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Abstract

This article proposes a discontinuous Galerkin based immersed boundary method(DG-
IBM) with an extension method for Dirichlet and Neumann boundary conditions(bcs)
to an approximate boundary. The resulting numerical scheme does not require
boundary fitting meshes, and elegantly avoids boundary locking by switching the
elements cut by the boundary to a discontinuous Galerkin approximation. The ex-
tension methods for bcs are quite general- they can be used for problems in two and
three dimensions, with non-homogeneous bcs and allows for strict enforcement of
Dirichlet boundary conditions. Extensive numerical experiments with two and three
dimensional elasticity problems shows that the proposed methods leads to optimal
convergence rates in the L2 norm.

Key words: Dirichlet boundary conditions, Neumann boundary conditions,
Extension methods, Discontinuous Galerkin method, Cartesian grids, Elasticity,
Immersed boundary.

Preprint submitted to Elsevier 9 June 2008



1 Introduction

The motivation for this paper is to create a numerical method that can be
used to solve boundary value problems on complex domains using a sequence
of approximate domains. The method is tailored to satisfy what we call an
asymptotic consistency condition, which ensures that the numerical solution
computed converges to the exact solution with the optimal rate. The ingre-
dients of DG-IBM, namely approximating the exact domain of the problem,
building the solution space and defining the boundary conditions on the re-
sulting approximate boundary- are constructed keeping in mind the conditions
necessary to satisfy such a condition. While methods to solve boundary value
problems on curved domains has been extensively studied in the literature, the
approach we have adopted here is, to the best of our knowledge, new, elegant
and suitable for academic as well as practical applications.

DG-IBM is an immersed boundary method that approximates the domain
of the problem using a mesh over an encompassing domain that is easy to
discretize. As highlighted in [27], a key ingredient of DG-IBM is the use of
a discontinuous Galerkin approximation on elements that are intersected by
the boundary in order to overcome a phenomenon called “boundary locking”.
This permits enforcing Dirichlet boundary conditions strongly. Like with other
immersed boundary methods, the question arises about what to prescribe as
boundary conditions on the resulting approximate boundary. We address this
question using a numerical extension method which can be used for non-
homogeneous Dirichlet and Neumann boundary conditions in two and three
dimensional problems. A nice feature of the numerical extension method is
that it does not rely on the boundary conditions being specified by analytical
expressions; for instance, this would be the case when boundary conditions
arise from companion numerical simulations.

Handling domains with curved boundaries using the finite element method,
though extensively studied, continues to be a significant challenge. We briefly
review the use of isoparametric elements, immersed boundary methods and
meshless methods to handle such problems focusing more on the ideas and
challenges in these methods rather than on details. This will serve as a good
point of departure before describing the DG-IBM formulation. While the re-
view is by no means exhaustive, the ideas and references mentioned is expected
to guide the reader to the relevant literature.

A simple and widely adopted approach for finite element analysis on curved
domains is using an inscribed polygon(or polyhedron) to approximate the
problem domain. Imposing boundary conditions is also easy- prescribed val-
ues are imposed at the nodes that lie on the exact boundary. However, such
an approximation is known to have severe limitations, especially with regard
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to the order of convergence of the numerical solution. The solution seems to
lie in better approximating the domain and the boundary. References [47–
49,15,36,37,9–11,26] provide illuminating details in this direction. The idea
has been to map conventional straight edged-elements to curved/pie-shaped
ones, for instance using isoparametric elements, that conform to the exact
boundary yielding an exact description of the domain. A short review of using
curved elements and interpolated boundary conditions is presented in the next
section. Some of these ideas will serve as a benchmark against which to com-
pare the methods proposed in this paper. A more recently introduced method
called the Isogeometric analysis of Hughes et al. in [23] is a new effort in a
similar direction. The emphasis is once again, on accurately representing the
boundary, which in this case is achieved using basis functions generated from
NURBS.

Immersed boundary methods, in contrast to the standard finite element method,
approximate the complex domain using a sequence of simpler meshes instead
of attempting to represent it exactly. First proposed by Peskin in [33], it has
been particularly useful in the context of fluid-structure interaction problems
in which using Cartesian grids simplifies computations significantly. Most IB
methods are distinguished by how they address two main issues. The first one
is determining the domain of the problem in a possibly nonconforming grid.
Almost always, the domain is only determined approximately. As a result, the
boundary of the problem is now only an approximation of the exact one. The
second issue then deals with prescribing boundary conditions on the approxi-
mate boundary. The boundary conditions imposed often leads to suboptimal
convergence of the solution because of a phenomenon called boundary lock-
ing. Intuitively, this results from the solution space being over-constrained
due to imposing Dirichlet boundary conditions strongly. There are two sim-
ple ways to resolve this issue- either impose boundary conditions weakly or
enrich the solution space, at least near the boundary. Methods which use a
forcing approach, either continuous [21,33,25,22] or discrete, and the ghost-
fluid methods [16,18,28] belong to the former category. Numerical accuracy
when using a forcing method relies on a good choice of distribution func-
tions to regularize the Dirac delta functions on the boundary, which arise
naturally in the formulation. This idea can be interpreted as using a penalty
method to prescribe values on the boundary, and expectedly, it can result in
a stiff system of equations. The ghost-cell or ghost-fluid method on the other
hand uses interpolations in cells outside the domain to implicitly incorporate
boundary conditions. Methods that use a local mesh refinement near the ap-
proximate boundary as well as DG-IBM fall into the latter category, though
for different reasons. Local remeshing [17] increases the number of nodes on
the boundary, possibly making the approximate boundary conform with the
exact one, and hence avoids over constraining the system of equations when
strictly imposing Dirichlet boundary conditions. DG-IBM on the other hand,
avoids adding/moving nodes on the boundary, which is tedious and difficult

3



to code, especially in 3D problems. Instead, the solution space is enriched by
permitting discontinuities in the solution where it is needed most- near the
boundary.

The previous two numerical methods relied on representing complex domains
using meshes. A significant chunk of effort in these numerical methods is di-
rected towards using a mesh that is optimal for a given geometry- balancing
accuracy of the domain representation and the computational resources avail-
able. Meshless methods[5,7] bypass this arduous task by relying on the use
of points to represent the domain, which is far easier than creating a bound-
ary fitting mesh for the domain (as in conventional finite element methods)
or approximating it in a non-conforming mesh (as done in immersed bound-
ary methods). Meshless methods are thus an attractive alternative for prob-
lems on complex domains, but as we highlight here, there are other issues
to worry about. While the domain is easily represented, the choice of basis
functions to create the solution space gives rise to computational difficulties.
Basis functions no longer have compact support, unlike the “delta” prop-
erty of the basis functions used in conventional finite element methods. This
results in a dense stiffness matrix which makes handling large problems com-
putationally expensive. The use of basis functions with non compact support
poses difficulties in imposing boundary conditions as well- which are imposed
as constraints rather than directly. Lagrange multipliers[3,6,20] and penalty
methods[4] are commonly used for this purpose, though they come with their
own share of troubles. It is a tricky business to select the right space of La-
grange multipliers[31]- while a degenerate system of equations may result from
using too large a space, the other extreme may not impose boundary condi-
tions well. On the other hand, choosing the value of the penalty parameter
is an obvious problem while imposing boundary conditions using penalty. Of-
ten, numerous trial simulations are necessary to even determine an optimal
range of the penalty parameter required; and the price of using penalty us fur-
ther inflated by the increasing stiffness of the system of equations. Nitsche’s
method[24,5,39], which uses a modified weak form of the problem to impose
boundary conditions, is used both in meshless as well as standard finite ele-
ment methods. Since much of the problems in imposing boundary conditions
arises because of the non compact support of the basis functions (especially
near the boundary), it makes sense to locally modify the interpolation scheme
near the boundary as done in [46]. The result is a meshless method that has
finite elements on the boundary (which have the “delta” property), making it
far simpler to impose boundary conditions. Reference [19] provides a more de-
tailed survey of methods to impose boundary conditions in meshless methods.
The interested reader is also directed to reference [32] for an account of the
natural element method that shares many features with meshless methods.

In the following section, a more detailed review of using isoparametric el-
ements for curved domains is presented. As mentioned before, DG-IBM is
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tailored to satisfy an asymptotic consistency condition, which guarantees the
convergence properties of the method. The details of this condition and a sim-
ple proof showing the convergence of the numerical solution computed using
a consistent method is presented in section 3. The most important part of
the paper is section 4, which describes the DG-IBM formulation- it describes
how the domain is approximated in a non-conforming mesh, the construction
of the solution space and the numerical extension method for extending the
given boundary conditions to the approximate boundary. The formulation is
explicitly written down for the linear and nonlinear elasticity problem. While
the rigorous proofs to show that the method constructed here is asymptot-
ically consistent will be presented in a companion paper, in this article, we
focus on learning from examples. In section 5, using two and three dimen-
sional examples in elasticity, we investigate the convergence properties of the
proposed formulation for various combinations of nonhomogeneous Dirichlet
and Neumann boundary conditions. Also presented are two novel applications
in nonlinear elasticity- simulation of the compression of a femur bone and the
deformation of an image based geometry.

