
A semi-implicit finite element method for viscous lipidic membranes

Diego S. Rodriguesa, Roberto F. Ausasa,b, Fernando Muta,˚, Gustavo C. Buscagliaa
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Abstract

A finite element formulation to approximate the behavior of lipidic membranes is proposed.

The mathematical model incorporates tangential viscous stresses and bending elastic forces,

together with the inextensibility constraint and the enclosed volume constraint. The mem-

brane is discretized by a surface mesh made up of planar triangles, over which a mixed for-

mulation (velocity-curvature) is built based on the viscous bilinear form (Boussinesq-Scriven

operator) and the Laplace-Beltrami identity relating position and curvature. A semi-implicit

approach is then used to discretize in time, with piecewise linear interpolants for all variables.

Two stabilization terms are needed: The first one stabilizes the inextensibility constraint

by a pressure-gradient-projection scheme (R. Codina and J. Blasco, Computer Methods in

Applied Mechanics and Engineering 143:373-391, 1997), the second couples curvature and

velocity to improve temporal stability, as proposed by Bänsch (Numerische Mathematik

88:203-235, 2001). The volume constraint is handled by a Lagrange multiplier (which turns

out to be the internal pressure), and an analogous strategy is used to filter out rigid-body

motions. The nodal positions are updated in a Lagrangian manner according to the velocity

solution at each time step. An automatic remeshing strategy maintains suitable refinement

and mesh quality throughout the simulation.

Numerical experiments show the convergent and robust behavior of the proposed method.

Stability limits are obtained from numerous relaxation tests, and convergence with mesh

refinement is confirmed both in the relaxation transient and in the final equilibrium shape.

Virtual tweezing experiments are also reported, computing the dependence of the deformed

membrane shape with the tweezing velocity (a purely dynamical effect). For sufficiently
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high velocities, a tether develops which shows good agreement, both in its final radius and

in its transient behavior, with available analytical solutions. Finally, simulation results of a

membrane subject to the simultaneous action of six tweezers illustrate the robustness of the

method.
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1. INTRODUCTION1

Phospholipidic membranes are two-molecule-thick curved surface arrays of phospholipids2

[1] that constitute the fundamental building material of the Living Cell membrane, of many3

intra-cellular units, and of synthetic vesicles such as liposomes. The static properties of4

this two-dimensional material are governed by geometry. In fact remarkable agreement with5

biophysical observations has been obtained with models in which the energy density (per6

unit area) is a function of the local curvature alone[2, 3]. Such an energy density is typical7

of elastic solids in bending.8

Numerical methods for computing equilibrium shapes of these membranes by gradient9

flow (which in this context is called Willmore flow) first appeared about ten years ago, with10

the works of Dziuk [4], Rusu [5], Feng & Klug [6] and Barret et al [7], among others. These11

methods evolve the geometry by gradient descent towards an equilibrium of the applied12

forces (if any) with the elastic forces. Bonito et al [8, 9] considered the effect of the bulk13

fluid, while Elliot & Stinner modeled two-phase effects [10], always in gradient flow.14

The actual dynamics of phospholipidic membranes does not however obey gradient flow.15

Their evolution results from the interplay between the applied forces, the hydrodynamic16

forces coming from the adjacent inner and outer liquids, and the forces that develop on17

the membrane itself, which include an elastic contribution (as in gradient flow) and also a18

surface viscous contribution arising from the lipid-to-lipid sliding. In this article we focus19

just on the membrane forces, restricting the effect of the adjacent liquids to just a volume20

constraint. The combination of the methods proposed below with more realistic treatments21

of the inner and outer liquids is straightforward (though the added computational cost is22

obviously significant).23

We assume that the surface viscous forces that develop on the membrane and determine24

its dynamics correspond to an area-preserving Newtonian surface fluid [11, 12, 13]. Our goal25

is thus to present a finite element method for the viscous flow of phospholipidic bilayers;26

i.e., for the dynamical simulation of phospholipidic bilayers, considering an elastic model27

for bending deformations and a (viscous) Newtonian area-preserving fluid model for the28
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dissipative tangential motions.29

For this purpose, we adopt the same treatment of elastic forces used for gradient flows[4,30

8], combined with a novel treatment of surface viscous forces. The mathematical formula-31

tion of surface viscous behavior was first derived by Scriven [14]. Schemes for its numerical32

approximation have been proposed by Arroyo and coworkers [13, 15, 16] in the axisymmetric33

case, and by Tasso & Buscaglia [17] in the general 3D case. The formulation of this latter ar-34

ticle relies heavily on the numerical differentiation of the energy of the membrane (including35

an “evanescent elasticity” term which accounts for tangential viscosity) to compute forces36

and stresses, and on yet another numerical differentiation to compute the approximate tan-37

gent matrix. In this work another approach is followed, developing a semi-implicit scheme38

issued in a classical way from the continuous variational formulation, without adjustable39

numerical differentiation parameters and involving the solution of just one linear system per40

time step.41

After introducing the mathematical formulation in Section 2 and the proposed discretiza-42

tion scheme in Section 3, we assess the proposed method through numerical examples in43

Section 4. Special attention is given to experiments that involve membrane tweezing and44

tether formation. The latter is a salient phenomenon that takes place in phospholipidic45

bilayers, by which if a small part of a vesicle is pulled away by some localized force (using an46

optical trap, for example [18]) it carries with it a narrow bilayer tube (tether) that can be47

much longer that the vesicle itself and nanometric in diameter [19]. The proposed method48

is shown to be sufficiently robust to allow for accurate simulations of tether formation and49

extension, which are important to shed light on fundamental mechanisms of cell mechanics50

[20, 21, 22]. Section 5 is then devoted to summarize the conclusions of the study.51

2. MATHEMATICAL FORMULATION52

2.1. Virtual power at the interface53

We consider the motion of a closed surface Γ Ă R3 under the action of surface elastic54

forces and external forces coming from the adjacent liquid. The virtual work principle for55
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such a system reads56

ż

Γ

σ : DΓv “ ´dEpΓ,vq `
ż

Γ

f ¨ v @v P V pΓq (1)

where σ is the tensor of tangential stresses, EpΓq is the elastic energy from which elastic57

forces are derived, f is the net interaction force with the surroundings, V pΓq the space of58

admissible virtual velocities and DΓv the surface virtual strain rate.59

In (1), by dEpΓ,vq we denote the derivative (or first variation) of EpΓq along the virtual60

velocity field v. In turn, DΓv represents the surface differential operator61

DΓv “
1

2
P p∇Γv `∇ΓvT qP. (2)

which is the surface analog of the usual three-dimensional symmetric gradient Dv “ p∇v`62

