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SUMMARY

In this work, a new enrichment space to accomodate jumps in the pressure field at immersed interfaces in
finite element formulations, is proposed. The new enrichment adds two degrees of freedom per element that
can be eliminated by means of static condensation. The new space is tested and compared to other existing
finite element space and with the classical P1 space in several problems involving jumps in the viscosity
and/or the presence of singular forces at interfaces not conforming with the element edges. The combination
of this enrichment space with an additional enrichment to accomodate discontinuities in the pressure gradient
has also been explored, exhibiting excelent results in problems involving jumps in the density or the volume
forces. Copyright c© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The simultaneous presence of multiple fluids with varying properties in external or internal flows
is found in daily life, marine environmental problems, and numerous industrial processes, among
many other practical situations. Examples of these flows are gas–liquid transport, magma chambers,
fluid–fuel interactions, crude oil recovery, spray cans, sediment transport in rivers and floods,
pollutant transport in the atmosphere, cloud formation, fuel injection in engines, bubble column
reactors and spray dryers for food processing, among others. This shows the importance of multi–
fluid flows, which probably occur even more frequently than single phase flows [1]. As a result of the
interaction between the different fluid components, multi–fluid flows are rather complex and very
difficult to describe theoretically. For homogeneous flows, computational of fluid dynamics (CFD)
has already a long history and it is standard practice to use commercially available CFD codes.
However, because of the complex physics involved in multi–fluid flows the application of CFD in
this area is rather young. Physical modeling in ad–hoc laboratory scale models is not suitable for
this purpose because of its complexity, the difficulty for scaling up to real life problems and hence
unaffordable costs. The alternative is therefore numerical modeling.

Despite the practical importance of the problem and the intensive work carried out in the last
decade for the development of suitable mathematical and computational models, it is widely
accepted that the numerical study of heterogeneous flows is still a major challenge [1]. The
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complicated mathematical structure of the multi–fluid problem, the multi–scale features of the flow,
the existence of one or multiple internal interfaces and the unsteadiness of the flow, constitute major
challenges for the analysis.

Computing the interface between various immiscible fluids or the free–surfaces is difficult
because neither the shape nor the positions of the interfaces are known a priori. The two approaches
to solve these problems are: interface–tracking and interface–capturing methods. The former
computes the motion of the flow particles via a Lagrangian approach where the computational
domain adapts itself to the shape and position of the interfaces (see e.g. [2, 3, 4, 5, 6, 7]). A
different approach for the simulation of free–surface flows that is based on Lagrangian particles
can be found in [8, 9]. On the other hand, in the front–tracking method (see [10, 11, 12]), the
interface is represented by a surface mesh advected with a Lagrangian method while immersed in
an Eulerian (fix) mesh where the flow problem is solved considering the fluids as a single effective
fluid with variable properties.

The other alternative are the interface–capturing methods. Popular methods of this type are
the Volume–of–fluid technique (see [13, 14, 15]) and the level set method (see for example
[16, 17, 18, 19]). In this case, the flow problem is also solved in a fixed underlying mesh considering
a single fluid with variable properties. Variants of these methods mainly differ in two aspects: first,
the tecnhique used to solve the transport equation for the scalar function where the interface is
embedded, for which a great deal of work has been done to improve accuracy as shown for instance
in [20, 21, 22, 23, 24, 25] for purely Eulerian methods and [26, 27, 28] for semi–Lagrangian
methods. The other differences appear in the technique used to solve the Navier-Stokes equations
for a one phase flow with variable properties and in how the fluid–dynamical variables are treated
near the interface, since, these can exhibit discontinuities in their values and/or their gradients due
to the discontinuities in the physical properties and/or the presence of singular forces.

Several remedies have been proposed to improve accuracy and robustness of computations in
Eulerian formulations. For instance, in Brackbill et al [29] a treatment of the singular forces at the
interface by means of a regularization is proposed, such that, sharp variations in the pressure field
are avoided. In Löhner et al [30] and Carrica at al [31], different extrapolation techniques of the
velocity and pressure near the interface are presented.

In this work, on the other hand, we focus the attention on how to improve the accuracy of
simulations in finite element formulations by means of improving the approximation spaces. In this
case, since a partition of the computational domain into simplices is made and the interface does
not necessarily conform with the element edges, standard finite element methods, either continuous
or discontinuous across inter–element boundaries, suffer from suboptimal approximation orders.
This poor approximation leads to spurious velocities near the interface that may significantly affect
precision and robustness of numerical simulations (see e.g. [32]). One possibility is to locally
modify the finite element spaces in those elements cut by the interface in order to accomodate
the discontinuities. This can be done without introducing additional degrees of freedom as shown
by Ausas et al [33] in which a new finite element space has been introduced. The interpolation
properties of this space are discussed in detail in [34], where the authors show that the interpolation
order of this space is O(h

3
2 ) in the L2(Ω)–norm, which represents an improvement with respect

to the order O(h
1
2 ) using the classical P1–conforming space. When taken as pressure space, the

accuracy of Navier–Stokes computations in equal–order velocity–pressure approximations is not
limited, since the global accuracy is already limited by the H1(Ω)–accuracy of the velocity space,
which is at most O(h).