2 The finite element method for domains with curved boundaries

A simple and well studied second order boundary value problem is the Dirich-
let problem on a two dimensional domain Ω – the Poisson equation with
homogeneous Dirichlet boundary conditions on the smooth boundary Γ of Ω.
The simplest approach with the finite element method is to use a polygonal
approximation(Ωh) of the domain with vertices lying on Γ. A triangulation
of Ωh, serves as the mesh for the standard finite element method using, for
example, linear triangle elements (see figure 1). Here, h is a mesh parameter
such that as h→ 0, Ωh and Γh approach Ω and Γ respectively. The numerical
solution is determined by imposing boundary conditions at the nodes that
lie on Γ and solving a set of linear equations. In the skin region Ω \ Ωh, the
solution is extended by zero. The numerical solution is known to converge to
the exact solution with O(h2) in the L2 norm on Ω. While the solution thus
computed satisfies the boundary condition on Γ (in addition to being zero on
Γh), it does not satisfy the Poisson equation everywhere in Ω- particularly
in the skin region. This was studied by Strang in his article[40] aptly titled
“Change in solution due to change in domain” and by Thomée in [42]. Their
analysis shows that the O(h2) convergence is to be expected using linear ele-
ments. But more crucially, they showed that the rate of convergence does not
improve with using higher order elements. That Γh was always at a distance
that is O(h2) away from Γ is shown to be the limiting factor.

Use of Curved Elements: The solution then lies in in better approximating
the boundary. This can be achieved by using meshes that conform to the exact
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Fig. 1. Shown on the left is a polygonal approximation (Ωh) of a circular domain.
The boundary Γ is approximated by straight segments. The distance between Γh
and Γ is O(h2). On the right, the idea of using curved elements is depicted. The
element Ẽ with straight edges is transformed into a pie-shaped element E whose
curved edge now conforms with the exact boundary.

boundary. This is depicted in figure 1 where triangles along the boundary
are pie-shaped with curved edges; the idea is the same for three dimensional
domains. A systematic way to do this and still retain the simplicity of using
polygonal meshes is as follows. As described in the previous paragraph, a
triangulation T̃h is constructed over a polygonal/polyhedral approximation Ω̃h

of Ω. A mesh Th that conforms to the boundary Γ is obtained by transforming
elements of T̃h that have edges(faces) whose vertices lie on Γ, into curved
elements. The remaining edges/faces and elements remain unaltered (straight).
As described in [26], the mapping from straight to curved elements can be
specified using the charts for the boundary Γ, assuming that there are a finite
number of them. By using such a map, the problem is thus mapped to a
polygonal domain whose discretization is the mesh T̃h.

When the map from straight to curved elements has the same order as the
element (i.e. the degree of the polynomial basis functions), the elements are
called isoparametric. Since the convergence rate of the numerical solution is
limited by the smaller of the order of the element and the order of approxima-
tion of the boundary, isoparametric elements are a common choice for general
curved domains.

Interpolated Boundary Conditions: Both homogeneous and non-homogeneous
Dirichlet boundary conditions are easily imposed because the nodal basis func-
tions still satisfy the delta property- prescribed values are simply imposed at
nodes that lie on Γ. However, the computed solution may not equal the pre-
scribed values everywhere on Γ, and in general, agreement may be only at a
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finite number of points. This translates to using interpolated boundary con-
ditions; i.e., imposing as boundary condition, a function in the finite element
space which equals the prescribed function at nodes that lie on Γ. The impor-
tance of such an approximation and the consequent error estimates is discussed
in [37].

An alternative method for imposing non-homogeneous Dirichlet boundary con-
ditions is given by Bramble and King in [12]. The boundary conditions on Γh
are defined as a projection of the boundary condition defined in Γ. In con-
junction with a multigrid approach, optimal convergence rates are achieved.
In Reference [42], a fourth order accurate multigrid scheme was devised using
a polygonal approximation with linear elements, in contrast to the second or-
der accuracy mentioned previously. Though such multigrid approaches can be
used to improve accuracy of numerical schemes, we will not adopt it in this
paper.

3 Designing the method- Asymptotic Consistency

Before we outline our method, we pause for a brief discussion that will help
constructing it. Our objective is to numerically approximate the exact solution
of a boundary value problem on a sequence of easy to discretize domains,
none of which might be the exact one. However, by choosing the approximate
domains and function spaces wisely, we will attempt to get closer to the exact
solution, and at the optimal rate. While the actual approximation schemes
that we use are described in later sections, we discuss some ideas that will aid
in constructing them.

Consider the weak form of a boundary value problem to find a function u :
Ω 7→ R in a Banach space (V, ‖ · ‖), such that

a(u, v) = F (v) ∀ v ∈ V∂, (1)

along with Dirichlet and Neumann boundary conditions

u = ū on Γd and (2)

∇u · n = g on Γτ , (3)

where V∂ = {v ∈ V : v|Γd = 0}, a is a bilinear form and F is a linear operator.
We note that the Neumann boundary condition is embedded in the definition
of F . We assume that Γd ∪ Γτ = ∂Ω, Γd ∩ Γτ = ∅ and that this problem has a
unique solution.

While the conventional finite element methods (like described in the previous
section) attempt to solve this problem by representing the domain as accu-
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rately as possible, we tread a slightly different path.
We consider a sequence of domains, Ωh, parameterized by h (for example the
mesh size), to approximate Ω such that as h ↓ 0, Ωh is a better and better
representation of Ω. Indeed, for a given small value of h, we would like to
quantify how well Ωh approximates Ω. Such an approximation can be quite
handy for complex geometries, for not only can an exact representation be too
expensive, it may also be unncessary at times. For example, the image based
geometries and a femur bone model presented later in the paper, are already
approximate representations of the exact domain and attempting to represent
it accurately may not be a fruitful exercise.

Before describing the discrete problem, we construct the necessary function
spaces. Let Vh be a finite dimensional space of functions on (Ω ∪ Ωh) and
Vh,Ω = {χΩvh : vh ∈ Vh}, χΩ being the characteristic function of the set Ω.
We define a norm ||| · |||h (possibly depending on h) for (V + Vh,Ω) such that
∀v ∈ V , |||v|||h = ‖v‖. We assume that we can define a norm ||| · |||Vh on Vh such
that ∀vh ∈ Vh, |||vh|||Vh = |||χΩvh|||h. This naturally constructs a linear restriction
operator (·)r : Vh 7→ Vh,Ω serving as a bijection between Vh and Vh,Ω.

Additionally, we assume that we can define two continuous operators- an ap-
proximation operator Πh : V 7→ Vh and an extension operator (·)e on V (c.f.
[1]) that extends the definition of functions in V to all of Rn. By requiring
that for v ∈ V , ve|Ω = v, the extension operator enables us to extend the
definition of functions on Ω to ones on Ω∪Ωh. For any v ∈ V , we require that
the approximation operator satisfy

|||v − (Πhv)r|||h < Ch|v|V , (4)

where | · |V is an appropriate seminorm on V .

The discrete problem is to find uh ∈ (V ∂
h + Πhū) such that

ah(uh, vh) = Fh(vh) ∀vh ∈ V ∂
h , (5)

where V ∂
h = {vh ∈ Vh : vh|Γd

h
= 0} is the space of admissible test functions, and

ah : [V e|Ωh + Vh]
2 7→ R, Fh : Vh 7→ R are continuous and satisfy an asymptotic

consistency condition

|ah(ue, vh)− Fh(vh)| ≤ Ch|u|V |||vh|||Vh ∀ vh ∈ V ∂
h . (6)

Further, we assume that ah is coercive in Vh, with coercivity constant γ in-
dependent of h. The importance of the consistency condition cannot be over
emphasized. As shown below, it guarantees the approximation properties of
the numerical solution. Embedded in this condition are details of how well
Ωh approximates Ω, the choice of the subsets of ∂(Ω ∪ Ωh) on which to im-
pose Dirichlet and Neumann boundary conditions as well as what to impose.
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The Dirichlet boundary condition on Γdh is strictly imposed as Πhū while the
Neumann boundary condition is implicitly defined in the choice of Fh. Notice
that there is considerable freedom in choosing the Dirichlet and Neumann
boundary conditions- the only requirement to be satisfied is the consistency
condition. For example, while deciding the Neumann boundary conditions, we
observe that for any Lh ∈ V ∗h with ‖Lh‖V ∗

h
< Ch, F̃h = Fh + Lh would still

satisfy the consistency condition.