∇vT q{2.63

Some elements of differential geometry are needed at this point. We follow the presen-64

tation of Buscaglia & Ausas [23], the reader is also referred to Biria et al [24] for a more65

comprehensive review.66

The tensor P above is the tangent projector onto Γ given by67

P “ I´ qnb qn, (3)

qn being the normal to Γ, and the symbol ∇Γ refers to the surface gradient, given by

∇Γf “ P∇ pf (4)

where pf is any smooth extension of the function f from its values on Γ to a three-dimensional68

neighborhood of it. The surface Laplacian ∆Γf is defined as ∇Γ ¨ p∇Γfq.69

The surface gradient ∇Γw of a vector field w defined on Γ is defined as the matrix

(Cartesian tensor)

t∇Γwuij “ t∇Γwiuj, (5)

where wi is the i-th Cartesian component of w.70
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2.2. The Boussinesq-Scriven operator71

The rheology of a viscous interface Γ is governed by the Boussinesq-Scriven law [14, 25],72

which is the tangential analog to the Newtonian constitutive law, i.e.,73

σ “ p´ ps ` λ∇Γ ¨ uqP ` 2µDΓu, (6)

where λ and µ are surface viscosity coefficients, u is the material velocity of the membrane74

particles, and ps is a surface thermodynamic pressure, which requires a closure law.75

An area-preserving membrane (frequently called inextensible membrane) is defined by

the constraint

∇Γ ¨ u “ 0 (7)

The inextensible limit is obtained making λ tend to infinity. It is a classical result that there

exists a surface pressure πs, the Lagrange multiplier associated to the constraint (7), such

that, irrespective of the closure law for ps,

lim
λÑ`8

p´ ps ` λ∇Γ ¨ uq “ ´ πs, (8)

As a consequence, the tangential stresses from (6) read, for inextensible membranes,

σ “ ´πs P ` 2µDΓu

The bilinear form that expresses the virtual power along a virtual velocity field v per-76

formed by the stresses σ corresponding to an actual velocity field u and surface pressure πs77

is given by78

W ppu, πsq,vq “

ż

Γ

σ : DΓv “

“

ż

Γ

2µDΓu : DΓv ´

ż

Γ

πs∇Γ ¨ v (9)

Remark:The bilinear form W is the surface analog of the Stokes form for bulk fluids, namely

Wbulk
ppu, pq,vq “

ż

2µDu : Dv ´

ż

p∇ ¨ v
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with the integrals performed this time over the volume occupied by the bulk fluid. As it is

well known, there is a differential operator that corresponds to Wbulk, which reads

´µ∇2u`∇p.

Similarly, there exists a surface differential operator associated to W, which can be denoted

by

´SΓ u`∇Γπs,

but the actual expression of SΓ is quite involved. It can be found in the pioneering work of79

Scriven [14], which is why SΓ is sometimes referred to as Boussinesq-Scriven operator. It80

can also be found, written in the language of differential forms, in the interesting article by81

Arroyo & DeSimone [13] (see also [26]).82

2.3. The Canham-Helfrich energy83

The elastic bending energy considered here is the simplest version of the model proposed84

by Canham and Helfrich [2, 27],85

EpΓq “
cCH

2

ż

Γ

κ2, (10)

where κ “ κ1 ` κ2 stands for the mean scalar curvature of Γ (κ1 and κ2 are the principal86

curvatures) and cCH is a material dependent parameter. In differential geometry, equation87

(10) is known as Willmore energy [28].88

The Canham-Helfrich energy (10) depends on the shape of Γ and is thus affected by

motions along a virtual velocity field v. The derivative of E along v was computed by Rusu

[5] as

dEpvq “ cCH

ż

Γ

„

|∆Γχ|
2

2
∇Γχ : ∇Γv `∇Γp∆Γχq : ∇Γv ´ 2 p∇Γp∆Γχq

T
qnq ¨ p∇ΓvT qnq



(11)

where χ stands for the identity mapping on Γ (i.e., χpxq “ x, @x P Γ), which obeys

P “ ∇Γχ, and κ
def
“ κ qn “ ´∆Γχ (12)
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In terms of the vector curvature κ, the first variation dEpvq can be rewritten as89

dEpvq “ cCH

ż

Γ

„

|κ|2

2
P : ∇Γv ` pI´ 2Pq∇Γv : ∇Γκ



(13)

Equivalent formulas were produced by Dziuk [4] and Bonito et al [8]. The latter was

adopted in our implementation, which reads

dEpvq “ cCH

ż

Γ

„

pI´ 2Pq∇Γv : ∇Γκ`
1

2
p∇Γ ¨ vq p∇Γ ¨ κq



, (14)

which holds if κ obeys the weak version of ´∆Γχ “ κ, namely

ż

Γ

κ ¨ ζ “

ż

Γ

P : ∇Γζ @ ζ P H1
pΓq3 (15)

2.4. Volume and area constraints90

Let V be the volume enclosed by the lipidic membrane Γ. It satisfies

V “ 1

3

ż

Γ

χ ¨ qn (16)

and its time derivative, when the membrane velocity is u, given by

dV
dt
“

ż

Γ

u ¨ qn (17)

In general, osmotic equilibrium determines the (fixed) volume V˚ that the surface Γ

must enclose at all times along its evolution, so that the instantaneous constraint reads
ş

Γ
u ¨ qn “ 0. When the membrane evolution is discretized in time, however, the enclosed

volume may drift away from the value V˚. To mitigate this error, we implemented a volume

controller as follows
ż

Γ

u ¨ qn “
V˚ ´ V
τv

(18)

The controller drives the volume towards the target value V˚ with characteristic time τv.91

Equation (18) acts as an additional constraint on the membrane’s dynamics, which ma-

terializes as an internal pressure p (uniform) which exerts a surface force

fp “ p qn
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on Γ.92

The area A of an inextensible membrane is also constant, this time as a consequence of

(7) because
dA
dt
“

ż

Γ

∇Γ ¨ u “ 0. (19)

Upon time discretization, as discussed above for the enclosed volume, the restriction dA
dt
“ 0

may be inexactly satisfied and thus A may drift away from its correct value A˚. An area

controller is thus implemented as

∇Γ ¨ u´
A˚ ´A
A τa

“ 0 (20)

so that, integrating over Γ, one retrieves

dA
dt

“
A˚ ´A
τa

which drives the membrane area towards A˚ with characteristic time τa.93

Remark: The modifications introduced by the volume and area controllers have no effect in94

the exact problem if the initial volume equals V˚ and the initial area equals A˚. In fact, if95