The other possibility, that is explored in this article, is to add degrees of freedom or enrich the
finite element spaces at the elements cut by the interface. Minev and co workers [35] use gradient
velocity shape functions and discontinuous pressure shape functions also for problems involving
surface tension. Also, for two–phase flow problems, Chessa and Belytschko [36] use an enrichment
method called XFEM, initially developed by the second author for the modeling of cracks [37].
Both approaches lead to optimal orders of convergence, but the main drawback is that the additional
degress of freedom cannot be eliminated before assembly. The connectivity of the unknowns depend
on the position of the interface, therefore the mesh graph needs to be updated as the interface moves.
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Also, it has been observed that the resulting linear system becomes ill–conditioned and that the
linear independence of the finite element basis deteriorates as the mesh size is reduced. This XFEM
approach has also been used recently in [38, 39, 40] for two–phase flows. Another method that is
related to the XFEM approach, but avoids the inclusion of additional degrees of freedom is presented
by Fries at al [41], but some complexities related to the moving least square approach used have to
be dealt with. Also, in [42], Codina and Coppola introduce an enrichment for the treatment of kinks
in the pressure field as typically happens in problems with jumps in the density in the presence of a
gravitational field. The additional degree of freedom can be statically condensed prior to assembly.

The main contribution of this paper is a new enrichment space for discontinuous pressures. Two
enrichment functions are introduced at the elements crossed by the interface. The new functions are
local to each element, linear on each side of the interface, discontinuous just at the interface and
zero at the element nodes. The additional degrees of freedom can be condensed before assembly,
avoiding the complexities asociated with the update of the mesh graph. The implementation in any
existing finite element code is extremely easy in two and three spatial dimensions, since the new
shape functions are based on the usual P1 functions. As revelead in the numerical experiments, the
interpolation properties of this new enrichment space are equal or better than those of the space
presented in [33].

By way of outline, after this introduction, the governing equations and different jump conditions
that arise in two–phase flows are recalled as well as the continuous and discrete variational
formulations. Next, the new proposed enrichment space for discontinuous pressures is introduced
with details to construct the enrichment functions. In section 4 several problems in 2D and 3D are
solved. Then, a further enrichment is proposed to deal with problems involving both discontinuities
and kinks in the pressure field, in which, the new enrichment space is combined with the enrichment
of [42]. Finally, some conclusions are drawn.

2. MATHEMATICAL SETTING

We restrict our attention here to problems governed by the incompressible Navier–Stokes equations.
Let us consider a domain Ω ⊂ Rd (d = 2 or 3). The problem is to find a velocity field u and a
pressure field p such that

ρ (∂tu + u · ∇u)−∇ ·
(
2µ∇Su

)
+∇p = ρ b in Ω, t > 0, (1)

∇ · u = 0 in Ω, t > 0, (2)

u = u∂Ω in ∂Ω, t > 0, (3)

u = u0 in Ω, t = 0, (4)

where b is a volume force, u∂Ω are the Dirichlet boundary conditions and u0 is the initial condition
for the velocity field. Although, many phases can be present, we restrict here for the sake of
simplicity to the case of two phase flows. Denoting them by the plus “+” and minus “-” symbols,
the fluid properties (density and viscosity) are given by

(ρ(x), µ(x)) =

{
(ρ+, µ+) if x ∈ Ω+

(ρ−, µ−) if x ∈ Ω−
(5)

The fluid domains Ω+ and Ω− are separated by an interface denoted by Γ. In the following section
we comment on the boundary or jump conditions at the this internal interface.
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2.1. Difficulties in the numerical solution of multi–phase flows - Jump conditions

In the numerical approximation of incompressible multi–fluid flows several issues have to be
considered

1. a correct definition of the interface position;

2. possible pressure gradient jumps or kinks at the interface where density jumps are present;

3. possible pressure jumps at the interface where viscosity jumps are present;

4. possible gradient velocity jumps where viscosity jumps are present;

5. possible pressure jumps where surface tension is present;

Some of these aspects and possible numerical solutions have been previously discussed in [9] for
Lagrangian formulations in which moving meshes are used. In this paper we restrict our attention
to items 2–5 of the list above for the case of Eulerian formulations in which fixed meshes are used
instead. Let us now see how these jumps appear in the different cases mentioned.

Pressure gradient jumps
Density jumps introduce a kink in the pressure field at the interface. This can be easily seen in the

example of two fluids with different densities at rest one on top of the other inside a closed cavity.
The hydrostatic pressure gradient is discontinuous at the interface. Since in this case the solution
corresponds to an identically zero velocity field, the pressure gradient is simply given by

∇p = ρb,

if the density has a jump at the interface and the volume force is continuous, we have

J∇pK = JρbK = JρKb = (ρ+ − ρ−)b, (6)

where J·K represents the jump of any quantity at the interface. A similar situation can occur in the
case of a discontinuous volume force. This could be the case of an electric force acting just on one
of the fluids, having for instance distributed electrical charges. As mentioned above, a remedy for
this problem is the enrichment proposed in [42], which is later recalled.

