that the scheme is of second order in time when θ =
1
2 [7,21].

2.4. Perot’s second order approximation to A−1

Another way to improve the order of accuracy in time of the first-order projection scheme [24] is to consider one
more term in the expansion (25), i.e.,

B = δt Iu + θ ν δt2 L. (35)

One arrives at the following method (non-incremental version)

AU = rn (36)

D

δt Iu + θ ν δt2 L


GPn+θ

= DU (37)

U n+1
= U −


δt Iu + θ ν δt2 L


GPn+θ . (38)

The splitting error of this method is O(δt2), so that when the time discretization employed for the coupled problem
is second order in time, Perot’s method exhibits second order time accuracy [24].
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2.5. Yosida method

Yosida method was first introduced by Quarteroni and co-workers [26,35] and can be seen as the algebraic coun-
terpart of the pseudo-compressibility method.

This method consists, in our framework, of taking B1 = δt Iu and B2 = A−1. Its non-incremental version (γ = 0)
is then written as

AU = rn (39)

δtDGPn+θ
= DU (40)

AU n+1
= AU − GPn+θ , (41)

where the last equation was pre-multiplied by A to avoid the direct computation of A−1. As well discussed and
analyzed in [26,35], this method is O(δt2). Interestingly, its incremental version has splitting error of order O(δt3),
as discussed later on.

2.6. Zhang’s pseudo-exact factorization

Zhang et al. [36] introduced a pseudo-exact factorization technique which is based on a modified version of the
system (4), given by

A AG
D 0

 
U n+1

Φn+θ


=


rn

0


, (42)

where Φn+θ is defined as a “numerical pressure” or “gauge pressure”. In this case, systems (4) and (42) are equivalent
if

AGΦn+θ
= GPn+θ . (43)

The matrix in (42) can be exactly decomposed as
A AG
D 0


=


A 0
D −DG

 
Iu G
0 Ip


, (44)

resulting in the following scheme
A 0
D −DG

  U
Φn+θ


=


rn

0


, (45)

Iu G
0 Ip

 
U n+1

Φn+θ


=

 U
Φn+θ


. (46)

Thus, the resulting algorithm can be written as

AU = rn (47)

DGΦn+θ
= DU (48)

U n+1
= U − GΦn+θ . (49)

Notice that system (47)–(49) is equivalent to the one obtained for the first order projection scheme Eqs. (26)–(28), if
one identifies the gauge pressure Φn+θ as being δt Pn+θ . Zhang et al. [36], however, propose the pressure to be com-
puted (when necessary) from the (discrete) divergence of Eq. (43), resulting in the following Poisson-like equation

DGPn+θ
= DAGΦn+θ . (50)
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The splitting error implicit in this method is obtained by writing

Φn+θ
= (DAG)−1DGPn+θ , (51)

and substituting into Eqs. (47)–(49) to arrive at the equivalent system
A AG(DAG)−1DG
D 0

 
U n+1

Pn+θ


=


rn

0


, (52)

which can be compared to the original coupled system (4). The splitting error of this method turns out to be first order
in time.

By comparing to the generic algebraic splitting evolution equation (19), on the other hand, one further concludes
that this pseudo-exact factorization method is a non-incremental scheme that corresponds to choosing

B1 = B2 = G(DAG)−1D. (53)

An incremental version is readily obtained by taking γ = 1 in (19) with these choices of B1 and B2.

2.7. Exact factorization

In [28], an exact fractional step method for incompressible fluid flows is proposed. The scheme can be interpreted
as a discrete stream function method; however the disadvantages of the stream function formulation are eliminated
when the change of variables is applied to the already discrete problem.

This method relies on the construction of null spaces for the discrete operators D and G, i.e., the computation of
matrices R and C, such that RG = 0 and DC = 0, respectively. Let V = M + N be the total number of velocity
unknowns and Q the number of pressure unknowns. The null space matrices will have dimensions R ∈ R(V −Q)×V

and C ∈ RV ×(V −Q).
The coupled system (4) is re-organized as follows

RA RG
D 0

 
CSn+1

Pn+θ


=


Rrn

0


, (54)

which is obtained by pre-multiplying the first row by R and defining the variable Sn+1
∈ R(V −Q) such that U n+1

=

CSn+1. Since RG is zero, we arrive at the following system of equations, which can be solved sequentially:

RACSn+1
= Rrn (55)

U n+1
= CSn+1 (56)

DGPn+θ
= Drn

− DAU n+1. (57)

The last equation is obtained by applying the divergence operator to the first row of (4). Note that this method
requires the solution of one linear system for velocity, plus an optional Poisson-like problem to evaluate pressure at
new time step tn+θ , if needed.

This method is a truly exact factorization scheme: the original system is not modified by any approximation and
the splitting error is in fact zero, as illustrated numerically later in this work.

Both null space matrices can be viewed as discrete curl operators: the curl of the gradient is zero (RG = 0) and
the divergence of the curl is zero (DC = 0). Therefore Sn+1 can be viewed as a discrete stream function associated
with the velocity field U n+1 (the curl of the velocity). Details on how to assemble matrices R and C can be found
in [28].

2.8. Convergence tests of algebraic splitting methods

In the previous sections several methods were described, which are listed in Table 1 together with their formal
orders of accuracy with θ = 0.5 (second order time discretization). To establish the actual performance of each
method, let us test them in the well-known benchmark of freely decaying square vortices [10].
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Table 1
Methods used in the numerical tests in this work, and their expected temporal
order of accuracy when a second order time discretization is used.

Ref. Method Order

M01 Monolithic method O(δt2)

M02 First order projection method O(δt)
M03 Incremental projection method O(δt2)

M04 Perot’s second order method O(δt2)

M05 Incremental Perot’s second order method O(δt2)

M06 Yosida method O(δt2)

M07 Incremental Yosida method O(δt2)

M08 Pseudo-exact factorization method O(δt)
M09 Incremental Pseudo-exact factorization method O(δt2)

M10 Exact factorization method O(δt2)

Fig. 1. Streamlines for the freely decaying vortices benchmark at t = 0. Colors represent the magnitude of the non-dimensional velocity field. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The domain considered is the square Ω =

−
π
2 ,

π
2


×

−
π
2 ,

π
2


such that the exact solution of the Navier–Stokes

equations is given by

u(x1, x2, t) = e−2νt (− cos(x1) sin(x2), sin(x1) cos(x2)) (58)

p(x1, x2, t) = −0.25 e−4νt (cos(2x1)+ cos(2x2)) . (59)

For this problem we choose ν = 100 so that the Reynolds number is small (Re = 10−2). The velocity is initialized
with the analytical solution computed at time t = 0. The boundary conditions used are non-penetrating for normal
components (un = 0) and total slip for tangential components (∂nut = 0), in all sides of the square Ω . Fig. 1 illustrates
the flow streamlines at t = 0.