Vpt “ 0q “ V˚ then (18) forces Vptq to equal V˚ at all times. Similarly, if Apt “ 0q “ A˚,96

then (20) implies Aptq “ A˚ for all t ą 0.97

The Lagrange multiplier associated to the conservation of area is the surface pressure πs,98

already discussed, so that the area controller adds nothing to the bilinear form (9).99

2.5. Variational formulation100

Collecting the ingredients discussed in the previous sections, the variational formulation101

that determines the velocity of the membrane corresponds to the following linear problem:102
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Problem P: “Find pu, πs,κ, pq P V ˆQˆKˆ R such that103

ż

Γ

2µDΓu : DΓv ´

ż

Γ

πs∇Γ ¨ v `

` cCH

ż

Γ

„

pI´ 2Pq∇Γκ : ∇Γv `
1

2
p∇Γ ¨ κq p∇Γ ¨ vq



´ p

ż

Γ

v ¨ qn “

ż

Γ

f ¨ v (21)

ż

Γ

ξ∇Γ ¨ u “
A˚ ´A
A τa

ż

Γ

ξ

(22)
ż

Γ

κ ¨ ζ “

ż

Γ

∇ΓP : ∇Γζ

(23)
ż

Γ

u ¨ qn “
V˚ ´ V
τv

(24)

for all pv, ξ, ζq P V ˆQˆK.”104

The surface pressure πs, the vector curvature κ and the internal pressure p arise in this105

formulation as “by-products” of computing u. Notice that the force field f on the right-106

hand side of (21) now comprises all interaction forces with the surroundings other than that107

coming from the internal pressure. For problem P to be well-posed, the spaces V, Q and K108

need to be discussed.109

Assuming the surface Γ to be smooth, which implies that χ is smooth, one can integrate110

by parts the right-hand side of (23) so as to take K “ L2pΓq3. There is then a unique111

solution κ P K, which can then be seen to be smooth because of the smoothness of χ.112

Let us consider then existence and uniqueness of u. For simplicity, let us set πs “ p “ 0113

and leave aside Eqs. (22) and (24), which are constraints handled by Lagrange multipliers.114

All that remains is to plug κ into (21) and solve the Boussinesq-Scriven operator to determine115

u.116

The well-posedness of problem P thus demands that the bilinear form

Bpu,vq “
ż

Γ

2µDΓu : DΓv (25)

be continuous and (weakly) coercive over the velocity space V. For continuity, V must be

contained in H1pΓq3. For coercivity, it must be quotiented with the space of (infinitesimal)
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rigid movements

R def
“ tw : R3

Ñ R3
| wpxq “ ω ^ x ` β, ω,β P R3

u (26)

because DΓwpxq “ 0, for all x, whenever w P R.117

In this exposition we take V as equal to H1pΓq3{R and reason as if the bilinear form118

Bp‚, ‚q were coercive in V. This assumption allows us to consider u as uniquely defined119

by (21), assuming κ already computed (and, as said, ignoring the geometrical constraints).120

Problem P is thus assumed to be well-posed, yielding a unique solution pu,κq P V ˆ K.121

Remark: For later use, let us recall that the energy dissipation rate of the surface is given

by

D “
ż

Γ

2µ }DΓu}2 “ Bpu,uq

122

If we now consider the inextensibility equation (22), the situation is similar to that of

the incompressible Stokes equation in that an inf-sup condition arises, namely,

inf
0‰ξ PQ

sup
0‰v PV

ş

Γ
ξ∇Γ ¨ v

}ξ}Q }v}V
ą 0 (27)

We assume that this condition is fulfilled when Q “ L2pΓq.123

The reader should be warned that the viscous model above does not incorporate the124

layer-to-layer slippage of the two molecular sheets that form the lipid bilayer. This mode125

of deformation may well be dominant in some situations, as discussed by Evans & Yeung126

[29] and more recently by Rahimi & Arroyo [16]. In this contribution the focus is in the127

numerical treatment of the Boussinesq-Scriven operator coupled to the Canham-Helfrich128

elastic model, so that the incorporation of layer-to-layer slippage models is left for future129

work.130

2.6. The evolutionary problem131

Up to now we have considered a single instant of time, at which the membrane config-132

uration is described by a surface Γ. Since an outcome of the instantaneous problem is in133
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fact the velocity field with which the membrane’s particles are moving, one is lead to the134

following evolutionary problem:135

Evolutionary problem EP: “Given Γp0q, the initial surface, compute the continuous fam-

ily of surfaces Γptq that evolves from Γp0q as convected by the velocity field uptq : Γptq Ñ R3

that solves problem P. In mathematical terms, the family Γptq must satisfy

@x P Γptq, dist px` upx, tq δ t,Γpt` δtqq ď C δt2 (28)

where dist stands for the distance between a point and a surface, for some C ą 0.136

Notice that the tangential component of uptq is inconsequential in the evolution of Γptq.137

However, and contrary to what happens in gradient flow, the tangential velocity generated138

by viscous flow is not zero.139

3. DISCRETIZATION140

We consider triangulation surfaces in 3D space, which for a fixed mesh connectivity are141

uniquely described by the vector X of vertex positions. Time is discretized so that a sequence142

of triangulation surfaces Γ0, Γ1,. . .,Γn,. . . are computed, corresponding to vertex positions143

X0, X1,. . .,Xn,. . ..144

On each Γn we define the piecewise-affine finite element space

Pn1 “ tf P C0
pΓnq : f |K is affine, @K triangle in Γnu (29)

and the approximation spaces for velocity, surface pressure and curvature145

Vn
h “ pPn1 q

3
{R (30)

Qn
h “ Pn1 (31)

Kn
h “ pPn1 q

3 (32)

DISCRETE PROBLEM DP: Defining δt “ tn`1 ´ tn, the proposed scheme updates the

nodal positions in a Lagrangian way, i.e.,

XJ,n`1
“ XJ,n

` δtun`1
h pXJ,n

q (33)
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where J is the nodal index, so that (28) is by construction satisfied. Notice that the velocity146

field un`1
h is computed on Γn and is thus an element of Vn

h.147

The fully discrete linear problem that determines un`1
h is the following:148

“Find pun`1
h , πn`1

h ,κn`1
h , pn`1q P Vn

h ˆQ
n
h ˆKn

h ˆ R such that149

ż

Γn

2µDΓun`1
h : DΓv `

ż

Γn

πn`1
h ∇Γ ¨ v ´ pn`1

ż

Γn

v ¨ qn`

` cCH

ż

Γn

„

pI´ 2Pq∇Γv : ∇Γκ
n`1
h `

1

2
p∇Γ ¨ vq p∇Γ ¨ κ

n`1
h q



“

ż

Γn

fn`1
¨ v (34)