With the consistency condition as above, we claim that |||u− urh|||h < Ch(|u|V +
|u− ū|V ). Let w = u− ū and wh = uh − Πhū.

|||u− urh|||h = |||(u− ū)− (urh − (Πhū)r) + (ū− (Πhū)r)|||h, (7)

≤ |||w − wrh|||h + |||ū− (Πhū)r|||h, (8)

≤ |||w − (Πhw)r|||h + |||(Πhw)r − wrh|||h + |||ū− (Πhū)r|||h. (9)

We investigate each term in the above inequality. In what follows, C will be a
positive constant independent of h and can change from one line to the next.
By definition of Πh,

|||w − (Πhw)r|||h < Ch|w|V and (10)

|||ū− (Πhū)r|||h < Ch|ū|V . (11)

We also have

|||(Πhw)r − wrh|||h = |||(Πhw − wh)r|||h, (12)

< C|||Πhw − wh|||Vh (since (·)r bounded). (13)

We can bound |||Πhw − wh|||Vh using the asymptotic consistency condition as
follows:

|ah(ue, vh)− Fh(vh)| < Ch|u|V |||vh|||Vh , (14)

i.e., |ah(we + ūe, vh)− ah(wh + Πhū, vh)| < Ch|u|V |||vh|||Vh . (15)

Hence,

|ah(we − wh, vh)| < Ch|u|V |||vh|||Vh + |ah(ūe − Πhū, vh)|,
≤ Ch|u|V |||vh|||Vh +M |||ūe − Πhū|||Vh|||vh|||Vh , (continuity of ah)

≤ Ch|u|V |||vh|||Vh +MCh|u|V |||vh|||Vh ,
≤ Ch|u|V |||vh|||Vh , (16)

where the constant C can change from one line to the next. From the coercivity
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of ah on Vh, we have

γ|||Πhw − wh|||2Vh ≤ ah(Πhw − wh,Πhw − wh)
= ah(Πhw − we,Πhw − wh) + ah(w

e − wh,Πhw − wh)
≤M |||Πhw − we|||Vh|||Πhw − wh|||Vh + Ch|w|V |||Πhw − wh|||Vh .

(17)

Thus, we have

γ|||Πhw − wh|||Vh ≤M |||Πhw − we|||Vh + Ch|w|V
⇒ |||Πhw − wh|||Vh ≤ Ch|w|V

⇒ |||(Πhw)r − (wh)
r|||h ≤ Ch|w|V . (18)

And hence,

|||u− urh|||h ≤ |||w − (Πhw)r|||h + |||(Πhw)r − wrh|||h + |||ū− (Πhū)r|||h
≤ Ch|w|V + Ch|w|V + Ch|ū|V from eq.(10,11,18)

≤ 2Ch(|u|V + |u− ū|V ) (19)

To summarize in a nutshell, given a problem of finding u on Ω, we can carefully
define an extended problem on Ω ∪ Ωh and solve for uh. The restriction of uh
on Ω, namely urh is a good approximation of u.

4 DG-IBM Formulation with extended Boundary Conditions

In this section, we outline the DG-IBM formulation with linear elements to
solve for an unknown scalar field, keeping in line with the consistency con-
dition given in the previous section and with the ideas introduced in [27].
However, the framework presented next is a little different from what was
described above. For example, Vh will be a space of functions defined on Ωh

instead of Ωh∪Ωh. Consequently, the approximate solution is determined only
on the domain Ωh. In a later article, we will rigorously show when and how
the formulation presented here is equivalent to the one described above. This
formulation is only a specific example from the class of asymptotically con-
sistent methods- but as will be evident from the numerical examples, it is a
particularly simple and useful one.

4.1 Meshes

Let Ω be an open domain in Rn with, for simplicity, a smooth boundary Γ =
∂Ω (e.g., C0 and piecewise C1). We assume that B ⊇ Ω, is an open domain,
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∈ Qh

∈ Rh

∈ T h \ (Rh ∪Qh)

B

Ω

Fig. 2. The problem domain Ω is immersed in an encompassing and easy to discretize
domain B. The triangulation on B, which is a rectangle here, is denoted by Th. The
elements of Th cut by the boundary Γ are denoted by Qh and the elements that lie
entirely in Ω are denoted by Rh.

conveniently chosen such that it is trivial to construct a family of quasiuniform
(see [13]) conforming meshes Th over it. The parameter h is the mesh size. For
definiteness, we shall assume that Th is a triangulation of n-simplices. An
element E in Th is a closed n−simplex with an orientable boundary ΓE and
unit outward normal NE. Most ideas described here are directly applicable to
other types of discretizations, such as quads or hexahedra.

As depicted in figure 2, we define two submeshes or collections of elements

Rh =
{
E element ∈ Th :

o

E ⊂ Ω
}

(20)

Qh =
{
E element ∈ Th :

o

E ∩ Γ 6= ∅
}
, (21)

which are the sets of elements that are completely contained in Ω and the set
of elements that are intersected by the boundary.

4.2 Approximation of the domain

Let φ : B 7→ R be a H1(B) function such that φ < 0 in Ω, φ = 0 on Γ and
φ > 0 in B \ Ω. The boundary of Ω is thus the zero level-set of φ, and so φ is
termed the level-set function. Next, let

Φh = {vh ∈ H1 (B) : vh |E∈ P1 (E) ∀E ∈ Th}, (22)
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where, more generally, Pk (E) denotes the space of polynomials of degree less
or equal than k ∈ N. Let φh ∈ Φh be the function that interpolates φ at every
node in Th. The approximate domain Ωh is defined as

Ωh = {x ∈ B : φh(x) < 0} , (23)

and let Γh = ∂Ωh denote its boundary.

By adopting piecewise linear functions to interpolate φ, the zero level set of
φh is contained within elements in Qh. The resulting approximate boundary is
then simple to compute– it is composed of straight segments (piecewise linears)
in two dimensions and planar polygons in the three dimensional case. Thus
Γh provides nearly exact approximations of polyhedral boundaries and O (h2)
approximation of smooth curved boundaries. Additionally, efficient quadrature
rules over the resulting sections are easy to construct.

For convenience, and following a somewhat standard practice in level-set meth-
ods, we designate φ to be the signed distance function to Γ, defined as

φ(x) =

−d(x,Γ) if x ∈ Ω,

d(x,Γ) if x /∈ Ω.
(24)

where

d(x,Γ) = inf
y∈Γ
‖x− y‖, (25)

‖ · ‖ being the Euclidean distance in Rn. As defined, the function φ has the
property that it is positive in the interior of Ω, identically zero on Γ and
negative in B \ Ω̄.

Fast techniques to compute distance functions, particularly on Cartesian grids
are discussed in [29,30,43]. Alternative methods such asR- functions ([38,34,35,44])
which define Ω implicitly using boolean operations over easy to define primi-
tives or surface fitting methods [45,14,8] which construct a smooth interpolant
of the boundary, are equally suitable.

Note that the construction of the interpolant φh only requires the evaluation
of φ at nodal locations. To prevent the appearance of sections of elements cut
by the boundary that are either very small or have a bad aspect ratio, we
choose the nodal values for φh as follows

φh(xa) =

φ(xa) if |φ(xa)| > CTOL

L
h2

0 otherwise,
(26)

where CTOL is a small constant and L is a characteristic dimension of Ω. In
our examples CTOL = 10−6 and L = 1. By performing this correction in the
construction of the interpolant φh, the location of the approximate boundary
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is guaranteed to either cross through the nodes or be away from them by a
distance that scales with h2, so as to preserve the quadratic convergence of
the method.

4.3 Approximation of functions

The space of solutions on Qh ∪Rh, is defined as the space Vh,

Vh = VR × VQ =
{
vh ∈ L2(Qh ∪Rh) : vh|Qh ∈ VQ, vh|Rh ∈ VR

}
, (27)

where

VR = {vh ∈ H1 (Rh) : vh|E ∈ Pk (E) ∀E ∈ Rh} (28)

VQ = {vh ∈ L2 (Qh) : vh|E ∈ Pk (E) ∀E ∈ Qh}. (29)

As a result, functions in Vh are continuous across faces shared between any
two elements in Rh, but are allowed to be discontinuous across the boundary
of any element in Qh, including those faces shared with elements in Rh.

Discontinuous Galerkin Approximation: Since functions in Vh are per-
mitted to contain discontinuities, we define the derivatives for these functions
using a discontinuous-Galerkin approximation. Let Mh be the submesh of
Th containing all the elements across whose boundaries vh ∈ Vh may have
discontinuities. Consequently, Mh contains all elements of Qh and those el-
ements of Rh that share at least one face with an element in Qh. Following
the framework introduced by Arnold et al. in [2], the discontinuous Galerkin
method studied here utilizes the Bassi-Rebay numerical fluxes to approximate
the space of derivatives Wd

h, of functions that may be discontinuous across
element boundaries.

Wd
h = {wh ∈ L2 (Mh)

n ; wh|E ∈ (Pd (E))n ∀E ∈Mh}, (30)

where d ∈ N. Functions in Wd
h are vector valued with n components, n being

the number of partial derivatives of functions in Vh.