In what follows, we fix the spatial discretization at 40 × 40 cells and focus on the error with respect to the exact
solution of the semi-discrete problem (discretized in space but not in time). To do this, the reference for comparison,
denoted by (Uref(t), Pref(t)) ∈ RV

× RQ , is defined as the exact solution of

dU

dt
+ T(U )− ν L U + G P = 0 (60)

D U = 0. (61)
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Fig. 2. Temporal convergence analysis for methods M01–M10, compared with a reference solution: (a) Velocity errors ∥Uref(t) − Un
∥∞. (b)

Pressure errors ∥Pref(t)− Pn
∥∞.

Remark 2. By computing errors with respect to (Uref(t), Pref(t)) and not to (u(·, t), p(·, t)) we explicitly avoid
addressing the difficult problem of the convergence of the fully discrete solution towards the exact solution, of which
several aspects remain open and for which the choice of norms is crucial [17].

Since the reference solution (Uref(t), Pref(t)) is not analytically available, it is computed with the monolithic
method (with interpolated initial condition) with a very small time step δt = 10−6. The problem was computed
with all methods listed in Table 1, for time steps δtk = 2−k

· 10−3, for k = 1, 2, . . . , 8. To ensure second order time
accuracy, the Crank–Nicolson scheme was employed (θ = 0.5). When an initial condition for pressure is required
by the incremental versions of the tested methods, it is interpolated from the analytical solution. Furthermore, the

convective term is linearized by Adams–Bashforth second order extrapolation T(U n+
1
2 ) =

3
2 T(U n)−

1
2 T(U n−1).

In Fig. 2 the errors ∥Uref(t) − U n
∥∞ (in subplot (a)) and ∥Pref(t) − Pn

∥∞ (in subplot (b)) at t = 10−2 (with
nδt = t) are plotted as functions of the non-dimensional δt . From this figure, it is clear that all methods attain
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Fig. 3. Convergence analysis for the splitting error of methods M02–M10: (a) Velocity errors ∥Un
coupled − Un

∥∞. (b) Pressure errors

∥Pn
coupled − Pn

∥∞.

their expected temporal order of accuracy, for both velocity and pressure. In particular, methods M02 and M08 are
confirmed first order methods, while all others are second order accurate in time, when combined with second order
time discretization, as previously stated.

This previous result does not quantify, however, the accuracy of the splitting error. To estimate it, we plot in Fig. 3
the errors ∥U n

coupled − U n
∥∞ and ∥Pn

coupled − Pn
∥∞, which depict the difference between the solutions of methods

M02–M10 and the result from the monolithic method (M01) for the same δt . As can be seen in the figures, the
first order projection and the pseudo-exact factorization (M02 and M08, both non-incremental) have indeed splitting
errors of order O(δt). The rest of the methods yield second order splitting errors, with the exception of M07, the
Yosida incremental method, which yields third order splitting error, as predicted in [25]. For a thorough analysis of
third order accurate splitting methods the reader is referred to the works of Shen [37], Badia and Codina [38], Owen
and Codina [39] and references therein. Interestingly, we implemented the Yosida incremental method together with
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Backward Differentiation Formula (BDF3) time discretization, a variant suggested by Badia and Codina [25], and
confirmed full third-order convergence to the reference solution.

As expected, the algebraic splitting error of M07 is essentially zero, though rounding errors preclude it from
going below 10−12. The behavior of Perot’s second order method, in both its non-incremental (M04) and incremental
(M05) variants, deserves some comments. In what concerns M04, the velocity yielded by this method agrees to
machine precision with that of the monolithic method, while the splitting error for pressure converges with O(δt2).
This velocity superconvergence is quite certainly an artifact of the specific problem and discretization. Also note that
the incremental variant (M05) does not attain greater splitting accuracy than that of the non-incremental one. Further,
the incremental variant behaves unstably for δt > 10−5.

Finally, the exact factorization method (M10) agrees with the monolithic method, as expected, with errors always
between 10−10 and 10−12. The method is however sensitive to roundoff errors, showing a slight increase in the splitting
error as δt becomes smaller, which is associated with the computation of the null spaces matrices. In our case, we
used MATLAB’s null command, that finds a rational basis for the null space by a method based on the reduced row
echelon form of matrices G and D. This method is known to be sensitive to roundoff errors [40].

3. Spurious transients in algebraic splitting methods

Projection-based methods, such as the algebraic splitting ones discussed in the previous sections, are the basic tool
behind the transient Navier–Stokes solvers in most of the commercial/open source CFD packages.

In some technologies, notably in microfluidics, the inertial effects are very small. The time scale in which
mechanical equilibrium is established can thus be much smaller than the time scale of other intervening processes,
such as the transport of chemical species. Consider fluid properties (e.g., viscosity) that depend, for example, on
some concentration field C(x, t) which is convected by the fluid (with some molecular diffusion) along a microfluidic
channel Ω of length ℓ and widthw. Changes in the value of the inflow concentration lead in this situation to a transient
process that last for at least the time Tproc = ℓ/U required for the concentration change to reach the outflow of the
domain, U being the velocity scale. This induces, through the viscosity dependence on C , an equally long transient in
u and p, so that any simulation of the process must last at least from t = 0 to t = Tproc.

Since the time scale of momentum diffusion is roughly Tν = w2/(4ν), if

Tν ≪ Tproc


i.e.;

w2

4ν
≪

ℓ

U


(62)

the time-derivative term ∂t u in the Navier–Stokes equations is expected to be negligible, making the dynamical
variables u and p to evolve as a sequence of quasi-steady (or quasi-static) states, dependent on t only because the
viscosity depends on t .

The condition (62) can be rewritten as

U w/ν

ℓ/w
≪ 4 (63)

which predicts that the quasi-steady behavior holds for small values of U w/ν (small Reynolds number) and/or large
values of the length-to-width ratio ℓ/w, both typical of microfluidic applications.

The relevant physics of the system occurs at the time scale Tproc, and although this is a slow time scale the customary
practice is to numerically approximate the flow with a transient solver. We will make the case below that a remarkable
phenomenon takes place when the aforementioned transient solver is based on an incremental projection-based
method (such as M03, M05 and M07 of the previous sections), even if θ is taken as 1. Specifically, a spurious transient
develops that pollutes the numerical velocity and pressure fields. The time extent Tnum of this spurious transient
depends on δt , but it is rarely smaller than ∼100 δt and can be as big as 10 000 δt or even more. In particular, Tnum can
exceed Tproc, and thus deteriorate the accuracy of the solution globally in time, even if the time step satisfies δt ≪ Tproc.

To justify this claim, and for the sake of simplicity, we will mainly consider the extreme case Tproc → +∞, which
automatically satisfies Tν ≪ Tproc without requiring an explicit estimate for Tν . In other words, we will consider the
numerical transient that takes place when calculating a steady state, and experimentally compute its timespan Tnum as
a function of δt . Later on we provide an example of the numerical pollution that takes place if δt is chosen such that
Tnum(δt) is comparable to or greater than Tproc.