ż

Γn

ξ∇Γ ¨ u
n`1
h `

ż

Γn

γh p∇Γπ
n`1
h ´ gnhq ¨∇Γξ “

A˚ ´An

An τa

ż

Γn

ξ

(35)

´

ż

Γn

τκ∇Γun`1
h : ∇Γζ `

ż

Γn

κn`1
h ¨ ζ “

ż

Γn

P : ∇Γζ (36)
ż

Γn

un`1
h ¨ qn “

V˚ ´ Vn

τv
(37)

hold @v P Vn
h, @ξ P Qn

h and @ζ P Kn
h.” Together with (33), this completely defines the fully150

discrete formulation. Notice that all integrals are performed over the known discrete surface151

Γn.152

Several remarks are in order:153

• Algorithms that compute the velocity with frozen vertex positions, as is the case of154

DP, suffer severe stability restrictions on δt. The trend has thus been to “implicitize”155

as many terms as possible while keeping the problem to be solved at each time step156

linear, as done by Rusu [5], Dziuk [4] and others.157

• A stabilization term
ż

Γn

γh p∇Γπ
n`1
h ´ gnhq ¨∇Γξ

has been added in the inextensibility equation (35). This aims at stabilizing checker-

board modes arising from the equal-order interpolation of uh and πh. The stabilization

technique is taken from the “stabilization by pressure gradient projection” method pro-

posed by Codina & Blasco [30, 31, 32]. The vector field gn is the L2pΓq-projection of
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∇Γπ
n
h onto pQn

hq
3, i.e.,

ż

Γn

gnh ¨ v “

ż

Γn

∇Γπ
n
h ¨ v @v P pQn

hq
3 (38)

The parameter γh varies from element to element, according to

γh “
h2
K

10µ
(39)

where hK is the diameter of element K. The consistent mass matrix is used in solving158

(38).159

• By comparing (36) to its exact version (23), one notices the addition of the stabilization

term due to Bänsch [33]

´

ż

Γn

τκ∇Γun`1
h : ∇Γζh

for which the usual choice is τκ “ δt, adopted throughout this article. This term160

significantly increases the temporal stability. It allows time steps hundreds of times161

larger than those allowed by the unstabilized algorithm (τK “ 0).162

• The space Vn
h needs to have its rigid modes filtered out. We accomplish this by a163

classical Lagrange multiplier technique, which adds 6 equations (
ş

Γn un`1
h “ 0 and164

ş

Γn x^ un`1
h “ 0) and 6 unknowns to the global matrix.165

• The characteristic times τa and τv of the area and volume controllers, respectively,

which are non-physical, are taken as

τa “ τv “ 10 δt (40)

This choice yields the best results in terms of accuracy and stability, as concluded from166

numerous experiments.167

4. REMESHING168

The simulation of evolving surfaces that undergo large deformations requires adaptive169

meshing techniques to mantain good accuracy along the computations. The loss of acuracy170
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is not only related to the degradation of triangles quality, but also to the changes in time of171

the local surface curvature. In order to cope with these issues an automatic discrete surface172

regridding software was employed [34].173

The remeshing procedure starts by defining a single discrete patch as the whole support

surface whose boundary is the largest edge. Using this edge as the initial front, the discrete

patch is triangulated using an advancing front technique. The desired local element size is

defined using the curvature information by the rule

h˚pκq “
ch
κ

,

where ch is a user-defined parameter, and κ is the scalar curvature provided by the field174

solver. The specified element size is isotropic since only scalar curvature information is175

used. The output of this step is a completely new discrete surface. Although the new nodes176

lie on the original surface, the two surfaces are not coincident. In particular, discrepancies177

in the curvature introduce discontinuities in the elastic energy after each remeshing. These178

perturbations are however rapidly dissipated and seem to not have any major impact on the179

simulation results.180

In order to assess the quality of a given surface discretization, two parameters are defined181

as measures of the shape and size quality of each individual triangle K as follows:182

• Element shape quality:

qshapeK “ p12
?

3qAK{P
2
K ,

where AK and PK are the triangle’s area and perimeter, respectively.183

• Element size quality:

qsizeK “ min

"

h˚pκKq

hK
, 1

*

Global measures of shape and size qualities are then defined as

Qshape “ min
K
tqshapeK u and Qsize “ min

K
tqsizeK u

respectively.184
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The evolving discrete surface is remeshed every time one of the two quality measures185

drops below given threshold values (Q˚shape and Q˚size). For all the simulations presented in186

this paper Q˚shape and Q˚size were set to 0.65 and 0.55 respectively.187

5. NUMERICAL RESULTS188

5.1. Adimensionalization189

It is convenient to express the numerical results in non-dimensional form. For this

purpose, one defines the basic length scale for an inextensible membrane as

R0 “

c

A
4π

so that the non-dimensional area is always 4π. This allows for the definition of consistent190

scales for velocity, surface pressure, surface stress, curvature, internal pressure and other191

variables as shown in Table 1.192

A relaxation experiment corresponds to solving problem P repeatedly starting from an

initial configuration Γ0 and with no forces other than the internal pressure applied (i.e.; f “

0), so that the membrane evolves towards a nearby equilibrium. In a relaxation experiment

all non-dimensional variables depend just on the non-dimensional initial configuration pΓ0,

where pΓ0 is the scaled version of Γ0, i.e.;

x P Γ0
ô px

def
“

1

R0

x P pΓ0 (41)

If two relaxation experiments share the same pΓ0, then the time history (in terms of non-193

dimensional time) of all (non-dimensional) variables must coincide, irrespective of the actual194

values of R0, cCH and µ.195

In a tweezing experiment, on the other hand, there is a part of the membrane that is196

pulled away with some imposed velocity VT or some imposed force FT . In this case the197

non-dimensional solutions will depend both on pΓ0 and on the non-dimensional value of the198

imposed velocity or force, which acts as an additional non-dimensional parameter.199

In what follows, all reported quantities are non-dimensional unless explicitly said oth-200

erwise. The sample values tabulated above may help the reader in translating the non-201

dimensional results into physical quantities.202
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Quantity Symbol Scale Sample value

Space x R0 10´6 m

Time t
µR2

0

cCH

0.25 s

Velocity u
cCH

µR0

4ˆ 10´6 m/s

Area A R2
0 10´12 m2

Energy E cCH 4ˆ 10´20 J

Dissipation D c2
CH

µR2
0

1.6ˆ 10´19 W

Surface pressure πs
cCH

R2
0

4ˆ 10´8 Pa-m

Surface stress σ
cCH

R2
0

4ˆ 10´8 Pa-m

Curvature κ
1

R0

106 m´1

Internal pressure p
cCH

R3
0

0.04 Pa

Surface force f
cCH

R3
0

0.04 Pa

Force F
cCH

R0

4ˆ 10´14 N

Table 1: Adimensionalization scales for the intervening variables. The sample values correspond to R0 “