Jump conditions for a Newtonian fluid
The standard jump conditions at internal boundaries are briefly recalled here. In the first place,

the velocity field at the interface u is decomposed into its normal and tangential parts as follows

u = unn + us, (7)

where un = u · n. The interface forces must balance the sum of the forces exerted on Γ from the
“positive” side, plus those from the “negative” side. This is expressed as

(σ− − σ+) · n = fΓ. (8)

Now, for the normal component of this jump we have

[(σ− − σ+) · n] · n = JσnnK = J−p+ 2µ
∂un
∂n

K = fΓn. (9)

For the tangential component, we project the right hand side of equation (8) onto the tangent
plane to the interface
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ΠΓ

[
(σ− − σ+) · n

]
=

s
µ

(
∂us

∂n
+∇Γun −H · us

){
=

=

s
µ
∂us

∂n

{
+ JµK(∇Γun −H · us) = fΓs, (10)

where ΠΓ is the projector operator, that for a given vector w is given by

ΠΓw = ws = w − wnn = (I− n⊗ n)w, (11)

The symbol ∇Γ is the surface gradient, which, for a function f defined on Γ, is given as

∇Γf = ΠΓ∇f̃ , (12)

where f̃ ∈ C1 is an extension out of Γ of f . For vector functions, this is applied componentwise.
Finally, H (= ∇sn) is a symmetric tensor called the second fundamental form. This tensor contains
the geometrical information of the interface. In particular, its trace is the well known mean curvature
κ.

Remark: In the general case, both the pressure and the velocity gradient can be discontinuous
at the interface. However, for problems involving surface tension, in the absence of Marangoni or
thermocapillary effects, the force fΓ is normal to the interface and given by

fΓ = γ κn, (13)

where γ is the (constant) surface tension coefficient. If viscosities of both fluids are the same, just
the pressure exhibits a jump. In the numerical solution of problem (1)–(4) with the jump conditions
(6)–(10), regardless of the method used, be it finite elements or finite differences, special care has
to be taken to accomodate the discontinuities in the fluid–dynamical variables near the interface. In
this article we use a finite element method of which the variational formulation is presented below.
In this case, the key issue relies in how to choose the approximation spaces for pressure and velocity.

2.2. Variational formulations

The variational formulation for the problem to be solved is

Find (u, p) ∈ V ×Q such that

∫
Ω

ρ (∂tu + u · ∇u) · v dΩ +

∫
Ω

2µDu : Dv dΩ−

−
∫

Ω

p∇ · v dΩ =

∫
Ω

b · v dΩ + fΓ(v) (14)∫
Ω

q ∇ · u dΩ = 0 (15)

∀(v, q) ∈ V ×Q. The term fΓ(v) in equation (14) represents the contribution of a singular force
concentrated at the inteface Γ. For the case of surface tension we use a Laplace–Beltrami
formulation (see e.g. [43, 32, 38]), i.e.

fΓ(v) = −
∫

Γ

γ(x) (I− n⊗ n) : ∇v dΓ, (16)
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6 G.C. BUSCAGLIA, R.F. AUSAS, S.R. IDELSOHN

that accounts for both,surface tension and Marangoni effects.
We use a stabilized formulation based on the ASGS (Algebraic Subgrid Scale) method for

discretization (see e.g. [44] and references therein) together with a trapezoidal rule for temporal
discretization and a monolithic approach solving simultaneously for velocity and pressure using a
Newton–Raphson iterative method. The discrete variational formulation of this problem then reads

Find (un+1
h , pn+1

h ) ∈ Vh ×Qh such that

Ru =

∫
Ω

Gu · vh dΩ +

∫
Ω

2µ∇Sun+1
h : ∇vh dΩ−

∫
Ω

pn+1
h ∇ · vh dΩ + fn+1

Γh
(vh) +

+
∑
K∈Th

τK

∫
ΩK

(Gu +∇pn+1
h ) · un

h · ∇vh +
∑
K∈Th

∫
ΩK

δK ∇ · un+1
h ∇ · vh dΩ = 0 (17)

Rp =

∫
Ω

qh∇ · un+1
h dΩ +

∑
K∈Th

∫
ΩK

τK
ρ

(Gu +∇pn+1
h ) · ∇qh dΩ = 0 (18)

∀(vh, qh) ∈ Vh ×Qh. In (17), the term Gu is given by

Gu = ρ

(
un+1
h − un

h

∆t
+ un+1

h · ∇un+1
h − bn+1

)
, (19)

with ∆t the time step and the stabilization parameters given by

τK = c

[
4
ν

h2
+ 2
|uh|n∞
h

]−1

, δK = 2µ+ ρ |uh|n∞ hK , (20)

where c is a tuning parameter, that for the academic problems shown in section 4 is taken equal to
1, while for the 3D examples is taken equal to 0.1.

Many authors introduce a regularized form of the Dirac delta function for the computation of
fn+1
Γh

(vh) in (17) as proposed in [29, 45], therefore, the surface force is approximated as a volume
force more or less concentrated around Γ depending on an adjustable regularization parameter. In
our formulation, we do not use such regularizations and instead compute this term exactly, which
precisely leads to sharp variations through the interface in the pressure field. Solving problem (17)–
(18) accuratelly, requires the finite element spaces to be appropriately chosen, so as to accomodate
discontinuities and/or kinks in the pressure and velocity fields. We first focus on how to improve the
accuracy of the numerical approximation in several problems involving jumps in the pressure field,
for which we introduce a new enrichment space.