F.S. Sousa et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 659–693 671

In what follows, we first provide an algebraic argument (Section 3.1) and then an analytic argument arising from a
thin-film analogy (Section 3.2) to explain the spurious-transient phenomenon. Finally, we report on some numerical
experiments, so as to provide the user with some quantitative examples of what to expect in actual simulations.

3.1. Algebraic estimates of spurious transients

Let us consider a problem with negligible inertia effects (T(U n) ≃ 0), of which the steady state solution is sought.
Without loss of generality, we will assume rn

= 0 so that the steady solution consists of zero velocities and pressures.
Further, let us adopt a fully implicit scheme (θ = 1), so that

A =
1
δt

Iu − ν L and N =
1
δt

Iu.

The evolution matrix Scoupled for the monolithic method, taken from (24), reads

Scoupled =


Iu − A−1G(DA−1G)−1D


A−1N 0

(DA−1G)−1DA−1N 0


.

Taking an arbitrarily large δt the monolithic method provides the steady state in just one time step, because

N
δt→+∞
−→ 0, A−1 δt→+∞

−→ −
1
ν

L−1 and thus Scoupled
δt→+∞
−→ 0.

The behavior of the algebraic splitting methods is quite different. Consider their evolution matrix extracted from
(21), that is

S =

Iu − B2G(DB1G)−1D


A−1N −γ

Iu − B2G(DB1G)−1D


A−1G

(DB1G)−1DA−1N −γ

(DB1G)−1DA−1G − Ip

  .
The first conclusion that can be drawn from (21) is

Proposition 1. If the approximate inverses B1 and B2 of the algebraic split method are such that

1
δt

B2(DB1G)−1D
δt→∞
−→ 0 and

1
δt
(DB1G)−1 δt→∞

−→ 0

then the non-incremental version (γ = 0) of the method yields the steady state solution in just one (sufficiently large)
time step.

Proof. Since γ = 0, only blocks S11 and S21 need to be analyzed. Moreover, since B1 and B2 are matrices satisfying
the hypothesis, it is easy to note that

S11 =


Iu − B2G(DB1G)−1D


A−1N =

1
δt


Iu − B2G(DB1G)−1D


A−1 δt→∞

−→ 0,

since A−1 is bounded. In a similar way,

S21 = (DB1G)−1DA−1N =
1
δt
(DB1G)−1DA−1 δt→∞

−→ 0.

Therefore S
δt→∞
−→ 0, which concludes the proof. �

Before applying this proposition to the methods seen here, we state the following lemma:

Lemma 1. If the approximate inverses B1 and B2 satisfy one of the following hypotheses:

(i) B1 is independent of δt , with (DB1G)−1 and B2 bounded as δt → ∞;
(ii) B1 = δtq1M1, with M1 and B2 bounded as δt → ∞;

(iii) B1 = δtq1M1 and B2 = δtq2M2, for q2 ≤ q1, with M1 and M2 bounded as δt → ∞;
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Then the following holds:

1
δt

B2(DB1G)−1D
δt→∞
−→ 0 and

1
δt
(DB1G)−1 δt→∞

−→ 0. (64)

Proof. Indeed, if hypothesis (i) holds, the conclusion is straightforward. If hypothesis (ii) holds, then

(DB1G)−1
=

1
δtq1

(DM1G)−1 δt→∞
−→ 0,

and since B2 is bounded, we can easily conclude the validity of (64). Finally, in case (iii) holds, then

B2G(DB1G)−1D = δt (q2−q1)M2G(DM1G)−1D

that either converges to the null matrix or is bounded, since the exponent (q2 − q1) ≤ 0. �

Corollary 1. The non-incremental versions of the first order projection method (M02), of Perot’s second order
projection method (M04), of Yosida method (M06) and of the pseudo-exact factorization method (M08) yield the
steady state solution in just one (sufficiently large) time step.

Proof. Recalling that the approximation matrices in methods M02 and M04 are based on the inverse expansion (25),
we have

B1 = B2 = δt Iu +

q
i=1

δt i+1 (θνL)i

= δtq+1


δt−q Iu +

q
i=1

δt i−q (θνL)i


= δtq+1 M (65)

where M
δt→∞
−→ (θνL)q , for some q ∈ N. Therefore, these methods satisfy hypothesis (iii) of Lemma 1, and con-

sequently Proposition 1 applies. It is also easy to verify that the non-incremental version of Yosida method (M06)
satisfies hypothesis (ii), with B1 = δt Iu and B2 = A−1 bounded. For the non-incremental version of the pseudo-exact
factorization method (M08), we observe that B1 and B2 are both given by Eq. (53), and thus

DB1G
−1

=


DG(DAG)−1DG

−1
= (DG)−1(DAG)(DG)−1,

from which it is possible to conclude that matrices (DB1G)−1 and B2 are both bounded as δt → ∞, satisfying
hypothesis (i) of Lemma 1, and therefore concluding the proof. �

Remark 3. It has thus been proved that non-incremental algebraic splitting methods do not exhibit spurious transients
and that they arrive at their steady state solution in just one iteration if inertia effects are negligible. A most important
caveat regarding these methods, however, is that their steady state solutions depend on the time step size. This fact is
well known for the first-order projection method [41]. We later illustrate through numerical examples that a reasonable
accuracy in the steady state velocity and pressure is only attained when δt is comparable to the stability limit of
explicit time-integration methods. This restriction in the choice of δt holds not just for the first-order projection
method, but for all non-incremental splitting techniques considered in this article. As expected, such a small δt is
not practical for computing steady states or, more generally, slowly-evolving flows because millions of time steps are
required.

Consider now incremental schemes (γ = 1), which by construction yield the same steady state solution as the
coupled method. From Proposition 1, we know that the first column of submatrices of S tends to zero as δt → +∞,
so that the evolution of the discrete system depends on the spectral properties of submatrix

S22 = −γ

(DB1G)−1DA−1G − Ip


.
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We thus can infer the following:

Proposition 2. The incremental projection method (M03), as well as the incremental versions of Perot’s second
order method (M05) and of Yosida method (M07), exhibit spurious transients when δt is large, in the sense that
Q eigenvalues of the evolution matrix S tend to 1 as δt → +∞.

Proof. A common property shared by methods M03, M05 and M07, is that

DB1G

−1 δt→∞
−→ 0, while

A−1 δt→∞
−→ −(νL)−1, resulting in

S22
δt→∞
−→ γ Ip.

Therefore, since Ip ∈ RQ×Q and γ = 1, at least Q eigenvalues of S tend to 1 as δt → ∞. �

Remark 4. In the incremental version of the pseudo-exact factorization method, on the other hand, one has

S22
δt→+∞
−→ −γ


(DG)−1DLG(DG)−1DL−1G − Ip


(66)

making it difficult to estimate the spectrum in general cases, so that its actual behavior is left to be assessed numeri-
cally.