10´6 m, cCH “ 4ˆ 10´20 J and µ “ 10´8 Pa-s-m.
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5.2. Relaxation experiments: Stability limit, convergence and equilibrium shape203

Equilibrium shapes of lipidic membranes, or equivalently stationary points (local minima)204

of the Canham-Helfrich energy, are configurations Γ8 at which the membrane is in static205

equilibrium (the solution to problem P is upxq “ 0 @x P Γ). Equilibrium shapes have been206

studied extensively by Seifert and coworkers [3], among others.207

The viscous relaxation of a membrane corresponds to the evolution, without any external208

force (f ” 0), from an initial shape Γ0 towards an equilibrium shape Γ8, obeying the viscous209

model described in this article. In what follows we assess the performance of the proposed210

method (defined by Eqs. (33)-(37)) for relaxation experiments. For this purpose, we first211

determine the stability limit of the method (maximum δt for stable behavior, as a function212

of the mesh size), and then conduct numerical relaxations with increasingly refined meshes.213

There is no analytical solution for the relaxation transient, so that what is being analyzed214

is the consistency of the results obtained for different meshes. The discrete equilibrium215

shape, on the other hand, can be compared to quasi-analytical results (analogous to those216

of Veerapaneni et al [35]).217

5.2.1. Stability limits218

The initial shape can be seen in Figure 1, with a triangulation that corresponds to the

finest mesh employed (mesh MR3). The enclosed volume is Vpt “ 0q “ 3.1907, and this

same value is taken as V˚. Though this value is non-dimensional, it is customary to express

the volume in terms of another non-dimensional quantity, the reduced volume [3]

v
def
“

6
?
πVolume

Area
3
2

“
3V
4 π

(42)

where “Volume” and “Area” stand for the actual (dimensional) volume enclosed by the219

membrane and area of the membrane, respectively. The reduced volume enclosed by mesh220

MR3 is vpt “ 0q “ 0.7617.221

All results below and in the next sections are computed with algorithm DP (Equations222

(33)-(37)), with τK “ δt, τa “ τv “ 10 δt and γh given by (39).223

The first experiments aim at determining the maximum time step size δtlim for which224

the fully-discrete method DP behaves in a stable way. For this purpose, one hundred time225
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steps are run on each mesh for several choices of δt. Unstable runs are easily recognizable226

by violent fluctuations of the elastic energy and of the maximum velocity. The limit value227

δtlim is obtained by dychotomic search with a tolerance ď 20%.228

Three increasingly refined triangulations are employed, of which the most refined is the

already described mesh MR3. The maximum time steps allowed by the method can be

observed in Table 2. They obey the formula

δtlim » 0.42h2
min (43)

almost exactly. Notice that this formula is non-dimensional, expressed dimensionally it reads

δtlim »
0.42µ

cCH

h2
min (dimensionally).

The constant 0.42 can of course depend on the shape of the membrane, so that a similar229

study was performed on several very different shapes and with uniform or adaptively refined230

triangulations. The δtlim obtained for each initial mesh is plotted as a function of hmin in231

Figure 1.232

The best-fit line in magenta corresponds to (43), which as observed from the plot in

some cases overestimates δtlim. Further, we have observed quite often that choosing δt very

close to the stability limit deteriorates the accuracy of the computations. This could be a

consequence of the term
ş

Γn τK∇Γun`1
h : ∇Γζ in (36), since we are taking τK “ δt. For these

two reasons we adopt as automatic time-step determination formula (adjusted every single

time step) one fourth of the value given by (43), that is,

δt “ δt˚phminq
def
“ 0.105h2

min. (44)

Unless otherwise stated, all relaxation experiments described below have been conducted233

with this time-stepping strategy.234

5.2.2. Convergence of relaxation dynamics235

Let us assess now the convergence of the proposed method. The initial meshes are MR1,236

MR2 and MR3, and the time step is updated according to (44). The initial values of the237
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Mesh # nodes # elements hmin δtlim

MR1 592 1180 0.041 7.0ˆ 10´4

MR2 2177 4350 0.021 1.6ˆ 10´4

MR3 8126 16248 0.010 4.2ˆ 10´5

Table 2: Maximum time step for stable behavior of the method, as obtained for each of the meshes of the

relaxation study.
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MR3

10´2

10´6

10´3

10´4

δtlim

hmin

10´3

10´5

0.105ˆ h2
min

Figure 1: Stability limit δtlim plotted as a function of the minimum edge size hmin. The triangles are

experimentally obtained values for meshes of different shapes and refinement (some of the shapes are shown

and the corresponding data point indicated). In magenta the best-fit line 0.42h2min. In cyan the adopted

time-stepping strategy, 0.105h2min.
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time step are, thus, 1.75ˆ10´4, 0.40ˆ10´4 and 1.05ˆ10´5. The simulated non-dimensional238

time is 0.06.239

There is no analytical solution for this evolutionary problem, so that the experiments240

aim at checking the consistency of the results with mesh (and time step) refinement.241

In Fig. 2 we plot several integral quantities of the relaxation process, namely the (all242

non-dimensional) energy E , the internal pressure p, the dissipation rate D, and the L2pΓq243

norms of the velocity u and of the surface pressure πs, as functions of non-dimensional time244

t. The shape evolution is shown at the top of the Figure.245

The relaxation process is seen to take until about t “ 0.06, with an energy reduction of246

about 20% (from „ 49 to „ 39). The consistency of the curves corresponding to MR1, MR2247

and MR3, and the close agreement between the two finest meshes, provide strong evidence248

of mesh convergence. Notice how some spurious transient that takes place at t » 0.03´0.04249

for mesh MR1 (especially evident in the plot of }u}2) completely disappears after mesh250

refinement.251

5.2.3. Equilibrium shapes252

Discrete equilibrium shapes can be obtained by gradient flow or by viscous flow, once the253

evolutionary problem reaches its steady state. It is an important consistency check for the254

proposed method that the discrete equilibrium shapes it provides are indeed approximations255

of exact equilibrium shapes.256

To perform this check, quasi-analytical solutions were computed for axisymmetric shapes257

by numerically integrating the associated system of ODEs with an extremely fine discretiza-258

tion. In this way, axisymmetrical versions of the quasi-analytical shapes produced by Veera-259

paneni et al [35] were obtained. They can be compared to the numerical shapes at which the260

algorithm arrives after the relaxation process. We selected for this comparison oblate equi-261

librium shapes with reduced volumes of v “ 0.61 and v “ 0.81. For each reduced volume,262

three increasingly refined meshes were used, as in the previous section (in fact, essentially263

the same meshes).264

To compare the 3D results with the axisymmetric solution, the symmetry axis of the265
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Figure 2: Time evolution of energy, internal pressure, dissipation, velocity norm and surface pressure norm