3. NEW ENRICHMENT SPACE FOR DISCONTINUOUS PRESSURES

First, consider a finite element partition Th of the domain Ω into simplices (triangles in the two
dimensional case and tetrahedra in the three dimensional case) and denote each element in the
partition as ΩK . The number of vertices per element is denoted by np (equal to 3 for triangles
and 4 for tetrahedra). The interface Γh is composed of straight segments (in 2D) or planar facets
(in 3D) and does not conform with the element edges. The element ΩK can then be split into
two subelements Ω+

K and Ω−K . We illustrate a typical element cut by Γh in two and three spatial
dimensions and the corresponding subdomains in figure 1. Those cases in which the interface passes
through the nodes are degenerate cases that are not considered here. As noticed in figure 1 for
the three dimensional case, two possible situations have to be considered, since the reconstructed
interface can be either a triangular or a quadrangular facet. In the discrete variational formulation
presented above, the integrals over the elements are performed exactly just by redefining the
quadrature rule in the elements cut by the interface after subdivision following Γh. The velocity
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A NEW ENRICHMENT SPACE FOR THE TREATMENT OF DISCONTINUOUS PRESSURES ... 7

field is made up of continuous linear functions. For all the elements of Th that are not crossed
by Γh the space Qh is also made up of continuous linear functions. The various possibilities to
improve accuracy of the numerical approximation in problems involving jumps or kinks, consist in
an enrichment or a modification of the finite element space Qh only in those elements of Th crossed
by Γh.

Ω−
K

Ω+
K

Triangular facet

Ω+
K

Ω−K Γh

Triangle (2D)

Tetrahedral (3D)

Ω−
K

Quadrangular facet

Γh

Γh

Ω+
K

Figure 1. Typical element ΩK and subelements Ω+
K and Ω−K and interface Γh.

The discrete pressure proposed here can be written as

ph =
∑
J∈J

PJ NJ +
∑
J∈Je

CJ MJ , (21)

where J = {1, . . . , nP }, with nP the number of standard degrees of freedom per element and Je
the set of indices accounting for the additional enrichment functions local to the element.

In order to build the new pressure space, a requirement for the enrichment is that a constant
solution on each fluid domain with a jump at the interface belong to the discrete space Qh. To satify
this requirement, we introduce two new enrichment functions that are linear on each subelement
Ω+

K and Ω−K and discontinuous at Γh. We also require both functions to be zero at the nodes of the
simplex. By inspection, we see that a possibility to define the enrichment functions is as follows:
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8 G.C. BUSCAGLIA, R.F. AUSAS, S.R. IDELSOHN

M1(x) = (1− S(x))χ+(x), (22)
M2(x) = S(x)χ−(x), (23)

where the function S is given in terms of the usual P1 functions by

S =
∑

J∈J+

NJ(x), (24)

with J + = {J ∈ J , xJ ∈ Ω+
K}, and χ+ and χ− the characteristic functions for the positive and

negative sides. The dimension of the pressure space is thus dimQh = NP + 2NE , where NP and
NE are the total number of nodes and elements respectively in Th. However, since, the additional
shape functions are local to each element crossed by the interface, they can be condensed prior to
assembly and the size of the final linear system to be solved is the same as in the standard case. Note
that this elimination can be done because the pressure is just involved

In figure 2 the enrichment functions for a typical triangular element are shown. In the left part
of the figure, the two functions are shown separately and in the right part they are plot together
just for illustrative purposes. In table 2 the computation of these functions is given in the form of a
pseudo–code.

M1

M1 + M2

M2

Γh

Γh

Γh

Figure 2. New enrichment functions in a typical triangular element. In the left, the two functions are drawn
separately and in the right, the two functions are drawn together just for illustrative purposes.

3.1. Static elimination of the enrichment unknowns

Before final assembly, the linear system to be solved at each non–linear iteration can be written by
blocks as follows
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Table I. Computation of the new enrichment functions. Nomenclature: np is the number of nodes per
element, nG is the number of integration points per subelement, NI is the usual I–th linear basis function,

MI (I = 1, 2) are the new enrichment functions and XK
I are the vertices coordinates of element ΩK .

1: Subdivide element K in nS subelements
2: do (s = 1, nS)
3: Set Gauss points xs

j , for j = 1, ..., nG

4: do (i = 1, nG)
5: Set S(xs

i ) = 0
6: do (J = 1, np)
7: if (XK

J ∈ Ω+
K)

8: Set S(xs
i )← S(xs

i ) +NJ(xs
i )

9: end if
10: end do
11: if (xs

i ∈ Ω+
K)

12: Set M1(xs
i ) = 1− S(xs

i )
13: Set M2(xs

i ) = 0
14: else
15: Set M1(xs

i ) = 0
16: Set M2(xs

i ) = S(xs
i )

17: end if
18: end do
19: end do

[
ASS ASM

AMS AMM

] [
δXS

XM

]
= −

[
RS

FM

]
(25)

where the subindex S refers to the velocity and standard pressure degrees of freedom and the
subindex M refers to the additional degrees of freedom. At the elementary level the dimension
of matrix ASS is n2

p × n2
p, of matrix ASM is n2

p × 2, of matrix AMS is 2× n2
p and of matrix AMM is

2× 2 and its IJ entry is given by

AIJ
MM =

τK
ρ

∫
ΩK

∇MI · ∇MJ dΩ (26)

which for our case is a positive definite diagonal matrix, since note that M1 = 0 and M2 6= 0 in
Ω+

K and M1 6= 0 and M2 = 0 in Ω−K . For the additional degrees of freedom we do not compute the
incremental values, but the unknown XM since the pressure is just involved in the linear terms of the
problem. Now, using the fact that the enrichment functions are local to each element, we eliminate
XM at the elementary level before final assembly as follows

[
ASS − ASM (AMM )−1AMS

]
δXS = −RS + ASM (AMM )−1FM (27)

The enrichment shape functions can be normalized to avoid round–off errors in the computation
of (AMM )−1. The normalization factor can be defined simply by doing an order of magnitude
estimation. Since, each entry of AMM is the product of derivatives of two linear shape functions
of order ∼ 1/h2, that are integrated over the element volume, which is of order ∼ hd and
the stabilization τK/ρ ∼ h2/µ (considering the viscous dominated case for simplicity), the
normalization factor can be chosen to be of order hd/µ so as to end up with entries of order 1
in matrix AMM .
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10 G.C. BUSCAGLIA, R.F. AUSAS, S.R. IDELSOHN

Numerical results using the new enrichment space will be compared with the classical P1–
conforming space and with the space presented in [33] which is recalled here for completness.