The consequence of Proposition 2 is that incremental algebraic splitting methods, in particular the popular
incremental projection method (M03), cannot be used to compute steady-state or slowly-evolving solutions by simply
choosing δt to be sufficiently large. In much the same way as the Crank–Nicolson method when applied to the heat
equation, exceedingly large values of δt lead to eigenvalues of the evolution matrix with modulus practically equal
to one. This gives rise to spurious transients; i.e., numerical transients with timespan much bigger than the physical
transient of the simulated system.

3.2. Spurious transients in a thin-film analogy

It is possible to analytically visualize the spurious transients generated by incremental projection-based methods
by considering a thin-film analogy. This will provide us with estimates of the solution behavior that are independent
of the spatial discretization. The argument is given below in two dimensions, but it is readily extendable to 3D.

In a narrow channel of length ℓ and width w, with w ≪ ℓ, it is well-known that neglecting inertia effects the
velocity profile at each location along the channel can be accurately approximated by a parabolic function. Plugging
such profile into the incompressible Navier–Stokes equations (1)–(2) one arrives at

∂tv + σ v + ∂x p = f (67)

∂xv = 0 (68)

where

σ =
12 ν

w2 ,

v(x, t) is the cross-section-averaged velocity, and the force f (along the flow direction x) is assumed to depend only
on x .

Let us assume periodic conditions to hold at x = 0 and x = ℓ, so that the narrow channel under consideration
becomes the simplest hydraulic circuit: A closed loop. Since this is a toy problem that will be used just to reason by
analogy, let us assume that σ may depend on x and denote by overlines the domain averages, such as

f =
1
ℓ

 ℓ

0
f (x) dx and σ =

1
ℓ

 ℓ

0
σ(x) dx .

The exact steady state of (67)–(68) is given by

v∞
=

f

σ
, ∂x p∞

= f −
f

σ
σ. (69)
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Consider now a fractional step scheme that mimics the projection schemes M02 and M03 (with θ = 1), i.e.,

1
δt
(V − V n)+ σ V = f − γ ∂x Pn (70)

∂2
x2(P

n+1
− γ Pn) =

1
δt
∂xV (71)

V n+1
= V − δt ∂x (P

n+1
− γ Pn) (72)

to be solved with periodic boundary conditions in x and initial conditions V 0 and P0.
Eqs. (70)–(72) can be solved analytically, yielding

V n+1
− v∞

+ δt ∂x (P
n+1

− p∞) =
1

1 + σ δt
(V n

− v∞)+
σ δt

1 + σ δt
δt ∂x (γ Pn

− p∞). (73)

Notice that this last equation determines both V n+1 and ∂x Pn+1, because

V n+1 = V n+1
∈ R and ∂x Pn+1 = 0.

3.2.1. Steady-state error of the non-incremental scheme
Consider first the steady state obtained from (70)–(72) when γ = 0. Taking V n+1

= V n
= V ∗ and Pn+1

= Pn
=

P∗ we get

V ∗
− v∞

=


δt ∂x p∞

1+σδt




σδt
1+σδt

 (74)

∂x (P
∗

− p∞) = −
σδt

1 + σδt
∂x p∞

−


∂x p∞

1+σδt




σδt
1+σδt

 σ δt

1 + σ δt
. (75)

The numerical steady state (V ∗, P∗) does not, in general, coincide with the exact steady state (v∞, p∞). The error
of the steady state can indeed be estimated as O(δt). Interestingly, if the channel is homogeneous (σ independent of
x) then from (74)–(75) and ∂x p∞ = 0 we have that

V ∗
= v∞ and ∂x (P

∗
− p∞) = −

σδt

1 + σδt
∂x p∞

and thus the error of the steady state only affects the pressure (in fact, if σδt ≫ 1 one has P∗
≃ 0!).

3.2.2. Spurious transient of the incremental scheme
The steady state of the incremental scheme coincides with the exact steady state (v∞, p∞). There however appears

a spurious transient in the semi-discrete (in time) solution that precludes the method from rapidly achieving the steady
state when δt is large.

To see this, let us define the auxiliary variables ϕn
∈ R and ψn

∈ L2(0, ℓ), with zero mean, by

ϕn
= V n

− v∞, ψn
= δt ∂x (P

n
− p∞).

Substituting into (73) leads to the evolution system

ϕn+1
=


1

1 + σδt


ϕn

+


σ δt ψn

1 + σ δt


(76)

ψn+1
=


1

1 + σδt
−


1

1 + σδt


ϕn

+
σ δt

1 + σ δt
ψn

−


σ δt ψn

1 + σ δt


. (77)
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Notice first that, if the channel is homogeneous (σ independent of x), the system reduces to

ϕn+1
=

1
1 + σ δt

ϕn, ψn+1
=

σ δt

1 + σ δt
ψn .

For large time step sizes, σδt ≫ 1, the velocity V n rapidly converges to the steady state v∞. The pressure, on the
other hand, has ψn+1

≃ ψn and thus exhibits a spurious transient with slow decay.
When the channel is heterogeneous the situation is more complex and in general both the velocity and the pressure

exhibit spurious, slowly-decaying transients before attaining the steady state. An illustrative example can be found in
the Appendix.

The previous analysis suggests that spurious transients occur when σδt is comparable to or greater than one.
This can be rewritten in terms of the momentum-diffusion time to provide a criterion for the selection of δt . Indeed,
selecting

δt ≤ δt∗ =
Tν
48

(78)

seems to be a useful criterion to avoid the spurious transient phenomenon.

3.3. Spurious transients of low-Reynolds flows: numerical experiments

A crucial point made in this article is that projection-based methods can be quite inefficient in the computation
of steady or slowly varying flows. Their non-incremental versions (γ = 0) yield solutions with unacceptably large
errors, unless δt is taken very small. Their incremental versions (γ = 1), in turn, yield results polluted by long spurious
transients.

To show that these difficulties are the rule and not the exception, and illustrate their quantitative significance, let
us consider the simplest hydraulic circuit possible, a closed loop, which has been already discussed in the previous
section.

Let Ω represent a rectangular channel with dimensions [0, ℓ] × [0, w], discretized by a structured grid of N1 × N2
cells. The boundary conditions impose periodicity along x1 and no-slip along the lower (x2 = 0) and upper (x2 = w)
walls.

The force f driving the flow is not taken as constant to avoid an identically zero pressure gradient. Specifically, we
select

f(x) = ( f (x1), 0), with f (x1) =


16Wν

w2 if x1 <
ℓ

2
0 otherwise

where W is an arbitrary velocity scale, so that the exact steady state is

u∞

1 = 4 W


x2

w
−

x2
2

w2


u∞

2 = 0

∂x1 p∞
=


8Wν

w2 if x1 <
ℓ

2

−
8Wν

w2 if
ℓ

2
≤ x1

(79)

∂x2 p∞
= 0

with maximum velocity u∞

1 (x1, x2 = w/2) = W and ∂x1 p∞ = 0 as expected. The Reynolds number of the resulting
flow is defined as

Re =
W w

ν
.