(both in L2pΓq) along the relaxation experiment. The different colors correspond to the increasingly refined

meshes MR1, MR2 and MR3. On top, the shape of the membrane at different instants (the horizontal

position of each shape approximately corresponds to its time).
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3D mesh is identified by diagonalizing the tensor
ş

Γ
x b x, and so a cylindrical coordinate266

system r ´ z ´ φ can be assigned to each point in Γ, and also an arc-length coordinate s267

along the meridians.268

In Figure 3(a) the r´ z coordinates of the nodes of the coarsest relaxed mesh are super-

posed to the corresponding quasi-analytical curves (just one fifth of the nodes are plotted,

to leave the exact curve visible). Just the results of the equilibrium shape corresponding to

v “ 0.61 are shown, since those of v “ 0.81 are analogous. The shape is seen to be quite

correctly reproduced. To compare the curvature, we plot it as a function of the arc-length

coordinate in Figure 3(b). Each data point of these figures involves an error, from which we

compute

errpxq “

«

1

# nodes

ÿ

J P nodes

}XJ
´ cppXJ

q}
2

ff
1
2

where cppxq is the closest projection of x onto the exact equilibrium shape Γ. In the same269

way, comparing the numerical nodal values of the different quantities to their exact value270

at the closest point of Γ, we compute discrete estimates of the errors of the different fields,271

i.e., errpqnq, errpκq, errpκq, errpπsq.272

The results are summarized in Table 3 for the two reduced volumes v “ 0.61 and v “ 0.81.273

One observes convergent behaviors of order Oph5{3q for the position and Oph3{2q for the274

vector curvature κ, which are the main unknowns of the problem. The surface pressure πs275

seems to converge with first order, while internal pressure p and the elastic energy E seem276

to be second order.277

It is interesting that the algorithmic normal qn, numerically computed as κh{κh, converges278

with less accuracy than κ itself. In Fig. 3(c)-(d) we plot the error distribution of κ and279

of qn as a function of the arc-length coordinate. Notice how the error in qn concentrates at280

regions where the mean curvature takes values close to zero.281

5.2.4. Mesh distortions near equilibrium282

The remeshing process is important in the long term stability of the method. In re-283

laxation simulations, once the shape has minimized its energy there still persists a small284
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Figure 3: Numerical and quasi-analytical equilibrium shapes for v “ 0.61. (a) Coordinates r ´ z of nodal

positions (red circles) and exact shape (black line). (b) Mean curvature at the nodes as a function of the

meridian-arc length (red circles) and exact mean curvature (black line). (c) Nodal errors of the curvature

vector κh as a function of the meridian-arc length for the three meshes MR1 (red), MR2 (green) and MR3

(blue). (d) Idem as (c) for the normal vector qnh.
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Case v “ 0.6104 (p “ ´15.61, E “ 48.47)

mesh hmin errpxq errpqnq errpκq errpκq errpπsq errppq errpEq

MR1 0.04 2.91e-03 1.21e-01 1.04e-01 7.34e-02 6.26e-01 5.1581e-01 5.7932e-01

MR2 0.02 8.45e-04 3.43e-02 3.25e-02 1.99e-02 2.34e-01 1.4022e-01 1.5458e-01

MR3 0.01 2.68e-04 2.59e-02 1.23e-02 5.38e-03 1.55e-01 3.7460e-02 3.8833e-02

EOC 1.67 1.08 1.50 1.83 0.98 1.84 1.90

Case v “ 0.8101 (p “ ´14.39, E “ 35.89)

mesh hmin errpxq errpqnq errpκq errpκq errpπsq errppq errpEq

MR1 0.04 2.61e-03 1.48e-01 5.41e-02 3.90e-02 5.74e-01 3.92e-01 1.49e-01

MR2 0.02 7.54e-04 4.43e-02 1.62e-02 1.05e-02 1.74e-01 1.08e-01 3.52e-02

MR3 0.01 2.55e-04 2.52e-02 6.02e-03 2.80e-03 8.12e-02 2.91e-02 5.36e-03

EOC 1.63 1.24 1.54 1.85 1.37 1.83 2.34

Table 3: Experimental convergence analysis of the different variables as compared to those of the exact

shapes for v “ 0.61 and v “ 0.81. EOC stands for “estimated order of convergence”.
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velocity field on the membrane. These velocities, arguably similar to the parasitic velocities285

that appear in capillary flows [36, 37, 38, 39, 40], slowly distort the mesh until some sort of286

instability is triggered and the simulation diverges.287

An attempt to illustrate this phenomenon is made in Figure 4. There the evolution of288

the energy and of the mesh quality along a relaxation simulation are plotted. The relaxation289

should end at t » 0.06, with the velocity going to zero and the membrane remaining forever290

after in the equilibrium configuration. One observes, however, that the quality of the mesh291

deteriorates steadily and the elastic energy begins to grow after t » 0.07. This behavior,292

if allowed to progress, completely pollutes the simulation. The dotted curves after t “ 0.1293

correspond to the evolutions of energy and mesh quality that would be obtained if the294

remeshing operation automatically activated at t “ 0.1 were inhibited. The mesh distortions295

in these instabilities are more pronounced in some localized region. The inserts in Figure 4296

show the affected region at the time of remeshing and sometime later, in a non-remeshed297

simulation.298

After remeshing at t “ 0.1 there is a slight adjustment of the energy due to the change299

in mesh and then again a state of pseudo-rest develops, in which nothing happens other300

than a slow distortion of the nodal positions. After time t » 0.3 this spurious movement301

begins to significantly affect mesh quality and the energy begins to grow again. A new302

instability develops quite similar to the one that activated the first remeshing, leading to a303

second remeshing at t » 0.36. The inserts show the critical regions, exhibiting the unstable304

distortion pattern.305

Remeshing is thus seen to serve not just as a mesh adaptation strategy, but also as a306

control mechanism for spurious unstable distortions.307

5.3. Tethering experiments: Membrane tweezing, dynamical effects308

5.3.1. Basic description309

A tether develops when a small parcel of the membrane is pulled away. If a force FT is310

applied to the parcel, a structure develops composed of a head, a cylindrical tube of length311

Lptq and radius Rptq and the connection to the membrane body as shown in Figure 5.312
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Figure 4: Long-term evolution of a relaxing membrane. Plotted are the elastic energy and mesh quality

as functions of time. The state of rest is not completely achieved and small parasitic velocities distort the

mesh activating the remeshing process. The dotted lines show the evolution of the variables if remeshing is

inhibited, and the inserts show the unstable distortion pattern.
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u “ 0

body
membrane

b Lptq e

headtether

u “ VT u “ VT

FT

Figure 5: Schematics of membrane tethering.