3.2. Space of [33] for discontinous pressures without additional unknowns

The interpolation properties of the space proposed in [33] have also been discussed in [34]. In
this case no additional degrees of freedom are incorporated but the pressure shape functions are
modified so as to capture discontinuities in the pressure field. The modifications are local and can
be computed element–by–element. The modified functions are piecewise linear on each side and
only discontinuous at the interface Γh. They form a nodal basis, in the sense that they take the value
one at their corresponding node and zero at the other nodes. To define them, we simply “carry” the
value at each node towards the intersection of any edge emanating from it with the interface. The
shape functions for a typical triangular element are shown in figure 3, but again, the functions for
the case of tetrahedral elements can be easily built as shown in the pseudo–code given in table II.

Ñ1
Ñ2

Ñ3

Γh

ΓhΓh

Figure 3. Finite element basis shape functions for the space proposed in [33] in a typical triangular element.

4. NUMERICAL TESTS

4.1. Couette flow: Discontinuity in the pressure field due to a singular force

In the first experiment, we consider the domain [0, L]× [0, H], with periodic boundary conditions
in the x1-direction. The velocity is set to zero at the top and bottom boundaries

u(x1, x2 = 0) = u(x1, x2 = H) = 0
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Table II. Computation of the basis functions for the space of [33]. Nomenclature: np is the number of nodes
per element, nG is the number of integration points per subelement,NI is the usual I–th linear basis function,
ÑI (I = 1, 2, 3) are the modified basis functions and XK

I are the vertices coordinates of element ΩK .

1: Subdivide element K in nS subelements
2: do (s = 1, nS)
3: Set subelement vertices XJ for J = 1, ..., np

4: Set Gauss points xs
j , for j = 1, ..., nG

5: do (i = 1, nG)
6: Set ÑI(xs

i ) = 0 for I = 1, ..., np

7: do (I = 1, np)
8: if ((XK

I ,x
s
i ) ∈ Ω+

K) || (XK
I ,x

s
i ) ∈ Ω−K))

9: do (J = 1, np)
10: if (NI(Xs

J) > 0) then
11: Set ÑI(xs

i )← ÑI(xs
i ) +NJ(xs

i )
12: end if
13: end do
14: end if
15: end do
16: end do

and the interface Γ is the straight vertical line x1 = a, on which a constant unit normal force f = 1
is imposed. The exact solution for this problem is

u1(x1, x2) =
1

2µL
x2 (H − x2) (28)

u2(x1, x2) = 0 (29)

p(x1, x2) = − 1

L
x1 +H(x1 − a) (30)

The indeterminacy of the pressure is removed by imposing p(0, 0) = 0 instead of setting the average
to zero, for simplicity. This problem, with L = 3, H = 1, µ = 1 and a = 2 was discretized with the
stabilized equal-order formulation presented above with the classical P1-conforming pressure space,
the space of [33] and the new enrichment space.

A sequence of unstructured meshes was built, of which the first one is shown in Fig. 4. To this
mesh, which consists of 3520 triangles, we assign a mesh size of h = 0.044. The following meshes
in the sequence are built by subdivision. We measure the velocity error in the H1(Ω)–norm and
the pressure error in the L2(Ω)–norm as function of h for both pressure spaces. The results of the
convergence analysis are displayed in figures 5 and 6. As seen in the figures the error is very similar
for both cases.

The pressure field corresponding to the classical P1-conforming pressure is compared to that
obtained using the new enrichment space in Fig. 7. From the figure we see that, the new enrichment
space exhibits significantly better behavior near the interface than the classical P1-conforming
space. Results obtained using the space of [33] are similar to those corresponding to the new space.

4.2. Extensional flow: Discontinuity in the pressure field due to a jump in the viscosity

We consider an extensional flow problem in which the computational domain [0, 1]× [0, 1] is split
by an interface separating fluids with different viscosities µ1 and µ2. The density ρ is assumed the
same for both fluids. In this case, the interface Γ is the straight horizontal line x2 = a. Considering
the following linear velocity field

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2011)
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0 3

0

1

2

Figure 4. Mesh for the Couette flow problem convergence study, with 3520 elements and h = 0.044.
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Figure 5. Error norm for the pressure field, showing the convergence rates for the Couette flow problem.

u1(x1, x2) = 1− x1, (31)
u2(x1, x2) = x2, (32)

and neglecting the volume forces, it can be easily found that the exact solution for the pressure
field is quadratic on each fluid and with a jump at the interface due to the viscosity difference. This
pressure field is given by

p(x1, x2) = ρ
(
x1 − 1

2 (x2
1 + x2

2)
)

+ 2(µ1 − µ2)H(a− x2) (33)

where H(a− x2) = 1 if x2 < a and zero otherwise. The indeterminacy of the pressure in the
simulations is again removed by imposing p(1, 1) = 0 instead of setting the average to zero. In order
to reproduce this exact solution, the velocity field given by (31)–(32) is imposed at the boundaries.
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Figure 6. Error norm for the velocity field, showing the convergence rates for the Couette flow problem.
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Figure 7. Pressure field section at y = 0.5 for the Couette flow problem.