For elements E ∈Mh, define the jump [[·]] and average {·} across a face e /∈ Γh
for functions in Vh and Wd

h as

[[vh]] = v−h − v+
h , [[wh]] = w−h −w+

h , (31)

{vh} =
1

2

(
v−h + v+

h

)
, {wh} =

1

2

(
w−h + w+

h

)
, (32)

where the superscripts + and − correspond to evaluating functions on either
side of e, + being on the side of the outward normal to e. For faces e ∈ Γh,
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we only need to define [[vh]] = vh and {wh} = wh. The space Wd
h may be

constructed with polynomials of degree d different from k, that was used to
build Vh. However, if k ≤ d + 1, it is possible to use static condensation to
define a linear operator we call DDG : Vh 7→ Wd

h, which is defined on every
element E ∈ Th as

DDGvh|E =

∇vh|E E /∈Mh

∇vh|E + RE([[vh]]) E ∈Mh.
(33)

The operator DDG provides the discontinuous Galerkin derivative while the
lifting operator R : L2 (ΓQh) 7→ Wd

h, which restricts to RE in element E,
assigns to any function v ∈ L2 (ΓQh), a unique element of Wd

h as∫
wM∩Ωh

R (v) ·whdΩ = −
∫

ΓQ
v{wh} · n dΓ ∀ wh ∈Wd

h. (34)

More succinctly, if Na and Lb are the bases chosen for functions in Vh and Wd
h

restricted to E, then for any v ∈ Vh,

RE(vaNa) = vaR
E(Na) (35)

= vaeiLbR
E
abi (36)

From an implementation perspective, the matrix for the lifting operators (Rabi)
for each element can be precomputed and used to computed the DG derivative
instead of looping over each face every time a derivative needs to be computed.
A more detailed discussion of this DG approximation and implementation can
be found in [41].

4.4 Extension of Boundary Conditions

Let Dirichlet and Neumann boundary condition be specified as f : Γd 7→ R
and τ : Γτ 7→ R respectively, where Γd and Γτ are subsets of Γ such that
Γd∩Γτ = ∅ and Γd∪Γτ = Γ. To define boundary conditions on Γh, we address
two issues. First,we define the subsets Γdh and Γτh of Γh on which to impose
Dirichlet and Neumann boundary conditions respectively. Second, we define
functions f̃ and τ̃ to impose as Dirichlet and Neumann boundary conditions
on these two subsets.

The set Γdh is defined as the union of pieces of the approximate boundary
belonging to elements in Qh which are not intersected by Γτ , i.e.,

Γdh =
⋃

E∈Qh:Γτ∩E=∅
ΓEh , (37)

where ΓEh is the abbreviation for Γh ∩ E.
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Fig. 3. Illustration of the idea of a numerical extension for a function for triangular
and tetrahedral meshes. The restriction of the approximate boundary to each ele-
ment, ΓEh is assumed to be a straight segment in 2D (on the left) or a planar section
in 3D (on the right). The values of the function f at the intersection points of Γ
and the edges of the element are transported to corresponding points on ΓEh .

Consequently, we have that Γdh = Γh if Γd = Γ. Neumann boundary conditions
are imposed on the remaining part of Γh, i.e.,

Γτh = Γh \ Γdh. (38)

Hence, Γdh ∪ Γτh = Γh analogous to having Γd ∪ Γτ = Γ.

We can now define boundary conditions on Γh by extending the functions f
and τ to the sets Γdh and Γτh respectively. One such extension method, which
we term as the Numerical Extension is described here.

4.4.1 Numerical Extension of Dirichlet Boundary Conditions

Given the function f : Γd 7→ R, we define a new function f̃ : Γdh 7→ R which
will serve as the Dirichlet boundary condition for the problem on Ωh. We
define f̃ piecewise in each element by defining f̃ on every non-empty set Γd,Eh .
Note that ΓEh is a linear segment for n = 2 and a planar section for n = 3. Let
ei denote the ith edge of E, labelled sequentially. Define f̃ |Γd,E

h
to be the linear

polynomial on Γd,Eh whose value at the point Γd,Eh ∩ ei is prescribed to be the
value of f at Γdh∩ei. Figure 3 illustrates this idea as one in which the values of
f at the intersection point of Γd and edge ei is transported as constant along
ei to define the value of f̃ at the intersection point of Γd,Eh and ei.

Note that because of the way Γdh was defined, Γd,Eh is non-empty only if Γd,E is
non-empty. This ensures that the above construction of f̃ makes sense because
f is defined at Γd,E ∩ ei whenever Γd,Eh ∩ ei is non-empty. For the 3D case, an
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additional detail is required. As shown in Figure 22, ΓEh , and hence Γd,Eh , is
either a triangle or a quadrilateral. If Γd,Eh is a triangle, f̃ is constructed as
discussed so far. However, if Γd,Eh is a quadrilateral, it may not be possible
to construct a linear function f̃ |Γd,E

h
that equals the values of f transported

along all four edges. In such a case, we determine f̃ |Γd,E
h

using the values of

f on the three edges whose intersection points with Γd,Eh forms the largest
triangle in Γd,Eh . Trials with numerical experiments showed that this is should
be preferred over an arbitrary choice of three edges, particularly because the
aspect ratio of the quadrilateral Γd,Eh can be large.

4.4.2 Numerical Extension of Neumann Boundary Conditions

The definition of τ̃ : Γτh 7→ R using τ is identical to the definition of f̃ using
f barring for the following detail. The approximate Neumman boundary may
intersect an edge even though the exact one does not, i.e., Γτ,E ∩ ei may be
empty even though Γτ,Eh ∩ ei is not. Therefore, we need to define the value of
τ̃ at Γτ,Eh ∩ ei even if τ is not defined at Γτ,E ∩ ei. On these edges, we use an
average of the values of τ̃ on the edges where it is known. Such an average
may be needed only in a few elements- those which are intersected by both
the Dirichlet and Neumann boundary (i.e., Γd&Γτ ).

Remark 1: A simple interpretation of the numerical extension method, which
may perhaps aid in generalizing it for higher order elements, is as follows.
Within each element, a bijection α : ΓE 7→ ΓEh between the exact and approx-
imate boundaries can be determined, reminiscent of the use of isoparametric
elements for curved domains. The extended boundary condition is then an
approximation of the function (f ◦ α) using a linear polynomial. In the 2D
case as well as in the 3D case with ΓEh being a triangle, f̃ |ΓE

h
is simply the

linear interpolant of the function f ◦α. Note that for this construction of f̃ , it
was not necessary to explicitly determine α, unlike what is needed when using
curved elements described in section 2.

Remark 2: Needless to say, the numerical extension method is possibly one
among a whole class of methods that can be used to define boundary condi-
tions on an approximate boundary using the prescribed values on the exact
boundary. An obvious and perhaps widely used one is what we will henceforth
refer to as an analytical extension. Given f : Γd 7→ R, the analytical extension
of f , is a sufficiently smooth function f̃ that is defined on an open set in Rn

containing Γd ∪ Γdh and is such that f̃ |Γd = f . The Dirichlet boundary condi-
tion on Γdh can be simply defined as f̃ |Γd

h
. An identical discussion holds for the

Neumann boundary condition as well. (Alternately, f̃(x) for x ∈ Γdh can be
defined to be the value of f at the point on Γd closest to x.) It is easy to see
that the numerical extension did indeed define one such function even though
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the extension was explicitly defined only on Γdh.
Another point worth noting is that often, an analytical extension for f relies
on f being given as an analytical expression. This may not always be the case.
For example, the boundary conditions may be computed from a companion
simulation and hence f may be known only at a few points lying on Γd. In such
instances, the numerical extension is clearly the more favorable one. Nonethe-
less, owing to its simplicity and common usage, the analytical extension is
an important one and its suitability for the proposed DG-IBM formulation
needs to be evaluated. It is therefore thoroughly investigated along with the
numerical extension method using numerical examples in section 5.

The discussion thus far is sufficient to completely define the bilinear operator
ah(·, ·) and the linear operator Fh(·) for a given boundary value problem. In
this article, we are interested in using DG-IBM for elasticity problems and
hence, these operators are explicitly written out for this particular case.

4.5 The Elasticity Problem

We consider Ω ⊂ Rn to be the reference configuration of a body undergoing a
quasistatic deformation upon the action of external loads. We are interested
in finding the deformation mapping ϕ : Ω 7→ Rn that maps the reference
configuration Ω to its deformed configuration. The body is assumed to be
simple and elastic, i.e., made of materials for which there exists a strain energy
density function W (X,F) : Ω×Rn×n 7→ R satisfying the postulate of material
frame indifference. Here, F = ∇ϕ (X) is the deformation gradient at point
X and the material frame indifference postulate states that there exists a
function Ŵ such that Ŵ (X,C) = W (X,F), where C = FTF is the Cauchy-
Green deformation tensor. The constitutive relation for these materials follows
as P = ∂W/∂F.

We will consider a class of problems in which the deformation mapping of
the elastic body is prescribed on a nonempty part of the boundary Γd ⊆ ∂Ω.
Therein, we shall request

ϕ = ϕ on Γd. (39)

The rest of the boundary, Γτ = Γ\Γd, is subjected to external tractions, given
by the function T : Γτ 7→ Rd.

