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Abstract. In this work an iterative strategy is developed to tackle the problem of coupling dimension-
ally-heterogeneous models in the context of fluid mechanics. The procedure proposed here makes use of a re-
interpretation of the original problem as a nonlinear interface problem for which classical nonlinear solvers can
be applied. Strong coupling of the partitions is achieved while dealing with different codes for each partition,
each code in black-box mode. The main application for which this procedure is envisaged arises when modeling
hydraulic networks in which complex and simple subsystems are treated using detailed and simplified models,
correspondingly. The potentialities and the performance of the strategy are assessed through several examples
involving transient flows and complex network configurations.
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1. Introduction. The coupling of models of different dimensionality in fluid dy-
namics was first addressed in [17]. Alternative formulations and applications have been
presented subsequently in the context of computational hemodynamics [2], [4], [5], [8],
[10], [14], [19], [22], proving the usefulness of such an approach to model complex sys-
tems. Generally speaking, such a situation arises when a complex system, such as a hy-
draulic network, is split into different subsystems with different characteristic
geometrical scales. Complex components of the system must be modeled using the full
Navier–Stokes equations, whereas some approximation is acceptable in other, simpler
components, such as long pipes or valves, for example. In general, the global dynamics
results from the interaction among the parts of the whole network, requiring the use of
coupled
dimensionally-heterogeneous models.

The first approaches to deal in an iterative manner with the coupling of dimension-
ally-heterogeneous models were based on an explicit approach [16] as well as on basic
Dirichlet-to-Neumann (Gauss–Seidel) iterations with relaxation [2], [8], [18]. Neverthe-
less, it is well known that tuning the iterates by setting proper relaxation parameters
does not follow a general procedure, and situations for which the algorithm fails may
easily be encountered. Recently, a more robust methodology based on the Schur com-
plement has been proposed for the related problem of imposing flow rate boundary con-
ditions [20] (see also [21]).
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The motivation for establishing robust iterative strong coupling techniques lies in
the need for employing well validated codes, suitably devised for systems with very dif-
ferent dynamics, such as black boxes. The technique presented here can be understood
as a domain decomposition approach where the partitioning takes place at the coupling
interfaces among models of different dimensionality. The idea of the iterative strategy
presented here stems from the developments presented by Leiva, Blanco, and Buscaglia
in [15] for heat conduction problems, and further extended in [3] to one-dimensional
(1D) networks made of deformable pipes such as the arterial tree. In this work we
go back to dimensionally-heterogeneous situations and extend the previous algorithm
as needed by the Navier–Stokes equations, viewed as a nonlinear evolution problem.
Basically, the original monolithic problem is understood as an interface problem in
terms of interface variables. The reinterpretation of the Dirichlet-to-Neumann algo-
rithm applied for this problem as a Gauss–Seidel method plays a crucial role, since
it allows us to change the resolution process to more robust and sophisticated iterative
methods. In [15] the GMRES iterative procedure was the approach chosen to solve the
problem. Here, the extension to nonlinear problems is carried out by employing either
the Broyden method or the Newton-GMRES algorithm. Different situations are as-
sessed, and the performance of specific variants of these algorithms is discussed.

This work is organized as follows. Section 2 presents the original problem. The
coupling strategy is explained in detail in section 3, while several numerical results
are presented in section 4. Finally, the main conclusions are drawn in section 5.

2. Coupled dimensionally-heterogeneous models. This section presents the
basic elements in the formulation of the problem of coupling dimensionally-
heterogeneous models. Also, the reduction of this problem to a problem involving
the imposition of flow rate boundary conditions is performed. For a thorough derivation
of the models that will be presented here the reader is referred to [2], [8], [9], [12].

For the flow models presented in this section we assume incompressibility of the
fluid and also rigidity of the pipes. This is by no means restrictive from the point of
view of the domain decomposition approach. Indeed, compliant vessels are explored
in the last example, showing the applicability of the methodology to hemodynamics
problems. This is why the formulation is not oversimplified in some parts where it could
be, but it is presented in a more general framework so as to embrace more general situa-
tions like the one encountered in hemodynamics.