In what follows, we select W = 10−3 m/s, w = 10−5 m and ν = 10−6 m2/s, mimicking water flowing at 1 mm/s
along a 10-micron-wide channel, which results in Re = 10−2. The time scale for this system to attain its steady state
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is the momentum-diffusion time

Tν ≃
w2

4ν
= 2.5 × 10−5 s. (80)

The aspect ratio of the domain is taken as ℓ/w = 3.
On any given spatial mesh, there exist discrete steady pressure and velocity fields, denoted by U∞ and P∞, which

are the unique solutions of the nonlinear system

−νL U∞
+ T (U∞)+ G P∞

= b (81)

D U∞
= 0 (82)

where b comes from the (time independent) forcing.
To compute the steady state with a transient solver, the customary practice is to take a large time step, so as to

bypass the physical transient and hopefully obtain the steady solution after a few time steps. Indeed, on a 60 × 20
mesh the monolithic method reaches the discrete steady solution (U∞, P∞) in seven time steps with δt = 10−5 s, and
in just three time steps with any δt > 10−4 s. The physical estimate (80) is thus seen to hold for the discrete problem,
the steady state not being attained in a single step because Re > 0 and the nonlinear term is treated explicitly.

In what follows, we will discuss the outcome of the different algebraic splitting methods in this specific problem by
examining the numerical solutions as obtained with different time steps. All the results discussed below were obtained
with Backward Euler time stepping (θ = 1).

3.3.1. Non-incremental schemes: steady-state error
Let us begin by the first-order projection scheme (M02) as defined in (26)–(28). It is already known that the solution

of (26)–(28) depends on time step size δt [41]. We reproduce below this simple analysis to better illustrate it in the
algebraic framework. Particularizing it for θ = 1, at each time step the code computes:

1. The auxiliary field U , which exactly satisfies the momentum equation (26); i.e.,U − U n

δt
− ν L U + T(U n) = b. (83)

2. The updated pressure field Pn+1 that makes the updated velocity field U n+1 to exactly satisfy D U n+1
= 0, which

results from

δt D G Pn+1
= D U . (84)

3. Finally, the updated velocity field U n+1, from

U n+1
= U − δt G Pn+1. (85)

The dependency on δt can be seen by eliminating U to obtain

U n+1
− U n

δt
− ν L U n+1

+ T(U n)+ G Pn+1
− ν δt L G Pn+1

= b (86)

D U n+1
= 0 (87)

in which the extra term − ν δt L G Pn+1 is of order O(νδt/h2), h being the mesh size. The numerical steady state
(U∗, P∗) is defined as the solution of (86)–(87) when U n+1

= U n
= U∗ and Pn+1

= Pn
= P∗, that is

−ν L U∗
+ T(U∗)+ G P∗

− ν δt L G P∗
= b (88)

D U∗
= 0 (89)

which shows that the aforementioned extra term is active even at the steady state, so that U∗ and P∗ depend on δt . To
illustrate this in the simple example (given by Eq. (79)) with Re = 10−2, we computed this flow for several δt’s. The
steady state errors ∥U∗

− U∞
∥2/∥U∞

∥2 and ∥P∗
− P∞

∥2/∥P∞
∥2 can be found in Table 2.

Notice how inaccurate the numerical steady state is for essentially any δt . To have a relative error below 1% in
both velocity and pressure, the time step needs to be chosen smaller than 10−8 s. This is in agreement with early
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Table 2
Steady state errors in U and P for the first order projection method M02
with several values of δt .

δt (s) ∥U∗
− U∞

∥2/∥U∞
∥2 ∥P∗

− P∞
∥2/∥P∞

∥2

10−2 4.790352 · 10−1 1.000029
10−3 4.787257 · 10−1 1.000291
10−4 4.757764 · 10−1 1.002987
10−5 4.550128 · 10−1 1.026256
10−6 3.781178 · 10−1 9.845069 · 10−1

10−7 1.919132 · 10−1 2.895994 · 10−1

10−8 3.644886 · 10−2 5.423391 · 10−2

10−9 4.063221 · 10−3 5.995474 · 10−3

Table 3
Steady state errors in U and P for Perot’s second order projection method M04, with
several values of δt .

δt (s) ∥U∗
− U∞

∥2/∥U∞
∥2 ∥P∗

− P∞
∥2/∥P∞

∥2

10−2
∞ ∞

10−3
∞ ∞

10−4
∞ ∞

10−5
∞ ∞

10−6
∞ ∞

10−7
∞ ∞

10−8 2.045112 · 10−3 3.396125 · 10−3

10−9 1.607652 · 10−5 1.831227 · 10−5

observations by Rannacher [41] stating that accurate steady states require δt to be smaller than the stability limit δtexp
of explicit schemes, which in this case takes the value [42]

δtexp =
h2

4ν
= 6.1 × 10−8 s.

In Fig. 4 we investigate the dynamics of this numerical scheme by plotting the evolution of ∥U n
− U∗

∥2/∥U∗
∥2 +

∥Pn
− P∗

∥2/∥P∗
∥2 for δt between 10−2 and 10−9 (remember that (U∗, P∗) depends on δt). In both cases the code,

starting from zero initial conditions, reaches the steady state at about t = 10−4 s. This coincides with the time needed
to reach steady state as predicted by the monolithic method, so that no spurious transient appears. Unfortunately,
since from Table 2 one knows that only computations with very small δt (smaller than 10−8 s) lead to an acceptably
accurate steady state, it becomes evident that at least about 10 000 time steps are needed to compute (U∗, P∗). This
behavior alone practically rules out the first order projection method for computing steady states or any flow evolving
in time with a time scale much longer than Tν .

To illustrate the behavior of the numerical solution and its dependence on the time step size, we plot profiles of
component U1 of the velocity field and of the pressure P , computed with δt = 10−k, k = 4, 5, 6, 7, which can be
seen in Fig. 5. From these results one observes how far the velocity and pressure fields are from the expected steady
state solution (U∞, P∞) throughout the domain. Decreasing δt , the velocity and pressure profiles slowly converge to
the correct ones, but reasonably accurate steady states are only obtained if δt < 10−8 s.

Similar assessments can be performed on other non-incremental methods. The steady state errors are reported in
Table 3 for Perot’s second order projection method (M04), in Table 4 for Yosida method (M06), and in Table 5 for the
pseudo-exact factorization method (M08), all of them non-incremental.

From Table 3 one can observe that the method M04 diverges for values of δt ≥ 10−7 s. Indeed, this non-incremental
scheme has essentially the same stability limit δt < δtexp, irrespective of θ being 1 (implicit splitting) or 0 (explicit),
the latter being obviously cheaper in computer time.
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Fig. 4. Evolution of the error between the solution obtained by method M02 and its steady state (U∗, P∗): (a) as a function of iteration number n;
(b) as a function of time tn = n δt s.

Table 4
Steady state errors in U and P for the Yosida method M06, with several values of δt .