Configurations of mechanical equilibrium are stationary points of the potential
energy functional

I[ϕ] =
∫

Ω
W (∇ϕ) dΩ−

∫
Γτ

T ·ϕ dΓ, (40)
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from which the following Euler-Lagrange equations are obtained

div [P (∇ϕ (X))] = 0 in Ω

P (∇ϕ (X)) ·N = T on Γτ , (41)

where N is the unit outward normal to Γτ .

4.6 The Discrete Elasticity Problem

To determine a deformation mapping that satisfies the equilibrium and bound-
ary conditions given above, we consider the corresponding weak form of the
problem which is to find ϕ ∈ V n (each component of ϕ belongs to V ) such
that

a(ϕ,v) = F (v) ∀ v ∈ V n
∂ and (42)

ϕ|Γd = ϕ. (43)

where

a(ϕ,v) =
∫

Ω

∂W

∂F
(X,∇ϕ) : ∇v dΩ, (44)

F (v) =
∫

Γτ
T · v dΓ and (45)

V∂ = {v ∈ V : v|Γd = 0}. (46)

The corresponding discrete variational principle for the DG-IBM framework
is to find a stationary point ϕh ∈ V n

h of the discrete energy functional

Ih[ϕh] =
∑
E∈Th

∫
E∩Ωh

W (X,DDG(ϕh)) dV −
∫

Γτ
h

T̃ ·ϕh dS, (47)

where T̃ is the extension of the function T. The discrete problem then is to
find ϕh ∈ V n

h that satisfies the discrete Euler-Lagrange equation

< δIh[ϕh],vh >= 0 ∀ vh ∈ V n
h,∂, (48)

where Vh,∂ = {vh ∈ Vh : vh|Γd
h

= 0}. This translates to finding ϕh ∈ V n
h such

that

∑
E∈Th

∫
E∩Ωh

∂W

∂F
(X,DDGϕh) : DDGvh dV −

∫
Γτ
h

T̃ · vh dS = 0 ∀ vh ∈ V n
h,∂,

(49)

ϕh|Γdh = ϕ̃h. (50)
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Next, we explicitly write down the bilinear form ah(·, ·) and the linear form
Fh(·) for linear and nonlinear elasticity.

Linear Elasticity: For a linear elastic material, the strain energy density is
of the form

W = ε : C : ε, (51)

where the infinitesimal strain field ε is the symmetric gradient of the displace-
ment field, i.e., ε = sym(F− I) with sym(F) = (F + FT)/2. The fourth order
elasticity tensor C = ∂W

∂(FTF)
has major and minor symmetries, is assumed

to be constant and positive definite. The classical relationship between the
Cauchy stress, denoted by σ and the strain field is derived as

σ = Cε. (52)

Further, if the material is assumed to be isotropic, the elasticity tensor reduces
to

CiJkL = (λ+
2µ

3
)δiJδkL + µ

(
δikδJL + δiLδJk − 2

3
δiJδkL

)
, (53)

where λ and µ are material parameters called the Lamé constants. For such a
material, the stress-strain relationship reduces to

σ = λtr(ε)I + 2µε. (54)

The discrete problem in 49 translates to finding ϕh ∈ V n
h such that

ah(ϕh,vh) = Fh(vh) ∀ vh ∈ Vh,∂ and (55)

ϕh|Γdh = ϕ̃, (56)

where

ah(ϕh,vh) =
∑
E∈Th

∫
E∩Ωh

DDG(ϕh) : C : DDG(vh) dΩh, and (57)

Fh(vh) =
∫

Γτ
h

T̃ · vh dΓh. (58)

Nonlinear Elasticity: For clarity and for later use in section 5, we consider
a specific example, namely a compressible Neohookean material. The strain
energy density for this material is given by

W (X,F) =
λ

2
log (det(F))2 +

µ

2
tr(FTF− I), (59)

if det(F) > 0, and W (F) = +∞ otherwise. Here, C = FTF is the right
Cauchy-Green deformation tensor. The first Piola-Kirchhoff stress is computed
as

P(F) = λ log (detF) F−T + µ
(
F− F−T

)
, (60)
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and the symmetric second Piola-Kirchhoff stress tensor as S = 2∂Ŵ
∂C

= F−1P.

The first and second elasticity tensors given by A = ∂2W
∂F2 and C = ∂2Ŵ

∂C2 are
related as

AiJkL = 2CIJKLFiIFkK + SJLδik. (61)

For this material, since 49 is a nonlinear equation in ϕh, we adopt a Newton-
Raphson iteration procedure by considering the linearization of 49 around ϕh
as

< δ2Ih[ϕh],vh,uh > + < δIh[ϕh],vh >= 0 ∀ vh ∈ V n
h,∂, (62)

to find uh that is considered as a displacement field with respect to the con-
figuration of the body Ωh determined by ϕh. This translates to solving for uh
around the point ϕh that satisfies

ah(uh,vh) = Fh(vh) ∀ vh ∈ Vh,∂ and (63)

ϕh|Γdh = ϕ̃, (64)

where ah and Fh are now

ah(uh,vh) =
∑
E∈Th

∫
E∩Ωh

DDGuh : A : DDGvh dV and (65)

Fh(vh) =
∫

Γτ
h

T̃ · vh dS. (66)

This formally completes the description of the DG-IBM formulation for elas-
ticity problems.

5 Numerical Examples

We now present numerical examples in elasticity to examine the DG-IBM for-
mulation with extended boundary conditions. A simple implementation pro-
cedure that is described in the appendix was used for the simulations. The
first example is that of a two dimensional problem to determine the deforma-
tion of an annular ring. It is followed by a three dimensional example to be
solved for the torsion of a thick spherical shell. We use the different extension
methods for displacement and traction boundary conditions to solve for the
deformation mapping. In each case, the rate of convergence of the numerical
solution to the exact one is examined and indeed shown to be optimal. These
examples are followed by two nice applications- we simulate the deformation
of a femur bone sample under compression and the deformation of an image
based geometry. These examples serve to illustrate that the method is indeed
as simple for a complex geometry as it is for a simple one.
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Exact Boundary

Fig. 4. Detail of approximation of the domain for the example of the annular ring.
The initial background mesh Th in which the boundary is immersed is shown in
light gray on the back. Notice that the approximate boundary lies occasionally
inside and/or outside the exact domain, as well as that the exact boundary does
not always intersect the element faces where the approximate one does.

5.1 Deformation of an Annulus

In this example, we are interested in describing the deformation of a thick
walled linear elastic hollow cylinder. Its inner surface is rigidly fixed while non-
zero displacements are prescribed on the outer surface. Assuming plane strain,
the domain of the problem is an annular ring Ω = {X ∈ R2 : r0 < ‖X‖ < r1}
where r0 = 2 and r1 =

√
24.5 units. The boundary conditions imposed on the

deformation mapping are

ϕ(X)|‖X‖=r0 = X and

ϕ(X)|‖X‖=r1 = 6X/5. (67)

Notice that we have Γd = Γ. We choose the enclosing domain B as a square
of dimension 10 units centered at the origin and cover it by an unstructured
mesh of triangles which does not necessarily conform to the annulus. The
elastic material is modeled as isotropic and homogeneous with the material
properties in equation (54) being λ = 1 and µ = 1. The function used to define
the approximate domain Ωh is chosen as the piecewise linear interpolant Iφ
over Th of the (signed distance) function

φ(X) = max{r0 − ‖X‖, ‖X‖ − r1}. (68)
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Fig. 5. Euclidean norm of the displacements at each point of the domain. The mesh
is shown in the X-Y plane, while the value of the norm of the displacement is
displayed on the axis orthogonal to it. Notice the clearly evident discontinuities in
the solution, only along the faces of elements that are intersected by the approximate
boundary. These discontinuities are in fact used to recover the quadratic order of
convergence of the solution.

Recall that the zero level set of Iφ is the approximate boundary Γh. Naturally,
the approximate and exact boundaries may not coincide as shown in the figure
4. This problem has an exact solution of the form

ϕex(X) =

(
A1

‖X‖2
+ A2 + 1

)
X, (69)

where

A1 = −0.956098

A2 = 0.239024.

The traction acting at r = r1 is given by

T(X) = 2
(

(λ+ µ)A2 − µA1

24.5

)
er. (70)
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(a) (b) (c)

Fig. 6. Approximation of the spherical shell using a non-conforming tetrahedral mesh
on a cube. Shown on the left is the exact domain immersed in the non-conforming
mesh followed by the approximate domain that is the zero level set of the interpolant
of the function φ given by equation (72). A section of the approximate solid shown
on the right reveals more details of the approximation.

Figure 4 shows the approximation of the problem domain. For later use, we
denote the approximation of the inner circle r = r0 as Γh, r0 and the outer
circle r = r1 to be Γh, r1.

Figure 5 shows the deformation of the annulus computed using an analytical
extension for the boundary conditions as

ϕ(X)|Γh,r0 = X and

ϕ(X)|Γh,r1 = 6X/5. (71)

In this example since displacements are prescribed on the entire boundary, we
have Γdh = Γh. The deformation reveals the discontinuities in the displacement
field near the boundary that have been utilized to yield a good approximation
of the exact solution.