The problem is solved with ρ = 10, µ1 = 5 and µ2 = 1 and a = 0.5 using the classical P1-
conforming pressure space, the new enrichment space and the space of [33]. A sequence of
unstructured meshes was built, of which the first one is shown in Fig. 8. To this mesh, which consists
of 1104 triangles, we assign a mesh size of h = 0.0055. The following meshes in the sequence are
built by subdivision of each triangle into four equal triangles. We measure the velocity error in
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the H1(Ω)-norm and the pressure error in the L2(Ω)-norm as function of h. The results of the
convergence analysis are displayed in Fig. 9 and 10. Results for the new enrichment space exhibit
in this case a much smaller error (more than one order of magnitude) than results for the space of
[33] in both pressure and velocity. Also, for the meshes considered, we observe a better convergence
order of the new enrichment space, equal to h2 for pressure and h

5
2 for velocity.

In Fig. 11 the pressure field for the the new enrichment space (left) and the classical P1-
conforming pressure space (right) are shown. In Fig. 12 cuts of these pressure fields at x1 = 0.5
are compared, from which we clearly appreciate the better behavior near the interface when the new
enrichment space is used. Note that the case without inertial effects (i.e. ρ = 0) corresponds to a
constant pressure field on each fluid, with a jump at the interface of magnitude 2(µ1 − µ2). This
solution belongs to the finite element spaces when either, the new enrichment space or the space of
[33] are used.

0 1

0

1

0.5

Figure 8. Mesh for the extensional flow problem convergence study, with 1104 elements and h = 0.01.

4.3. 3D Rising bubbles

In the previous academic examples the interface Γ was fixed. Now, we aim to show the good
behavior of the new enrichment space in a more complex situation including the transport of the
interface. In this article a level set formulation is used, in which the interface is the zero set of a
continuous scalar function φ, i.e.

Γ = {x ∈ Ω, φ(x) = 0}. (34)

The level set function is transported according to the following hyperbolic equation

∂tφ+ u · ∇φ = 0. (35)
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Figure 9. Error norm for the pressure field, showing the convergence rates for the extensional flow problem.
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Figure 10. Error norm for the velocity, showing the convergence rates for the extensional flow problem.

In the discrete case, the transport equation is solved simultaneously with the velocity and pressure
fields by means of a SUPG (streamline–upwind–Petrov–Galerkin) method (see [46]), by adding the
following problem to the variational formulation (17)–(18)

Find φn+1
h ∈Wh such that
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(a) New enrichment space (b) P1-conforming space

Pressure Pressure

x2 x1 x2
x1

Figure 11. Pressure fields for the extensional flow problem. (a) New enrichment space. (b) P1-conforming
space.
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Figure 12. Comparison of the pressure field section at x1 = 0.5 for the extensional flow problem using the
the new enrichment space and the P1-conforming space.

∑
K∈Th

∫
ΩK

(
φn+1
h − φnh

∆t
+ un+1

h · ∇φn+1
h ) (wh + τ̃Kun+1

h · ∇wh) dΩ = 0 (36)

∀wh ×Wh. The discrete space Wh is made up of continuous linear functions. The stabilization
parameter τ̃K is given by

τ̃K =
c̃ h

2 |uh|∞
, (37)

where the tuning factor c̃ is taken equal to 0.1. With this formulation, we study the rise of a buoyant
bubble. This problem has been solved many times before (see e.g. [47] and references therein). We
assumme a bubble with density ρ1 = 10−3 and viscosity µ1 in a quiescent liquid with density ρ2 = 1
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and viscosity µ2 in the computational domain Ω = (0, 2.25)× (0, 2.25)× (0, 4). At the initial time
the diameter of the bubble is 1 and is placed at the position (1.125, 1.125, 1). The gravity g is taken
to 10. We consider two different regimes corresponding to the following physical parameters

• Spherical regime: µ1 = 3× 10−4, µ2 = 0.3, γ = 10
• Skirted regime: µ1 = 10−3, µ2 = 0.1, γ = 0.1

In the first case, labeled spherical regime, the problem is dominated by surface tension effects and
the bubble’s shape remains approximatelly spherical during its evolution. In the second case, labeled
skirted regime, surface tension effects are less important and the bubble suffers a larger deformation
during the evolution.

The discrete variational formulation with the new enrichment space was included into a general
purpose in–house code which is described elsewhere (see [48]). The level set function is periodically
reinitialized by means of a mass–preserving redistancing scheme (see [49, 50]) to keep its distortion
under control. For this problem, the finite element mesh used consists of 1, 511, 016 tetrahedra and
the time step is taken equal to 5× 10−4 for both regimes.

For the spherical regime, shown in figure 13 is the interface shape at times t = 0, 0.375 and
0.75. The bubbles are painted with the velocity magnitude. It is evident from the figure the benefits
regarding mass conservation when the new enrichment space is used with respect to the classical
P1–conforming space. In the former case, a 2% of the bubble’s mass is lost at the final time shown
in the figure against a 60% in the case without enrichment.