δt (s) ∥U∗
− U∞

∥2/∥U∞
∥2 ∥P∗

− P∞
∥2/∥P∞

∥2

10−2 5.810048 · 10−1 1.000031
10−3 5.799267 · 10−1 1.000315
10−4 5.693392 · 10−1 1.003514
10−5 4.947052 · 10−1 1.045886
10−6 3.673654 · 10−1 5.507672 · 10−1

10−7 1.284121 · 10−1 3.612108 · 10−1

10−8 4.415307 · 10−3 6.383871 · 10−3

10−9 5.736004 · 10−5 7.279366 · 10−5
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(a) δt = 10−4 s.

(b) δt = 10−5 s.

Fig. 5. Stationary velocity (component u1) and pressure (p) profiles, obtained by the method M02, illustrating how the dependency on δt affects
the final solution for this problem. Velocity and pressure values are non-dimensional.

The steady state errors for the non-incremental Yosida method M06 are displayed in Table 4, showing the same
behavior as M02. In this case however, the errors for small δt are somewhat smaller than those of Table 2, a conse-
quence of the method’s second order accuracy in time. Furthermore, Table 5 displays the steady state errors for the
non-incremental version of pseudo-exact factorization method M08. This time, the errors are similar in magnitude
to the ones presented in Table 2, confirming its first order accuracy in time. Both M06 and M08 present no spurious
transients as predicted by theory, with a behavior very similar to that of M02 (in Fig. 4), therefore the dynamics of the
steady state error is omitted here for brevity.
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(c) δt = 10−6 s.

(d) δt = 10−7 s.

Fig. 5. (continued)

3.4. Incremental schemes: spurious numerical transients

The equations defining the incremental projection scheme (method M03) for θ = 1 are (31)–(34), which upon
elimination of U and P give

U n+1
− U n

δt
− ν L U n+1

+ T(U n)+ G Pn+1
− ν δt LG(Pn+1

− Pn) = bn (90)

D U n+1
= 0. (91)
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Table 5
Steady state errors in U and P for the pseudo-exact factorization method M08, with several values of δt .

δt (s) ∥U∗
− U∞

∥2/∥U∞
∥2 ∥P∗

− P∞
∥2/∥P∞

∥2

10−2 4.790352 · 10−1 2.708501
10−3 4.787257 · 10−1 2.704751
10−4 4.757764 · 10−1 2.669166
10−5 4.550128 · 10−1 2.432502
10−6 3.779709 · 10−1 2.608038 · 10−1

10−7 1.919132 · 10−1 1.088018 · 10−1

10−8 3.644851 · 10−2 2.058955 · 10−2

10−9 4.042745 · 10−3 2.289435 · 10−3

The fixed point of this system (defined as before by U n+1
= U n

= U∗ and Pn+1
= Pn

= P∗) is thus seen to coincide
with the discrete steady state (U∞, P∞). However, a spurious transient appears in the evolution of the discrete system
towards the steady state if δt is large.

To avoid an excessive number of plots, let us introduce the following measure of “distance to steady state”:

Dn
ss

def
=

∥U n
− U∞

∥2

∥U∞∥2
+

∥Pn
− P∞

∥2

∥P∞∥2
. (92)

To establish a base case for comparison, we show in Fig. 6 the distance Dn
ss for the monolithic method. Notice that

no spurious transient is observed: the number of time steps needed to reduce Dn
ss below any given tolerance decreases

monotonically as the time step is increased. Any simulation with δt ≥ 10−4 s, in particular, quickly reduces the steady
state error in just a few time steps.

Results for the evolution of Dn
ss for the incremental projection method M03 are presented in Fig. 7. The abscissa in

part (a) of the figure is the time index n, while that of part (b) is the physical time t . By arbitrarily defining a tolerance
of 10−6 and intersecting the line Dn

ss = 10−6 with the curve corresponding to each δt , one obtains a measure, denoted
by Tnum, of the timespan of the numerical transient.

The numerical transients coincide for all δt ≤ 10−7 s, yielding Tnum = 10−4 s. This is a physical transient,
as shown by the agreement with results obtained with the monolithic method above and with the estimate Tν =

2.5 × 10−5 s.
To reduce the distance to steady state to 10−6 with minimal effort the best choice is δt = 10−6 s, resulting in about

two hundred iterations (time steps). These two hundred iterations corresponds to a numerical transient that lasts about
Tnum = 2 × 10−4 s, twice the timespan of the physical transient. In Fig. 7(b) one observes that the time evolution of
the system towards steady state with this δt departs from the correct one that is obtained with smaller time steps. If
δt is taken greater than 10−6 s, this departure grows enormously. The timespan Tnum of the numerical transient is of
0.02 s for δt = 10−5 s, and more than 2 s for δt = 10−4 s. These are obviously spurious transients, in the sense that
they are purely numerical artifacts with no similarity to the physical transient.

Notice that the estimate obtained from the thin-film analogy yields in this case

δt∗ =
Tν
48

≃ 5 × 10−7 s,

correctly predicting the appearance of spurious transients for δt > δt∗. The steady state is obtained with minimal
computational effort with δt ≃ 2 δt∗.

Allow us now, for a moment, to consider a transient version of this same problem, in which the initial velocity is
zero and the force f(x) is modulated in time by multiplying it by the function

g(t) =


sin (π t) if 0 ≤ t ≤ 1 s
0 if t > 1 s.

Our goal is to provide a more vivid image of the effect of large spurious transients in the simulation of a truly transient
microfluidic-like problem. The typical time of the process is Tproc = 1 s, much greater than Tν .
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Fig. 6. Evolution of Dn
ss for the monolithic method M01, for several δt : (a) as a function of the iteration number n; (b) as a function of time

tn = n δt s.

We ran the incremental projection method M03 with several choices of δt and examine the velocity at (x1, x2) =

(ℓ/4, w/2) as a function of time for each run, as shown in Fig. 8.

For δt = 10−5 s or smaller one obtains, essentially, the exact semi-discrete solution (also shown). This is rather
expensive, since it requires 105 time steps per second of simulated time. The monolithic method M01 computes the
semi-discrete solution accurately with δt = 10−2 s, requiring just 100 time steps per second of simulated time.

However, if δt is increased to 10−4 s, for which as discussed above the (spurious) transient time Tnum(δt) ≃ 2 s
and thus comparable to the overall time scale of the process, the accuracy of the numerical solution deteriorates.
The maximum velocity is underestimated by about 5% and, perhaps more importantly, the flow does not extinguish
immediately after t = 1 s (as it should) but decays slowly instead, with a decay time of about 0.1 s. Similar unphysical
behaviors are observed for δt = 2 × 10−4 s, 5 × 10−4 s and 10−3 s, as shown in the figure.
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Fig. 7. Evolution of Dn
ss for the incremental projection method M03, for several δt : (a) as a function of the iteration number n; (b) as a function of

time tn = n δt s.

Remarkably, the numerical transient is practically independent of δt for δt ≥ 5 × 10−3 s. This “large-δt” regime
occurs when Tnum(δt) ≫ Tproc and yields a spurious transient solution which differs widely from the exact one (40%
error in the maximum velocity, for example).