The dynamics of the tether can be understood with the help of the analytical solution

corresponding to a (circular) cylindrical inextensible membrane. We here go back to di-

mensional quantities and consider a membrane of surface viscosity µ and Canham-Helfrich’s

constant cCH that is being pulled from its end by an external axial force FT . In this particular

geometry, the exact problem admits an analytical solution with uniform (independent of x)

circumferential and axial stresses. The exact velocity field is given by

u “ Ur qer ` χ z qez (45)

with Ur and χ given by313

Ur “ ´
1

8πµ

„

FT ´ 2πcCH

1

R

ˆ

1`
pR3

cCH

˙

, (46)

χ “
1

8πµR

„

FT ´ 2πcCH

1

R

ˆ

1`
pR3

cCH

˙

. (47)

Neglecting the contribution of the internal pressure p, and noticing that

dR

dt
“ Ur (48)
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one arrives at the more tractable equation

dR

dt
“

cCH

4µ

ˆ

1

Req

´
1

Rptq

˙

. (49)

There exists an equilibrium radius Req given by314

Req “
2πcCH

FT
, (50)

to which the cylinder will tend as t Ñ 8. At equilibrium, the surface pressure πs takes the

value

πs,eq “ ´
FT

4πReq

“ ´
F 2
T

8π2cCH

.

Further, the final decay when R » Req must have the asymptotic behavior

Rptq “ Req ` C exp

ˆ

´
cCH

4µR2
eq

t

˙

. (51)

The characteristic relaxation time is

T “
4µR2

eq

cCH

“
16π2 µ cCH

F 2
T

For t much greater than τ the tether is expected to be at equilibrium following a rigid-body315

translation along the line of FT . The material deforms to take the shape of a cylinder in316

the region to the left of point “b” in Figure 5, which is approximately fixed in space (the317

“beginning” of the tether). Once the material enters the tether it simply moves at constant318

velocity along it. The “end” of the tether (point “e”) moves at a constant velocity UT319

determined by a balance between the applied force and the viscous stresses at the connection320

region between the tether and the membrane body.321

Going back to non-dimensional quantities, the equilibrium radius and the tether relax-

ation time are given by

Req “
2 π

FT
and T “ 16π2

F 2
T

(52)

5.3.2. Numerical tweezers322

We have implemented numerical tweezers as a model for the external surface force f .323

Each numerical tweezer has a radius rT , which is fixed in time, while the position of its324

center follows a path described by the vectors x0
T , x1

T , etc.325
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Given a point x in R3, the tweezer’s penetration at point x and time tn`1, denoted by

wn`1pxq, is defined as

wn`1
pxq

def
“ rT ´ }d

n`1
T pxq}

where

dn`1
T pxq

def
“ x´ xn`1

T

The repulsive force that the tweezer exerts on x depends exponentially on wn`1pxq, according

to

fn`1
pxq “ kT

ew
n`1pxq{`T

}dn`1
T pxq}

dn`1
T pxq

In an exact setting, this force would be integrated over x P Γn`1. Unfortunately, this force

is needed at the time of computing un`1
h through (34), and thus the integral is performed

over Γn. One could replace fn`1 by fn in (34), but the following approximation has much

more stable behavior:

fn`1
pxq “ kT

ew
n`1pxq{`T

}dnT pxq}
dnT pxq ´ kT

δt ew
npxq{`T

`T }dnT pxq}
2
pdnT pxq b dnT pxqq un`1

h pxq (53)

Notice that the last term in (53) is an implicit linearization that must be added to the matrix326

arising from the left-hand side of (34). The two parameters kT and `T are given the values327

105 and rT {50, respectively.328

The numerical tweezer can be moved specifying either the velocity or the total force

exerted on the membrane. In the former case, the update rule is simply

xn`1
T “ xnT ` δtU

n`1
T

where UT is the specified tweezer velocity. In cases where the force is specified, a simple329

proportional feedback controler was implemented that adjusts Un`1
T so as to keep the force330

at the target value.331

Figure 6 illustrates our tweezing strategy, depicting a situation in which six tweezers are332

simultaneously pushing a membrane outwards, from within.333
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rT

Figure 6: An illustration of the tweezing strategy. In this case six tweezers are simultaneously acting on a

membrane.
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5.3.3. Dynamical effects in tweezing334

The viscous-flow model presented here can deal, unlike gradient-flow models, with dy-335

namical effects in excursions away from equilibrium. An illustrative application is the anal-336

ysis of velocity effects in tether development carried below.337

Let us consider an equilibrium oblate shape corresponding to a reduced volume v “

0.6666. A tweezer of constants

rT “ 0.04, kT “ 105, `T “
rT
50

is placed at xT pt “ 0q on the interior of the surface, close to it, and is moved at constant

velocity UT along the outward normal direction. The simulations are run until a time T

such that the tweezer displacement DT “ }xT pT q ´ xT p0q} “ UT T “ 1.0, meaning a non-

dimensional displacement of the tweezer of 1.0 for all cases. We have observed that it is

necessary to reduce the time step for the tweezing simulations. Specifically, δt is now chosen

as

δt “
1

4
δt˚phminq (54)

and the results are confirmed by re-running the simulation with one half of this value.338

Since the goal is to consider just the interaction of one tweezer, the rigid motions are339

filtered out by Lagrange multipliers just as in the free relaxation cases.340

The resulting membrane shapes at different positions of the tweezer, indicated by its341

displacement DT , and for several values of the tweezer velocity UT are shown in Figure 7.342

The leftmost column of the figure corresponds to the smallest velocity, UT “ 1. In this343

case, the membrane deforms almost quasistatically, without showing any localized response344

at the tweezer’s location. As the velocity is increased to UT “ 10 one begins to “see” the345

tweezer pushing outwards from within the membrane. But it is only for UT “ 100 and346

UT “ 1000 that the small size of the tweezer (rT “ 0.04) becomes apparent and the tweezer347

produces a tethering-like deformation.348

Considering just the bottom row of Figure 7, for which the tweezer position is exactly the349

same (and the center of mass of the membrane too, thanks to the rigid-motion filtering), the350
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Figure 7: Dynamical effects in tweezing. Deformation of an equilibrium oblate shape with v “ 0.6666 by a

tweezer of radius rT “ 0.04 moving outwards at constant velocity UT (vertically). Shown are the membrane

shapes for four values of the tweezer’s displacement DT “ 0.1, 0.4, 0.7 and 1.0, and for UT “ 1, 10, 100 and