For the skirted regime, to better appreciate the benefits of the new enrichment space, we plot in
figure 14 the bubbles at different times together. We observe the typical cap shape attained by the
bubble. For the case using the new enrichment, the bubble is plotted in the left side, in red, while for
the case using the classical P1-conforming space, the bubble is plotted in the right side, in blue. The
mass lost is %0.14 in the first case and %15 in the second one, clearly evidencing the benefits of the
new pressure space. For both regimes, similar results to those corresponding to the new enrichment
are obtained if the space of [33] is used instead.

5. FURTHER ENRICHMENTS

We now discuss two further enrichments to improve accuracy of the numerical approximation
in problems involving discontinuities and/or kinks. On the one hand, we propose to combine
the enrichment function of Codina–Coppola [42] (for kinks in the pressure field) and the new
enrichment functions proposed in this paper leading to a triple enrichment. We illustrate the triple
enrichment by means of two numerical examples. On the other hand, we propose without testing
it, an enrichment of the velocity field to capture discontinuities in its gradient. Its evaluation is the
subject of ongoing work.

5.1. Enrichment space of Codina–Coppola for kinks in the pressure field

For completness we recall here the enrichment proposed in [42]. In this case, one additional shape
function local to the elements crossed by the interface is added. This function can be easily defined
with the help of a level set function ψh linearly interpolated on ΩK and with the usual P1 functions
as follows

M0(x) =
1

2

(
−|ψh(x)|+

np∑
J=1

|ψh(xJ)|NJ(x)

)
, (38)

This function is zero outside ΩK and can thus be condensed before assembly. The enrichment
function is illustrated for a typical triangular element in figure 15 but the extension for the case of
tetrahedral elements is straightforward as shown in table III where the code to calculate the shape
function is included.
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t = 0

t = 0.375

t = 0.75

Figure 13. Comparison of the three dimensional rising bubble at different times for the spherical regime,
using the new enrichment space (left) and the classical P1-conforming space (right). For times 0.375 and

0.75, the maximum of the colour scale corresponds to 1.3 (red) and the minimum to 0.02 (blue).
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t = 0.7t = 0.45

t = 0.22t = 0

New enrichment

P1 conforming

Figure 14. Comparison of the three dimensional rising bubbles at different times for the skirted regime, using
the new enrichment space (left, red) and the classical P1-conforming space (right, blue).

It is not difficult to see that the enrichment functions M0, M1 and M2 are linearly dependent
when the interface Γh becomes parallel to one of the element faces. Although this is very unlikely
to happen during a general dynamical calculation, the linear independence of the finite element
basis may be deteriorated if the interface becomes nearly parallel to one of the faces, resulting in a
3× 3 matrix AMM in equation (25) approximately singular. This can be overcome by shifting the
diagonal entries of AMM by a small number when this situation is detected along a calculation, i.e.

AMM ← AMM + ε I, (39)

where I is the 3× 3 identity matrix and ε is a small parameter that for the problems presented in this
paper we choose as 10−4

∑
I,J |AIJ

MM |.

5.2. Kinks and discontinuities in the pressure field

Two–fluid hydrostatic problem
The prototypical example in which there is a discontinuity in the pressure field and its gradient

is the case of a two–fluid hydrostatic problem. We consider two fluids in a unit square domain with
densities ρ1 and ρ2 and separated by the fixed interface x2 = a (the lighter fluid on the top of the
other). At the interface we introduce a singular force fΓ of size 100 as done in previous examples.
The gravity g is taken equal to −10, the viscosity µ equal to 1 for both fluids, ρ1 = 100, ρ2 = 1 and
a = 0.5. Non–slip boundary conditions are used at all walls. The exact solution for this problem
consists in a velocity field identically zero and a pressure field given by

p(x1, x2) =

{
1
2 (ρ1 − ρ2)g + ρ1 g x2 + fΓ if x2 < a
ρ2 g(x2 − 1) if x2 > a

(40)
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M0

Γh

Figure 15. Codina-Owen’s enrichment function proposed in [42] in a typical triangular element.

Table III. Computation of the enrichment functionNe
0 for the space of [42]. Nomenclature: np is the number

of nodes per element, nG is the number of integration points per subelement,NI is the usual I–th linear basis
function, M0 is the new enrichment function, XK

I are the vertices coordinates of element ΩK and ψh is the
linearly interpolated level set function on ΩK .

1: Subdivide element K in nS subelements
2: do (s = 1, nS)
3: Set Gauss points xs

j , for j = 1, ..., nG

4: do (i = 1, nG)
5: Set M0(xs

i ) = 0
6: if (ψh(xs

i ) > 0)
7: Set M0(xs

i ) = −ψh(xs
i )

8: end if
9: do (J = 1, np)
10: if (ψh(XK

J ) > 0) then
11: Set M0(xs

i )←M0(xs
i ) + ψh(XK

J ) ∗NJ(xs
i )

12: end if
13: end do
14: end do
15: end do

Note that, there is a discontinuity in the pressure field of size fΓ and a discontinuity in its gradient
of size (ρ1 − ρ2)g = 990. In table IV we show the L2(Ω) and theH1(Ω) error norms for the pressure
and the velocity fields respectively, for two different meshes with characteristic sizes h = 0.0275
and h = 0.006875 (the second and fourth meshes of the sequence used in problem 4.2) and using
different finite element spaces. We consider, on the one hand, the combination of the enrichment of
Codina–Coppola with the new enrichment space and the combination of the enrichment of Codina–
Coppola with the space of [33]. In the first case, the error is almost zero since the exact solution
simply belongs to the finite element space. In the second and third cases, the approximation error is
significantly bigger since the exact solution is not in the approximation space.