It is important to point out that the spurious transients being discussed here, which arise from the incremental
velocity–pressure segregation, do not depend on the mesh size. In Fig. 9 we compare the results to those corresponding
to a ten-fold mesh refinement in the y-direction (labeled as “h/10” in the figure) to illustrate this.

Remark 5. If this simulation were initially performed with δt chosen as 10−2 s or greater, a tricky situation would
appear in which the numerical results are independent of δt for moderate reductions of it, such as divisions of δt by a
factor of two or four. This could trick the user into believing that the numerical results are correct, which is obviously
not true. By analyzing a large set of runs, not included here for brevity, we have developed a heuristic criterion to
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Fig. 8. Time evolution of the numerical solution for the velocity at (x1, x2) = (ℓ/4, w/2), obtained with method M03, for several δt . The exact
semi-discrete solution is also shown as a reference.

Fig. 9. Time evolution of the numerical solution for the velocity at (x1, x2) = (ℓ/4, w/2), obtained with method M03, for several δt and vertical
mesh sizes h and h/10. Notice the invariance of the spurious transient under mesh refinement.

choose δt such that the spurious transient that develops does not significantly affect the evolution of a system with
time scale Tproc (assumed ≫ Tν). It reads

δt ≤ δt∗∗
=


Tν Tproc

48
(93)

and is less restrictive than (78), since it allows the appearance of spurious transients as long as their timespan is much
shorter than Tproc. In the example above the heuristic formula gives δt∗∗

= 10−4 s.
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Fig. 10. Evolution of Dn
ss for the incremental method M05, for several δt : (a) as a function of the time label number n; (b) as a function of time

tn = n δt .

Going back to the steady-state calculations, let us show in Figs. 10–12 results analogous to those in Fig. 7 for the
incremental versions of the other methods considered, namely Perot’s second order method (M05), Yosida method
(M07) and the pseudo-exact factorization method (M09).

The incremental version of Perot’s 2nd order method (M05), as shown in Fig. 10, simply diverges for any
δt ≥ 10−7. This tells us that this method, in both its non-incremental and incremental versions, suffers from the
stability restriction δt ≤ δtexp for all values of θ .

The results of the incremental Yosida method M07 in Fig. 11 are very similar to those of M03. The same kind of
spurious transients appears, with the same timespan and intensity. In fact, when tested on the transient problem of
Figs. 8 and 9, indistinguishable results are obtained. These additional tests are not detailed here for the sake of brevity.

The spurious transients exhibited by methods M03 and M07 are, in our opinion, equivalent to those described in
the thin-film analogy and thus roughly independent of the mesh and of the splitting method. They seem to be inherent
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Fig. 11. Evolution of Dn
ss for the incremental method M07, for several δt : (a) as a function of the time label number n; (b) as a function of time

tn = n δt .

to the incremental decoupling of pressure and velocity, and they appear in all incremental methods if δt > δt∗, unless
the method becomes unstable.

The incremental version of the pseudo-exact factorization method (M09) is another example of instability. It
diverges exponentially for values of time step greater than 10−6 s. This behavior, similar to that of method M05,
is certainly worse than any spurious transient.

Finally, the results of the exact factorization method (M10) are presented in Fig. 13, from which one can notice the
similarity with the monolithic results from Fig. 6 and thus the total absence of spurious transients.

3.5. Spurious transient in microflow application

Let us illustrate the phenomenon of spurious transients in the calculation of the steady state of a more realistic,
though academic, example. We performed low Re number simulations in a domain involving one contraction and one
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Fig. 12. Evolution of Dn
ss for the incremental method M09, for several δt : (a) as a function of the time label number n; (b) as a function of time

tn = n δt .

expansion, as detailed in Fig. 14. Microchannels with corner edges as the one considered have been used in several
studies, such as nonlinear dynamical problems of viscoelastic flows [43–46].

The problem consists of a long 2D channel, with a contraction that narrows down the fluid passage, followed by a
sudden expansion. This is commonly known as a contraction/expansion geometry. Being L a reference measure of the
channel with size ℓ×w, we set w = 4L and ℓ = 17L , with the sudden contraction placed at the middle of the channel
(see Fig. 14). As in previous simulations, this problem models water flowing in a microscale channel, by choosing
L = 10−5 m, with a reference velocity of W = 10−3 m/s, resulting in Re = LW/ν = 10−2. Boundary conditions are
standard no-slip everywhere, except at inflow, where a parabolic profile is imposed, and at outflow, with a standard
outflow boundary condition (p = 0 and ∂nun = 0).

To illustrate the appearance of the spurious transient for this problem, we employ the popular incremental projection
method in differential form (whose algebraic version is referred previously as M03) [7,32,47].
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Fig. 13. Evolution of Dn
ss for the exact factorization method M10, for several δt : (a) as a function of the time label number n; (b) as a function of

time tn = n δt .

Fig. 14. Domain for the contraction/expansion example. We impose parabolic inflow and standard open outflow boundary conditions.

As before, spatial derivatives are computed by standard staggered finite difference method, and time derivatives
discretized with Backward Euler. The Poisson equation appearing in the correction step is then solved by the
Conjugate Gradient method, with a relative residual tolerance of 10−10.
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Fig. 15. Evolution of Dn
ss for the incremental projection method applied to the microflow obstacle test: (a) as a function of the iteration number n;

(b) as a function of time tn .

The steady state solution (computed to 10−10 accuracy in the residuals) was used as reference to compute the
distance to steady state Dn

ss , defined in Eq. (92). Results are presented in Fig. 15, plotted against the iteration count
(part a) and simulation time (part b). One observes the same behavior captured in the closed loop channel presented
in previous sections.

For δt ≤ 10−6 s the transient lasts about 10−4 s, which is an estimate of the momentum-diffusion time Tν in this
problem. The lack of spurious transients is consistent with the criterion (78), since δt∗ = Tν/48 ≃ 2 × 10−6 s.

For δt > δt∗ the spurious transient phenomenon becomes evident, with Tnum ≃ 10−2 s for δt = 10−5 s and
Tnum ≃ 1 s for δt = 10−4 s. Note from Fig. 15(a) that the number of iterations until steady state is minimal if
δt = 10−6 s, which corresponds to δt ≃ δt∗.
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4. Concluding remarks

In this work a wide variety of projection methods for incompressible flows has been discussed and numerically
assessed. The methods are obtained by algebraically splitting the monolithic method, and are defined by two ap-
proximate inverses, B1 and B2, of the velocity matrix, together with a parameter γ which is zero for non-incremental
schemes and one for incremental ones. Methods with first, second and third order time accuracy were identified, going
from the well-known first-order projection scheme to the more sophisticated incremental Yosida scheme (with BDF3
time integration).

Further, the evolution matrices of all methods were computed. From them, their numerical transients were predicted
and later confirmed by numerical assessment. One observes several behaviors:

• Non-incremental methods require extremely small time steps because their results are very inaccurate if δt is greater
than the stability limit of explicit methods, δtexp = h2/(4ν). A numerical example was used to illustrate the large
impact of this fact in steady, low Reynolds number flows. This difficulty was already well-known for the first-order
projection scheme [41]. Our tests show that the same happens with all (stable) non-incremental formulations.