1000.
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ability of the proposed method to capture velocity-dependent deformations of the membrane351

is evident.352

5.3.4. Tether dynamical equilibrium353

We now assess the ability of the method to correctly predict the dynamical equilibrium354

of the tether. For that purpose, we take a tether formed by applying a tweezer force of355

FT “ 400 and suddenly change the force. Two runs were performed, in one of them FT is356

changed to 500 and in the other to 600. The time is redefined to be zero at the time of the357

force change. The mesh is adapted and remeshed using ch “ 1{2, which is rather coarse358

(h » Req{2). The time step is adjusted according to (54).359

By post-processing the mesh it is possible to compute the radius of the tether as a function360

of time, as shown in Fig. 8. The initial exact equilibrium radius is ReqpFT “ 400q “ 0.0157,361

which is reasonably approximated by the method despite the mesh being quite coarse.362

After changing the force to FT “ 500, the tether’s radius shrinks to a value of approx-363

imately 0.013, which is a good approximation to ReqpFT “ 500q “ 0.0126. Further, the364

evolution towards the new radius is in good agreement with an exponential of the form365

a e´t{T ` b, where T “ 6.32 ˆ 10´4 is given by (52), as shown by a continuous line in the366

figure.367

A similar procedure is conducted for the change to FT “ 600, for which the exact values368

are ReqpFT “ 600q “ 0.0105 and T “ 4.39ˆ 10´4.369

The relaxation towards the equilibrium radius is seen to agree quite well with the ana-370

lytical solution (though better for FT “ 500 than for FT “ 600), and the equilibrium radius371

itself is predicted with an error of about 5%. This error level is reasonable, considering that372

there are just about twelve elements in the tether’s circumference.373

5.3.5. Complex tweezing374

This last section reports on a more complex tweezing experiment which aims at testing375

the robustness of the proposed method. Starting from a spherical membrane of area 4π (i.e.,376

taking as R0 the radius of the initial sphere), six independent tweezers of radius rT “ 0.1377
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Figure 8: Response of the tether’s radius to a sudden change in the tweezer’s force. From a tether in

dynamical equilibrum at FT “ 400, the force is changed to FT “ 500 or FT “ 600 at t “ 0. The circles

correspond to the numerical results obtained with the proposed method. The black lines correspond to an

exponential adjustment with characteristic time given by (52). On the right the exact equilibrium radius

(as given by (52) is shown with a short blue segment.
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move radially outwards with UT “ 100 acting upon it. The tweezers initial positions are the378

intersection of the membrane with the six cartesian semi-axes.379

Though the imposed values of area, A˚, and volume, V˚, were introduced as constants,380

in this experiments they are set as specified functions of time,381

A˚ptq “ 4π ` 400 t (55)

V˚ptq “
4π

3
´ 50 t (56)

A time-dependent enclosed volume may result from a variable osmotic pressure in the fluid382

that surrounds the membrane, while a time-dependent area may result from the incorpora-383

tion of lipids to the membrane.384

Along the simulation, the time step was continually adjusted according to

δt “ 0.105h2
min

and the remeshing procedure was applied automatically, with ch “ 0.5.385

A picture of the membrane’s evolution can be seen in Fig. 9. The tweezers are seen to386

“emerge” from the sphere first deforming the membrane into an approximate octahedron387

(at time „ 0.005) and then further stretching the octahedron into a star-like shape. Though388

there exist mechanisms that may create protrusions such as those in Fig. 9 in actual cells or389

lipidic vesicles [41, 42], this case does not attempt to model a specific physical phenomenon.390

In Fig. 10 plots of several variables of the simulation can be found. The energy is seen391

to increase monotonically along the deformation, with the area and volume following their392

target values A˚ptq and V˚ptq quite closely. The forces exerted by each of the six tweezers393

are also plotted in Fig. 10. They differ from one another until at t » 0.005 the membrane394

tightens and all the tweezers start behaving alike.395

Notice the strong perturbations introduced by remeshing, which are the result of slight396

changes in the penetration of each tweezer by the interpolatory construction of the new397

mesh. The algorithm is able to recover itself from these strong perturbations quite rapidly.398

Finally, let us provide some computational data of this simulation. The time step and399

the minimum element size hmin are plotted as functions of time in Fig. 11. Also shown are400
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the shape and size qualities of the mesh, Qshape and Qsize, as functions of time in Fig. 12. The401

initial mesh consists of 2160 elements and 1082 nodes, while the final one consists of 5128402

elements and 2566 nodes. The complete simulation comprises 1525 time steps, which take 29403

minutes on an i7-based laptop at 2.8 GHz. The linear system is solved by LU factorization404

using the MUMPS package [43, 44], with a memory requirement of 2 GBytes.405

6. CONCLUSIONS406

In this contribution, we have introduced a fully discrete semi-implicit finite element407

scheme for the simulation of viscous membranes with bending elasticity of the Canham-408

Helfrich type. The membrane is discretized by a surface mesh made up of planar triangles,409

over which a mixed formulation (velocity-curvature) is built with P1 interpolants for all410

fields. Two stabilization terms are incorporated in the discrete formulation: The first one411

stabilizes the inextensibility constraint by a pressure-gradient-projection scheme [30], the412

second couples curvature and velocity to improve temporal stability[33]. The volume con-413

straint is handled by a Lagrange multiplier (which turns out to be the internal pressure),414

and an analogous strategy is used to filter out rigid-body motions. Feedback controllers are415

used to avoid drifting from imposed values of enclosed volume and total area. The nodal416

positions are updated in a Lagrangian manner and automatic remeshing strategy maintains417

suitable refinement and mesh quality throughout the simulation.418

The method has been numerically assessed through extensive relaxation and tweezing419

experiments. For the latter, a specific virtual tweezing algorithm was devised. It has been420

shown that the proposed method is convergent and robust, though with a severe (of order421

h2) stability restriction on the time step for which a practical estimate was derived. This422

stability restriction is the main difficulty in the applications of the algorithm, since it makes423

thousands of time steps necessary for the simulation of relatively simple membrane motions.424

Another difficulty still encountered, though currently avoided by quality-based automatic425

remeshing, is the existence of small persistent velocities at the numerical equilibrium which426

slowly but continually deteriorate the mesh quality.427
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Figure 9: Evolution of the membrane’s shape along the “complex tweezing” simulation. Shown are snapshots

of the shape at equispaced time intervals of 0.8ˆ 10´3 time units. The shapes are shaded according to the

value of the scalar curvature.
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in the “complex tweezing” simulation.
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