Extensional flow with discontinuous volume force
We finally consider the same problem shown in section 4.2 but in this case we introduce a

discontinuous volume force as follows

b =

{
−10 e2 if x2 < a
0 if x2 > a

(41)
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Table IV. Error norms of pressure and velocity on two different meshes for the two–fluid hydrostatic
problem.

Pressure space h = 0.028 h = 0.007
‖u− uh‖H1(Ω) ‖p− ph‖L2(Ω) ‖u− uh‖H1(Ω) ‖p− ph‖L2(Ω)

New space + [42] 10−13 10−13 10−13 10−13

New space alone 0.0206 0.1569 0.0023 0.0181
Space of [33] + [42] 0.1106 0.7574 0.0146 0.1018

P1 space alone 8.0647 1.3995 3.9313 0.7456

As a result, the pressure field and its gradient are discontinuous, for which the triple enrichment
used before becomes suitable. The pressure field for this problem is given by

p(x1, x2) = ρ

(
x1 −

1

2
(x2

1 + x2
2)− |b|x2

)
+ 2(µ1 − µ2)H(a− x2) (42)

in which there is a discontinuity of the pressure gradient of size ρ |b| and a discontinuity in the
pressure of size 2 (µ1 − µ2). In table V, we show the L2(Ω)–error norm for the pressure comparing
the use of the new enrichment and the space of [33], both combined with the enrichment of [42].
Also shown in the table is the case corresponding to the new enrichment alone. The pressure field
being a quadratic function, the exact solution does not belong to the finite element space. From the
table we observe that the order of convergence for the pressure field is proportional to h2 in the first
case and proportional to h3/2 in the second one. Besides this difference, again the new enrichment
space exhibits significantly smaller errors.

Table V. L2(Ω)–error norm of the pressure as a function of the mesh size. Initial mesh with h0 = 0.056.

Pressure space h0 h0/2 h0/4 h0/8 h0/16
New space + [42] 1.73× 10−3 5.84× 10−4 1.44× 10−4 3.56× 10−5 8.91× 10−6

New space alone 5.98× 10−2 2.35× 10−2 7.95× 10−3 2.83× 10−3 1.02× 10−3

Space of [33] + [42] 2.55× 10−1 8.97× 10−2 3.31× 10−2 1.21× 10−2 4.21× 10−3

5.3. Kinks in the velocity field

Although it has not been tested yet, using the enrichment functions proposed by Codina–Coppola,
a new enrichment of the velocity field to capture kinks in the velocity field, for problems involving
Marangoni effects or two phase flows with µ1/µ2 � 1 , can be devised. The idea in this case is to
enrich each component of the velocity field as follows

ui(x) =
∑
J∈J

UiJ NJ + cos(n, ei)UeN
e
0 . (43)

The condensation of the new degree of freedom cannot be done in principle if we aim to ensure
the conformity of the velocity field between contiguous elements, but, we consider that this can be
done without introducing large errors, except perhaps in regions with high curvature, for which local
mesh refinement may be needed. The evaluation of this enrichment is still the subject of ongoing
work.

6. CONCLUSIONS

A new enrichment space have been proposed to accomodate discontinuities in the pressure field
for problems involving jumps at internal interfaces in multi–fluid flows. The new space consist in
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adding two additional degrees of freedom that are local to each element and can thus be consended
prior to assembly.

The new space has been tested and compared to other pressure spaces to accomodate
discontinuities at immersed boundaries in several problems involving jumps in the pressure field
and its gradient. In the classical Couette flow problem with a singular force the L2(Ω) and H1(Ω)
error norms for pressure and velocity respectively, exhibited practically the same results as using
the space of [33]. For the extensional flow problem, the error norms resulted in much smaller values
(more than one order of magnitude) and with a better order of convergence for the new enrichment
space as compared to the space of [33]. The new enrichment space has also been tested in a more
challenging 3D problem involving a rising droplet in different regimes, exhibiting excelent results
in terms of mass conservation as compared to the classical P1–conforming space.

The possibility of combining the new enrichment with the enrichment proposed in [42] has
also been explored in problems involving discontinuities and kinks in the pressure field due to the
presence of singular forces and jumps in the density and/or in the volume forces. In this case, care
that has to be taken to avoid lost of the linear independence of the finite element basis, which can
occur when the interface becomes parallel to one of the element faces.

The new proposed enrichment space becomes then in a suitable alternative to other existing finite
element spaces to accomodate jumps at immersed boundaries.
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6. Dettmer W, Saksono P, Perić D. On a finite element formulation for incompressible Newtonian fluid flows on
moving domains in the presence of surface tension. Commun. Numer. Meth. Engng. 2003; 19:659–668.

7. Baiges J, Codina R, Coppola-Owen H. The fixed-mesh ale approach for the numerical simulation of floating
solids. International Journal for Numerical Methods in Fluids 2010; :n/a–n/adoi:10.1002/fld.2403. URL http:
//dx.doi.org/10.1002/fld.2403.
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