5.2 Torsion of a Spherical Shell

Next, we are interested in simulating the torsion of a spherical shell, again
made of a linear elastic material with λ = 1 and µ = 1. The domain of the
problem is Ω = {X ∈ R3 : r0 < ‖X‖ < r1} with r0 = 0.75 and r1 = 2.25 units
repectively. The encompassing domain B is a cube of side 5 units centered at
the origin that is meshed using tetrahedral elements. The level set function
φh is the linear interpolant of the signed distance function

φ = max{r0 − ‖X‖, ‖X‖ − r1}. (72)
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(a) (b)

Fig. 7. Deformed configuration of the spherical shell computed using the analytical
extension given in (71). Shown on the right is a section of the deformed configuration
corresponding to the section shown in figure 6(c). The color contours correspond to
the Euclidean norm of the displacement field.

Figure 6 shows the tetrahedral mesh of the domain B and the approximate
domain Ωh.

Non-homogeneous boundary conditions are imposed everywhere on the bound-
ary as

ϕ(X) = X +Ko sin 2ξ eθ on Γr0 ,

ϕ(X) = X +K1 sin 2ξ eθ on Γr1 , (73)

where

K0 = 0.0984375 and

K1 = 0.8859375,

and ξ and θ are the zenith and azimuthal angles measured from the positive
Z and X axis respectively. This problem has an exact solution given by

ϕ(X) = X +Kr2 sin 2ξ eθ (74)

with K = 0.175. The traction acting on the surface r = r1 is computed as

T(X) = Kµr1 sin 2ξ eθ. (75)

The deformation of the spherical shell is shown in figure 7, computed using
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the analytical extension for boundary conditions as

ϕ(X) = X +Ko sin 2ξ eθ on Γh,r0 ,

ϕ(X) = X +K1 sin 2ξ eθ on Γh,r1 . (76)

Though we have computed numerical solutions to the above two examples
using an analytical extension for the boundary conditions, it remains to be
seen if the computed solution converges to the exact one and what the rate
of convergence is, if the solution does converge. This is what we do in the
following section. We first describe how better approximations of the exact
solution can be computed once an extension method for the boundary condi-
tions is adopted. The two examples are modified to include traction boundary
conditions without altering the exact solutions. The error in the numerical so-
lution when computed using the analytical and numerical extension methods
for Dirichlet and Neumann boundary conditions is examined and the order of
convergence determined in each case.

5.3 Convergence

Part of the charm of the proposed method is that more accurate solutions
can be computed by refining the mesh Th. This is quite remarkable since
such a refinement simultaneously improves the approximation of the domain,
the function space and the boundary conditions. In the examples that follow,
triangular meshes are refined by dividing each triangle into four by joining the
midpoints of each side. Similarly tetrahedral meshes are refined by dividing
each tetrahedron into eight by joining midpoints of edges. In either case, the
mesh parameter h is halved at successive refinements. The L2 norm of the
error in the numerical solution is computed over the domain Ω ∩ Ωh as

‖ϕ−ϕh‖0 =
(∫

Ω∩Ωh

(ϕ−ϕh) · (ϕ−ϕh) dV
)1/2

. (77)

The order of convergence is measured as the slope of the error versus h curve.
Since we are using linear elements, we expect the convergence to be quadratic.
Notice that once again, we deviate from the discussion in section 3 where we
proved convergence in the triplenorm. As we will show later, convergence in
the L2 norm and the triplenorm are equivalent for this formulation.

Extension of Dirichlet Boundary Conditions: In both the examples, Dirichlet
boundary conditions were imposed on the entire boundary and consequently,
we had Γdh = Γh. We have already used a simple and perhaps the most nat-
ural analytical extension for Dirichlet boundary conditions to compute the
deformation mapping in the two examples; the analytical expressions for the
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Fig. 8. Rate of convergence of the numerical solution computed using different an-
alytical extensions for the boundary conditions in the examples of the annulus and
the spherical shell. Optimal convergence rates are achieved in both cases.

boundary conditions prescribed on Γr0 and Γr1 were just evaluated at their
respective approximations Γh,r0 and Γh,r1 . For the example of the annulus,
another possible analytical extension would be the following:

ϕh(X) = X on Γh,r0 and

ϕh(X) = X + 0.2r er + sin π(r −
√

24.5) eθ on Γh,r1 . (78)

(79)

Figure 8(a) shows the error as a function of the mesh parameter h. While the
magnitude of the error depends on the choice extension, the rate of convergence
does not. Using both these extensions for the two dimensional example, the
numerical solution converges to the exact one with the optimal rate of two.

Similarly, for the example of the spherical shell, the following functions con-
stitute legitimate analytical extensions

ϕh(X) = X +K0[sin 2ξ eθ + sin(π(r − r0))] eξ on Γh,r0 and

ϕh(X) = X +K1[sin 2ξ eθ + sin(π(r − r1))] eξ on Γh,r1 . (80)

Once again, optimal quadratic convergence in the L2 norm is confirmed by
figure 8(b).

It was remarked in section 4 that we could use as boundary conditions for
points on Γh, the value prescribed at its closest neighbor in Γ. For the example
of the annulus, this corresponds to using as boundary conditions,the analytical
extension

ϕh(X) = X on Γh,r0 and

ϕh(X) = (r1 + 0.2) er on Γh,r1 . (81)

Figure 8(a) shows that this extension also leads to optimal convergence rates.
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Fig. 9. Convergence of solution computed using a numerical extension of Dirich-
let boundary conditions on Γh,r1 for the two and three dimensional example. The
convergence rate is approximately two in both cases.
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Fig. 10. Quadratic convergence of area(/length) of Γh to that of Γ in the annulus and
spherical shell examples. The errors are normalized by the exact areas(/lengths).

In the examples that follow, we will use the natural extension for the Dirichlet
boundary conditions on Γh,r0 as in equations (71) and (76) for the annulus
and the spherical shell respectively, while trying other extensions on Γh,r1 .

We now impose as boundary condition on Γh,r1 , the numerical extension of the
prescribed boundary conditions on Γr1 . Recall that the numerical extension is
a linear function on ΓEh whose value at the point ΓEh ∩ ei equals the prescribed
value at Γ∩ei for edges ei belonging to element E. For the tetrahedral elements,
when the cut element is a wedge of type b, this agreement is over three of the
four edges intersected by Γ and Γh. Figure 9 shows that once again, the solution
converges with the optimal order for both the two and three dimensional
example.

Next, we inspect how the proposed method works when using analytical and
numerical extensions for Neumann boundary conditions. To this end, we con-
sider a new set of boundary conditions- we now impose Dirichlet boundary
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Fig. 11. Quadratic convergence of numerical solution when using analytical exten-
sions for Neumann boundary conditions on Γh,r1 in the annulus and spherical shell
examples.

conditions on Γr0 and Neumann boundary conditions on Γr1 . For the example
of the annulus, the new set of boundary conditions to be satisfied along with
the mechanical equilibrium condition are

ϕ(X) = X on Γr0 and (82)

T(X) = 2((λ+ µ)A2 − µA1/24.5) er on Γr1 . (83)

Similarly, for the example of the spherical shell, we consider the following
boundary conditions

ϕ(X) = X +K0 sin 2ξ eθ on Γr0 and (84)

T(X) = Kµr1 sin 2ξ eθ on Γr1 . (85)

Since the material is linear elastic and the traction imposed on Γr1 is as com-
puted in (70) and (75) for the two examples respectively, the exact solution to
these two problems are unaltered. That the components of the boundary Γr0
and Γr1 are disconnected comes in quite handy because we can independently
choose what kind of boundary conditions to impose on each component. As
indicated earlier, we continue to use the analytical extensions given in (71)
and (76) for the Dirichlet boundary conditions on Γr0 . But before that, we
make sure that the surface area (or length in 2D) of Γh approaches that of Γ
with the right order. Since Γh is the zero level set of the linear interpolant of
φ, we expect the area/length of to converge quadratically, which is indeed the
case as shown in figure 10.

Extension of Neumann Boundary Conditions: While there is a subtle differ-
ence in the definition of Γdh and Γτh (see section 4), the analytical extension
method for traction and displacement boundary conditions are identical. We
consider the following two analytical extensions for the traction on Γh,r1 in the
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Fig. 12. Numerical extension for traction boundary conditions on Γh,r1 . Like when
using an analytical extension, optimal convergence rates are achieved.

example of the annulus

Th(X) = 2[(λ+ µ)A2 − µA1/24.5] er, (86)

Th(X) = 2[(λ+ µ)A2 − µA1/r
2] er + (r1 − r)[(λ+ µ)A2 + µA1/r

2] eθ. (87)

While the first extension simply evaluates the expression in (83) on Γh,r1 , the
second one is quite arbitrary.