2.1. Mathematical model. In order to introduce the model we resort to the sim-
plest situation shown in Figure 2.1 where the interaction between two systems with
different leading geometrical scales is shown. Also, we employ graph notation, denoting
byN the nodes (or complex models), by C the connections (or simple models), and by I
the coupling interfaces. The Times font is used for the elements described with the calli-
graphic font within the text.

FIG. 2.1. Coupled system consisting of two geometrical scales.
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System N has complex dynamics and is modeled via the full Navier–Stokes equa-
tions (two-dimensional (2D) or three-dimensional (3D)), and thus N denotes a spatial
domain Ω ∈ Rn ðn ¼ 2; 3Þ. In order to have existence and uniqueness of the solution we
will always assume that the data is sufficiently small. In turn, system C has simple dy-
namics and is represented through the condensed Navier–Stokes equations (in particu-
lar, it can be zero-dimensional (0D) models when no change of area is considered or 1D
models when the pipes are deformable).

Over the coupling interface I , which denotes a given portion of the boundary ∂Ω of
Ω, continuity of mean velocity (or, equivalently, mass flow) and of normal traction as-
sumed to hold. The governing equations are (here we consider 0D models for the
simple components)8>>>>>>>>>>><

>>>>>>>>>>>:

ρ ∂u
∂t þ ρð∇uÞuþ∇p− μΔu ¼ 0 in N ;

divu ¼ 0 in N ;
u ¼ 0 on ∂Ω \ Γ;
Q1 ¼ −

R
Γ u · ndΓ in I ;

−P1n ¼ 1
jΓj
R
Γð−pIþ μð∇uþ ð∇uÞT ÞÞndΓ in I ;

M dQ1

dt þKQ1 − ðP2 − P1Þ− B ¼ 0 in C;
Q1 þQ2 ¼ 0 in C;
P2 ¼ Pref in O;

ð2:1Þ

where Γ is the coupling interface corresponding to I with unit outward normal n (seen
from system N ), ðu; pÞ is the pair velocity-pressure in N , and ρ and μ are the density
and dynamic viscosity. Note that a Dirichlet boundary condition is imposed over the
complementary boundary to the coupling interface ∂Ω \ Γ. Also, Q1 and Q2 are the flow
rates at both boundaries (ends) of the C component. Note here that just one flow rate
should be necessary; however, as said before, we keep both quantities so the ideas can be
straightforwardly applied to more general contexts. The drop pressure is given by
ΔP ¼ P2 − P1, noting that here we impose a pressure boundary condition to this com-
ponent given by Pref at the outlet boundary of the network, denoted byO. Finally, B is a
source term that represents a pump acting in such connection, and M and K are the
inertial and friction coefficients, which read as

M ¼ ρL

A
;

K ¼ 8πμL

A2 circular pipe;

K ¼ 12μL

a3H
parallel plates;ð2:2Þ

where L is the length of the pipe, A is the sectional area of the pipe (in the case of a
circular pipe), and a is the separation between plates with depth equal to H (in the case
of parallel plates). Over Γ continuity of flow rate and continuity of mean traction are
considered.

The problem stated by (2.1) is, however, not well posed. We thus make the choice

1

jΓj
Z
Γ
ð−pIþ μð∇uþ ð∇uÞT ÞÞndΓ ¼ ð−pIþ μð∇uþ ð∇uÞT ÞÞn in I ;ð2:3Þ

which implies that the quantity ð−pIþμð∇uþ ð∇uÞT ÞÞn is constant across Γ. With
this choice we are making use of the do-nothing approach, and therefore we recover
uniqueness (see [12]) so that we end up with the following problem for the coupled,
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dimensionally-heterogeneous system:

8>>>>>>>>>>><
>>>>>>>>>>>:

ρ ∂u
∂t þ ρð∇uÞuþ∇p− μΔu ¼ 0 in N ;

divu ¼ 0 in N ;
u ¼ 0 on ∂Ω \ Γ;
Q1 ¼ −

R
Γ u · ndΓ in I ;

−P1n ¼ ð−pIþμð∇uþ ð∇uÞT ÞÞn in I ;
M dQ1

dt þKQ1 − ðP2 − P1Þ− B ¼ 0 in C;
Q1 þQ2 ¼ 0 in C;
P2 ¼ Pref in O:

ð2:4Þ

In order to treat the different components following a black-box approach we choose
now the interface variables as being ðQ1; P1Þ, that is, the flow rate and pressure at
the coupling interface. With this, the problem is augmented and reads as

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ρ ∂u
∂t þ ρð∇uÞuþ∇p− μΔu ¼ 0 in N ;

divu ¼ 0 in N ;
u ¼ 0 on ∂Ω \ Γ;
QN ;1 ¼ −

R
Γ u · ndΓ in I ;

−PN ;1n ¼ ð−pIþ μð∇uþ ð∇uÞT ÞÞn in I ;
Q1 þQN ;1 ¼ 0 in I ;
P1 − PN ;1 ¼ 0 in I ;
Q1 −QC;1 ¼ 0 in I ;
P1 − PC;1 ¼ 0 in I ;
M

dQC;1
dt þKQC;1 − ðPC;2 − PC;1Þ− B ¼ 0 in C;

QC;1 þQC;2 ¼ 0 in C;
PC;2 ¼ Pref in O;

ð2:5Þ

where we used ðQN ;1; PN ;1Þ and ðQC;1; PC;1Þ to denote the variables from the complex
and simple models that must match the interface state variables ðQ1; P1Þ.

FIG. 2.2. Scheme of a generic coupled dimensionally-heterogeneous system.
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This system can be extended to a generic graph-like network as shown in Figure 2.2.
Let us say that it consists of nT nodes (complex models), cT connections (simple
models), iT interfaces (coupling interfaces), and oT network outlets.

Therefore, as happened with (2.5), in this case we have

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ρ ∂un

∂t þ ρð∇unÞun þ∇pn − μΔun ¼ 0 in N n; n ¼ 1; : : : ; nT ;
divun ¼ 0 in N n; n ¼ 1; : : : ; nT ;
un ¼ 0 on ∂Ωn \ Γn; n ¼ 1; : : : ; nT ;
QN n;l ¼ −

R
Γl
un · nldΓ on Γl; l ¼ 1; : : : ; Nn; n ¼ 1; : : : ; nT ;

−PN n;lnl ¼ ð−pnIþ μð∇un þ ð∇unÞT ÞÞnl on Γl; l ¼ 1; : : : ; Nn; n ¼ 1; : : : ; nT ;
Qi þQN n;ljI i

¼ 0 in I i; i ¼ 1; : : : ; iT ;

Pi − PN n;ljI i
¼ 0 in I i; i ¼ 1; : : : ; iT ;

Qi −QCc;kjI i
¼ 0 in I i; i ¼ 1; : : : ; iT ;

Pi − PCc;kjI i
¼ 0 in I i; i ¼ 1; : : : ; iT ;

Mc
dQCc;1

dt þKcQCc;1 − ðPCc;2 − PCc;1Þ− Bc ¼ 0 in Cc; c ¼ 1; : : : ; cT ;
QCc;1 þQCc;2 ¼ 0 in Cc; c ¼ 1; : : : ; cT ;
PCc;kjOo

¼ Po
ref in Oo; o ¼ 1; : : : ; oT :