• Incremental methods do not introduce splitting errors in the numerical steady states. Their behavior in transient
problems is however strongly dependent on δt :
– Some schemes (such as the incremental version of Perot’s second order method M05 and the incremental version

of the pseudo-exact factorization method M09) become unstable as δt is increased beyond a certain limit (of the
order of the explicit stability limit). This loss of stability takes place for all values of θ , even if the viscous
operator is treated implicitly (θ = 1).

– Some schemes (such as the popular incremental projection method M03 and the incremental version of Yosida
scheme M07) remain stable for all δt , but develop a remarkable spurious transient which is independent of the
mesh size and may last much longer than the momentum-diffusion time Tν . A criterion to select the time step so
as to avoid spurious transients was developed, namely

δt ≤ δt∗ =
Tν
48
.

– If the simulated process has an intrinsic time scale Tproc much greater than Tν , it is possible to allow for some
spurious numerical transients as long as they do not interfere with the overall process evolution. The criterion for
selecting δt in these situation has been proposed as

δt ≤ δt∗∗
=


Tν Tproc

48
.

The spurious transient phenomenon in incremental projection methods has not previously been reported in the
literature. For this reason, two additional confirmations were included. The first one showed that the phenomenon is
not restricted to spatially-discretized problems, as it also appears when incremental pressure segregation is employed
in a continuous model (a thin film analogy). The second confirmation consisted of numerical computations on a more
realistic, obstructed channel using the classical incremental projection method at Reynolds number 10−2. Runs with
various δt clearly show the development of spurious transients for δt > δt∗.

The overall message for practitioners is that projection methods should only be used in microfluidic simulations in
incremental form and choosing the time step according to the recommendations above, which can be quite stringent.
The inadequacy of time steps greater than δt∗∗ should weigh against choosing projection methods, despite the low
cost of each time step.

As a final remark let us first stress that methods such as SIMPLE or PISO [48–50], which iterate between the dis-
crete momentum equation and the discrete incompressibility condition until both are satisfied, are monolithic methods
in the framework considered in this article. They are thus not expected to suffer from the spurious transient phe-
nomenon, since the algebraic system (4) is satisfied, to within some tolerance, at the end of each time step.
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Appendix. A heterogeneous thin-film problem

When the incremental scheme of Section 3.2.2 is particularized to a channel with just two values of σ , namely

σ(x) =


σ1 if 0 < x < β ℓ

σ2 = m σ1 if β ℓ < x < ℓ

then the function ψn(x) takes just two values, depending on whether x is smaller or greater than βℓ, that will be de-
noted by ψn

1 and ψn
2 , respectively. Notice that m indicates the strength of the heterogeneity, with m = 1 corresponding

to a homogeneous channel. Let us also introduce the non-dimensional time step

τ = σ1 δt. (94)

The system then evolves to the steady state according to the following equation:

ϕn+1

ψn+1
1

ψn+1
2

 =



β

1 + τ
+

1 − β

1 + mτ

βτ

1 + τ

(1 − β)mτ

1 + mτ
1

1 + τ
−

1
1 + mτ


(1 − β)

(1 − β)τ

1 + τ
−
(1 − β)mτ

1 + mτ

−


1

1 + τ
−

1
1 + mτ


β −

βτ

1 + τ

β mτ

1 + m τ


ϕn

ψn
1

ψn
2

 . (95)

Denoting (again) by S the evolution matrix that appears in (95), the evolution to steady state is dictated by the
amplification factor Λ, defined as the spectral radius of S. In Fig. 16 we plot Λ as a function of the non-dimensional
time step size τ for several values of m and β. We consider a channel with an obstruction (m ≥ 1) between x = βℓ

and x = ℓ. The chosen values for m correspond to obstructions that are “mild” (m = 1.5), “moderate” (m = 5) and
“strong” (m = 100). Concerning the values of β, we consider obstructions that are “extended” (β = 0.6), “localized”
(β = 0.9) and “highly localized” (β = 0.99).

All the corresponding curves, together with the one corresponding to a homogeneous channel (m = 1, β irrelevant),
have Λ(τ ) ≥ 0.5, so that convergence to the steady state never occurs at a rate faster than 0.5n . Considering for
example, as is usual in practice, that the steady state has been attained when the residual has been reduced to 10−6 its
initial value, at least n = 20 time steps are needed, and such a low number only occurs if the channel is homogeneous
or mildly heterogeneous and the time step is chosen exactly as τ = 1.

If the channel is moderately or strongly heterogeneous the situation worsens, all the more so if the obstruction is
highly localized. For the cases with m = 5 the minimal values of Λ are 0.54 (if β = 0.6), 0.65 (if β = 0.9) and 0.68
(if β = 0.99). This latter case would require 36 time steps to attain steady state, and this would only happen if τ is
taken as approximately 0.5. If τ is taken as 1 as in the homogeneous case, then Λ ≃ 0.83 implying that the steady
state is only attained after 75 time steps!

The worst of the cases considered corresponds to m = 100 and β = 0.99. In this case the minimum value of Λ
is ≃ 0.88, so that the minimum required number of time steps is 109, which is only achieved if τ takes one of two
values: 0.044 or 0.23. In this case taking τ = 1 yields Λ = 0.98, with the catastrophic consequence of needing 680
time steps to attain the steady state.

Considering now the actual simulated time at which the program reaches steady state, notice that taking the spatial
average in (67) and solving yields

v(t)− v∞
= [v(0)− v∞

] e− σ t ,

so that to achieve the required tolerance of 10−6 the exact transient lasts, approximately, 13.8/σ . The numerical
transient, on the other hand, can last much longer. For the worst case discussed above (m = 100, β = 0.99, τ = 1),
one has σ = 1.99 σ1 and thus δt = τ/σ1 = 1.99/σ . As already mentioned, steady state is achieved at t = 680 δt
which corresponds to t = 1353.2/σ . This implies that the numerical transient lasts about 100 times longer than the
exact transient, justifying the adjective spurious that was adopted in this article.

Finally, notice that though the time-integration is implicit (θ = 1) taking τ ≫ 1 is never a good idea (in all the
considered cases it leads to Λ(τ ) > 0.9). In fact, from the curves in Fig. 16 one would suggest as general rule to take



692 F.S. Sousa et al. / Comput. Methods Appl. Mech. Engrg. 285 (2015) 659–693

Fig. 16. Spectral radius of S as a function of τ = σ1 δt for several values of m and β. The case of a homogeneous channel (m = 1, β irrelevant) is
also plotted.

τ ≃ 1, or perhaps somewhat smaller (τ ≃ 1/4) in channels with highly localized, strong obstructions. Going back to
the definition of σ , the suggested choice τ ≃ 1/4 corresponds to

δt ≃
1

4σ1
=
w2

48ν

where w is the channel width in the unobstructed region.
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