For the example of the spherical shell, we consider the following two extensions
for the traction boundary condition on Γh,r1

Th(X) = Kµr1 sin 2ξ eθ, (88)

Th(X) = Kµ[r sin 2ξ eθ − (r1 − r) sin2 ξ] eξ. (89)

Figure 11 shows the ideal convergence solutions computed using the extensions
given above.

Similarly, figure 12 shows the convergence of the computed solution using a
numerical extension for the tractions.

Combination of Dirichlet and Neumann boundary Conditions: We have not
yet dealt with a case in which Dirichlet and Neumann boundary conditions are
prescribed on the same component of Γ. We consider this possibility now. Since
we defined the sets Γdh and Γτh such that their union is Γh and their intersection
has zero mesure, this case should be similar to the ones considered previously.
Of course, because of using extensions of the exact boundary conditions and
since the exact solution is smooth, there isn’t a singularity at the points where
both Neumann and Dirichlet boundary conditions are prescribed.

For the example of the annulus, we consider the following boundary conditions

29



10−4

10−3

10−2

10−1

10−1 100

‖ϕ
−
ϕ
h
‖ 0

h/h0

∼ h2

A.E. 2D
N.E. 2D

(a)

0.02

0.1

0.2

0.15 0.3 0.45

‖ϕ
−
ϕ
h
‖ 0

h/h0

∼ h2

A.E. 3D
N.E. 3D

(b)

Fig. 13. Extensions for a combination of Dirichlet and Neumann boundary condi-
tions on Γr1 . A.E. and N.E. refer to analytical and numerical extensions respectively.
The quadratic convergence in both the examples comes as no surprise.

on Γr1

ϕ(X) = 6X/5 when X · e2 ≤
√

5, (90)

T(X) = 2((λ+ µ)A2 − µA1

24.5
) er when X · e2 >

√
5. (91)

Similarly, for the example of the spherical shell, on Γh,r1 we impose the fol-
lowing boundary conditions

ϕ(X) = X +K1 sin 2ξ eθ when X · e3 ≤
√

1.25, (92)

T(X) = Kµr1 sin 2ξ eθ when X · e3 >
√

1.25. (93)

As analytical extensions for this set of boundary conditions, we evaluate the
prescribed functions on the sets Γdh,r1 and Γτh,r1 for each example. The numer-
ical extension is also defined in a straightforward way. Figure 13 shows the
expected results.

5.4 Stabilization

When using a DG method, the question of stabilization of jumps naturally
comes up. The parameter β in (??) is used to penalize discontinuities in the
solution. Even though we have needed to penalize discontinuities in any of
the simulations presented so far, it would be interesting to see the outcome of
penalizing jumps. This is particularly important because we anticipate that
DG-IBM overcomes boundary locking precisely because discontinuities in the
solution are permitted close to the boundary. Indeed, figure 14(a) corroborates
this understanding by revealing a suboptimal O(h) convergence when using
β = 1e10 in the example of the annulus. A similar situation is reflected in
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Fig. 14. Effect of stabilization on the rate of convergence. Shown on the left are the
convergence curves for the example of the annulus with and without stabilization.
Penalization of jumps results in a loss of an order of convergence. Shown on the
right is error in the numerical solution for the example of the spherical shell for
different values of β. The poor approximation of the solution for large β is reflected
in a larger error and lower reduction in the error upon subsequent refinement.

the 3D example. Figure 14 shows the error for different values of β for two
successive refinements of the mesh. The O(h) convergence for large values of
β is in contrast to the O(h2) convergence for β that is small or zero.

This does not however, rule out the possibility of the method requiring sta-
bilization. Other examples or numerical fluxes for the DG method could be
crafted that require penalization of jumps.

Next, we present two applications that showcase the use DG-IBM for simula-
tions over complex domains in elasticity.

5.5 Numerical Examples with Nonlinear Elastic Materials

Compression of a Femur bone:
As an illustration of the proposed method’s capability to handle realistic

geometries, we consider an example of a femur bone sample. While boundary
fitting meshes are readily available for geometries far more complicated than
the bone model studied here, we simplify the problem significantly by meshing
a parallelopiped enclosing the bone and letting the DG-IBM framework to take
care of the rest.

A common procedure used to convert samples or physical models into a com-
puter/CAD representation is to scan or profile the surface. Surface reconstruc-
tion algorithms may be used to correct for irregularities and represent the
scanned surface as a tessellation. Mesh generation algorithms discretize the
domain enclosed by the tessellation for use in a conventional finite element
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(a) (b) (c)

Fig. 15. Approximation of a femur bone in a non-conforming mesh. Shown on the far
left is the exact surface immersed in a parallelopiped. The parallelopiped is meshed
using tetrahedra. The signed distance function is evaluated only at the nodes of the
mesh. The zero isosurface of the resulting function is shown in the middle. Shown
on the right are the exact and approximated geometry for the head of the bone.

model. But with an immersed boundary method like ours, the last step is not
required; the tessellation of the surface is used to (approximately) reconstruct
the domain in a possibly non-conforming mesh. It has been estimated in [23]
that about 80% of the time in finite element analysis is spent in building a
boundary fitting mesh. In this way, we bypass a time consuming step almost
completely.

The domain of the problem considered here us the region enclosed by a piece-
wise smooth surface obtained by profiling a femur bone model. The surface is
represented as a tessellation of triangles. The enclosing domain B is a paral-
lelopiped that is easily meshed with about 159,100 tetrahedral elements. The
signed distance function to the surface is computed at the nodes of the non-
conforming mesh and an approximation of the geometry constructed in the
usual way. The resulting approximation of the domain is shown in figure 15.
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(a) (b) (c)

Fig. 16. Displacement contours and deformation of the femur bone as a result of
fixing the bottom and imposing downward displacements at the top. The contours
of the norm of the displacement field are shown in (a). The deformed configuration
of the bone is shown in (b) and (c). Note that in (b) and (c), the displacement field
was scale by a factor of two for visualization purposes.

The bone is modeled as a Neohookean material as in equation 60 with both
Lamé constants equal to 1. The bone was rigidly clamped at the bottom (epi-
condiles) and downward displacements imposed at the head. Dirichlet bound-
ary conditions were imposed on the approximate boundary as

ϕh(X) =

X if X · ez ≤ 8 units

X− 1.0 e3 if (X · ez ≥ 40 units.
(94)

The length of the sample (along the Z axis) is 46.6 units while the lateral
dimensions (along the X and Y axes) are 8.8 and 7.4 units. The displacement
imposed at the head is about 2.1% of the length. Figure 16 plots the resulting
deformation showing how the bone has buckled. Once again, we recall that
these discontinuities are introduced by the numerical method even though the
solution is continuous.

Application to Image based Geometries:
Image based geometries are encountered in many situations, perhaps most
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Original Image
450 x 600 pixels

    Compute the distance to the 
boundary,  the level-set function

Interpolate the level-set function
       on the mesh to define  Ω

h

Fig. 17. Step towards the generation of image–based geometries. The starting point
is a black and white image made of pixels, each one of them painted with one of
two colors. A level-set function is constructed by computing the signed distance
of each point to the closest pixel with an opposite color. This function is in turn
interpolated over the background mesh. The zero level set of this interpolant is then
the approximate boundary of the domain. Notice that in the example shown here
some features of the geometry are clearly lost; a finer background mesh is needed.

often in medical imaging. A possibly undesirable feature of extracting ge-
ometries from images is that the boundary is naturally jagged, or pixelated.
These issues can particularly hinder simple mesh generation, particularly with
three dimensional images. However, as we show next, the immersed boundary
method is well suited to handle such cases.

We demonstrate the use of the current method to easily simulate complex
geometries extracted from images. The example consists of simulating the
nonlinear elastic behavior of a two–dimensional object whose geometry is given
by the black pixels of a digital black-and-white image. The image is assumed
to contain rectangular Cartesian grids in which each cell, or pixel, has one of
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Fig. 18. Approximate domains computed with progressively finer meshes obtained
by subdiving each triangle in the first mesh into four similar ones.

two possible values- say 0 for white and 1 for black. The particular geometry
that we consider here is shown in figure 17.

The signed distance to the (jagged) boundary was used as the level set func-
tion. For this example, the distance is positive if the point is outside the
domain, in the white pixel zero at the boundary and negative everywhere else
(points that lie in a black pixel). The approximate domain determined by the
interpolant of the level set function, also shown in figure 17. It is clear that
if the mesh Th over which the level set function is interpolated is much finer
that the pixel size, the domain is naturally smoothed out. In such applications,
highly refined meshes may be unnecessary because most often, the geometry
obtained from the image is already an approximation of the exact one. This
approximation sets the accuracy limit of the simulation.

For this example, the initial background mesh is shown in gray in figure
18. Finer meshes are obtained by simply subdividing each triangle into four
smaller ones. The resulting approximate domains for each of these meshes
along with some of the details and features of the finest mesh are shown in
figure 19

Dirichlet boundary conditions are applied all along the boundary. The dis-
placements along this boundary are interpolated from

ϕh(X) =
X

‖X‖ cos(5θ − π

2
), (95)

where X is the position vector with respect to the lower left corner of the
background mesh and θ is the angle formed by this position vector with the
lower boundary of the same mesh. Once again, we use the same square domain
B employed in the previous 2D simulations. The distances from the image to
the lower boundary and to the left boundary of the background mesh are
approximately 0.68 and 2.14 units respectively.

The material properties are taken to be homogeneous and non-linear elastic
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Fig. 19. Details of the approximate domain for the finest mesh used, before defor-
mation.

Fig. 20. Nonlinear elastic deformations of the image-based geometry. The contour
plot shown is based on the Euclidean norm of the displacement field at each point.
On the left, an enlarged version near the boundary, where the jumps in displace-
ments can be easily observed.

whose constitutive equation is given by equation 60. The resulting elastic
deformation is shown in figure 20. The presence of jumps near the boundary
are also shown therein.

6 Summary

Motivated to create a numerical method to solve boundary value problems
on complex domains, we defined a class of asymptotically consistent meth-
ods which have guaranteed convergence properties. These methods are dis-
tinguished by the fact that there is considerable freedom in the various ap-

36



proximations involved. For example, the domain of the problem may be ap-
proximated in any way as long as |Ω \Ωh|+ |Ωh \Ω| is O(h) or smaller. This
immediately suggests that it should be possible to come up with a simple
asymptotically consistent method, which is precisely what we did.

The DG-IBM framework presented here has the distinguishing feature that
it determines numerical approximations to the exact solution using a simple
mesh, which may not conform to the complex problem domain. This drastically
reduces the cost of creating boundary fitting meshes. In order to ensure that
the numerical solution so computed converges to the exact solution with an
optimal rate, we used specific approximations of the domain, function space
and the boundary conditions. The domain was approximated using the linear
interpolant of a level set function and a discontinuous Galerkin approximation
was used in the elements cut by the boundary to avoid boundary locking. These
ideas were discussed in detail in [27].

However, imposing nonhomogeneous boundary conditions on the approximate
boundary is far from obvious, especially without explicitly compute correspon-
dences between the exact and approximate boundaries (which is required when
using curved elements). We addressed two issues- we defined where and what
to impose as Dirichlet and Neumann boundary conditions on the approxi-
mate boundary. These boundary conditions were defined such that a better
approximation of the problem domain implied a better approximation of the
boundary conditions and hence a more accurate numerical solution.

Using numerous simlations, the proposed numerical extension as well the an-
alytical extension method for boundary conditions were tested with two and
three dimensional problems in elasticity. For a combination of Dirichlet and
Neumann boundary conditions, the numerical solution was observed to con-
verge to the exact one with the optimal rate in the L2 norm, inspiring confi-
dence in the extension procedure. Two nonlinear elasticity examples on com-
plex domains, namely the femur and the Stanford “S”, provide a glimpse of
the novel applications DG-IBM can be used for.

Apart from the encouraging numerical results, there are a lessons to be learnt
from the discussions presented in this paper. For a start, DG-IBM provides
an excellent example of a method that computes good approximations to the
exact solution even though almost none of the data in the given problem may
be used exactly, not the domain, not even the boundary conditions. The prob-
lem of having to extend boundary conditions to an approximate boundary,
which may not be an interpolant of the exact one, is commonly encountered
in both finite element methods as well as in many immersed boundary meth-
ods. The elegant solution we have proposed- using functions that can contain
discontinuities near the boundary and imposing boundary conditions that are
extensions of the exact ones while strictly imposing Dirichlet boundary con-

37



ditions, may be suitable for many other numerical methods as well.

While we have not justified why the DG-IBM formulation presented here is
asymptotically consistent, a companion paper showing the same will be com-
municated shortly. At the same time, we highlight that this is just a specific
example of an asymptotically consistent method. There is a whole class of
such methods and perhaps one more suitable than the other for a given ap-
plication. For example, it is trivial to show that the standard finite element
method falls into this category as well. A good understanding of the underly-
ing mathematics will no doubt help tailor newer and higher order numerical
schemes that can be used to tackle challenging engineering problems.
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Fig. 21. Intersection of a triangle element with a straight segment (zero level sets of
φh). The “cut” elements are either triangles or quadrilaterals.

Appendix- An Implementation of DG-IBM

A simple implementation of DG-IBM using linear triangle and tetrahedral ele-
ments for two and three dimensional problems is discussed here. This includes
a description of types of element boundary intersections, a convenient choice
of basis functions and simple quadrature rules for integration. An implemen-
tation for linear triangle elements was outlined in [27] and is included here for
the sake of completeness.

Element Boundary intersections:

As mentioned earlier, Γh is composed of linear segments in 2D and plane
sections in 3D domains. Figure 21 depicts line-triangle intersections possible
in 2D and figure 22 shows the plane-tetrahedron intersections possible in 3D.
Referring to E∩Ωh for E ∈ Qh as the “cut element”, we see that cut elements
are either triangles or quadrilaterals in 2D. In 3D, cut elements possible are
tetrahedra, wedges with six nodes and pyramids having five nodes. Also note
that ΓEh is a triangle for tetrahedra, pyramids and wedges of type (a), and a
quadrilateral for type (b) wedges.

Basis Functions The standard finite element basis functions are used for el-
ements belonging to Rh. For elements in Qh that use a discontinuous Galerkin
approximation, we choose a convenient set of basis functions that permits easy
imposition of Dirichlet boundary conditions. This is the case when one of the
shape functions is zero on ΓEh . Hence we use the first shape function as the level
set function itself. The remaining shape functions interpolate displacements
at points of ΓEh .

For the linear triangle elements belonging to Qh, we have seen that ΓEh is a

39



Tet - a Tet - b Tet - c

Pyramid Wedge - a Wedge - b

Fig. 22. Types of plane-tetrahedron intersections; the plane represents the zero level
sets of φh. The “cut” element can be tetrahedra, pyramids or wedges. Note that ΓEh
is a triangle excepts in the case of the cut element being a wedge of type (b).
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Fig. 23. Illustration for shape functions and quadrature rules in cut triangles. In
elements of Qh, ΓEh is a straight segment EF . The shape functions NE and NF

interpolate displacements at points E and F respectively while Nn is zero on EF .
Shown on the right is the quadrature rules for a quadrilateral cut element. The
quadrilateral is divided into two triangles (only for the purpose of integration) and
a three point rule used in each.

straight segment EF . The basis functions for these elements are chosen as

Nn = (xE − x) · n,
NE = (x− xF ) · t and (96)

NF = (x− xE) · t,

where n is the unit normal to segment EF and t is a unit vector along EF as
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Fig. 24. For tetrahedral elements cut by the boundary, NE , NF and NG interpolate
the displacements at points E,F and G. Shape function Nn is zero on ΓEh .

shown in figure 23.

For linear tetrahedral elements cut by the boundary, we saw that ΓEh is either
a triangle or a quadrilateral. The first shape function is one that is zero on
this plane. In the case of ΓEh being a triangle, the remaining three shape
functions are ones interpolate displacements at the vertices of the triangle. In
the case of a quadrilateral, we interpolate the displacements at the vertices
of the triangle formed by the vertices that has the largest area. Let the final
three shape functions interpolate the displacements at vertices E,F and G on
ΓEh . The four shape functions are then

Nn = (x− xE) · n,
NE =

1

∆EFG
(x− xF) · (xF − xG)× n,

NF =
1

∆EFG
(x− xG) · (xG − xE)× n and (97)

NG =
1

∆EFG
(x− xE) · (xE − xF)× n,

where ∆EFG = (xE − xF) · (xF − xG) × n and n is the unit normal to the
plane of ΓEh , see figure 24.

Quadrature rules: Standard quadrature rules can be used for elements of
Rh. Some additional care is required for elements of Qh because they require
the evaluation of lifting operators and hence integration of quadratic poly-
nomials over cut elements. Elements of Mh also require quadrature rules for
integration over faces that are shared with other elements (once again to com-
pute lifting operators). We outline an integration scheme to perform all the
necessary integrals exactly and efficiently.

In the 2D case, a three point rule is used for elements in Rh and for triangular
cut elements of Qh. When the cut element is a quad, the quad is divided
into two triangles and three point rules used over each of them. Note that
this division is solely for the purpose of integration, see figure 23. A two
point rule is used for integration over faces of elements in Mh to compute
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Fig. 25. For the purpose of integration, pyramids are subdivided into two and wedges
into three tetrahedra. A four point rule is used in each tetrahedron.

the lifting operators. For the 3D case, a four point rule is used for integration
over tetrahedral domains. Pyramids and wedges are subdivided into two and
three tetrahedra respectively, see figure 25. A four point rule is used in each
tetrahedron resulting in a 8 point rule for pyramids and a 12 point rule for
wedges. Three quadrature points are used for integration over triangular faces
and four points for quad faces.

These set of rules were found to be as or more efficient than mapping cut
elements to hexahedral elements to evaluate integrals. The Jacobian of such
a map increases the order of the polynomials to be integrated, necessitating
more quadrature points than being used here.
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