ð2:6Þ

Here QCc;kjI i
and PCc;kjI i

are the flow rate and pressure in the simplified model Cc
over the coupling interface I i (with k ¼ 1, 2 depending on whether I i is an inlet or
an outlet for the Cc component). Analogously, PCc;kjOo

is the pressure in the simplified
model over the network outlet Oo (with k ¼ 1, 2 depending on whether Oo is an inlet or
an outlet for the Cc component), which equals the data Po

ref . Likewise, QN n;ljI i
and

PN n;ljI i
are the flow rate and pressure in the complex model N n over the local boundary

Γl, and that corresponds to the coupling interface I i. We denote by Nn the number of
interfaces owned by the complex modelN n, while the number of interfaces owned by the
simple model Cc is triviallyNc ¼ 2 (however, more general situations can be considered).
Notice that subscripts denote indexes referring to local numeration (component-
specific), whereas superscripts refer to indexes in global numeration (interfaces and net-
work outlets).

Remark 1. Problem (2.6) could be simplified by eliminating, for example, the un-
knowns QN n;ljI i

and PN n;ljI i
. Nonetheless, we keep them in order to put in evidence,

when selected, the variables that are going to play the role of boundary conditions
in the domain decomposition perspective that will be discussed in section 3.

2.2. On the imposition of flow rate boundary conditions. The problem of
imposing flow rate boundary conditions is actually a very particular situation of the
problem referred to in the previous section. Consider the scheme shown in Figure 2.3,
where a complex model N consists of one incoming connection and two outgoing con-
nections. Over each connection we know exactly the flow rate, beingQ1,Q2, andQ3 such
that

P
3
i¼1 Q

i ¼ 0.
Indeed, this problem is formulated just by getting rid of the equations that describe

the dynamics of the simplified models, because the flow rates Qi, i ¼ 1, 2, 3, are not
unknowns here; then
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8>>>>>>>>><
>>>>>>>>>:

ρ ∂u
∂t þ ρð∇uÞuþ∇p−μΔu ¼ 0 in N ;

divu ¼ 0 in N ;
u ¼ 0 on ∂Ω \ Γ;
QN ;l ¼ −

R
Γl
u · nldΓ on Γl; l ¼ 1; 2; 3;

−PN ;lnl ¼ ð−pIþ μð∇uþ ð∇uÞT ÞÞnl on Γl; l ¼ 1; 2; 3;
Qi −QN ;ljI i

¼ 0 in I i; i ¼ 1; 2; 3;

Pi − PN ;ljI i
¼ 0 in I i; i ¼ 1; 2; 3:

ð2:7Þ

In this case, Qi is the known flow rate, while Pi is the resulting normal traction that
plays the role of a Lagrange multiplier in order to impose the given flow rate.

Remark 2. The incompresible fluid flow problem in rigid pipes is not well posed if all
flow rates are imposed at the inlet/outlet boundaries: (i) if

P
3
i¼1 Q

i ≠ 0, this is because
of the compatibility of the data, whereas (ii) if

P
3
i¼1 Q

i ¼ 0, the average pressure is still
unknown (actually, can be arbitrarily chosen). In the latter case we need to fix the pres-
sure at some point to have well-posedness. In the case of the whole network
(see (2.6)), if the set of outlet boundaries Oo is empty, then we also need to fix the pres-
sure at some point. The same holds for each local component (3D or 0D) when we split
the network in the domain decomposition perspective. Therefore, imposing flow rates at
the ends of the connections may give rise to both cases (i) and (ii). For the case of de-
forming domains (0D, 1D, or 3D) the flow rate can be imposed at all boundaries without
any restriction.

3. Partitioned strategy. First, in this section the problem already presented in
section 2 is recast in terms of coupling (or interface) variables, presenting the coupling
strategy developed in [15] for linear problems and extending it to nonlinear problems like
the ones seen in the previous section.

3.1. Interface variables problem. Generally speaking, the choice of the inter-
face variables depends upon the underlying models of a given coupling interface, spe-
cifically upon the physical quantities for which some sense of conservation or continuity
exists. When dealing with heterogeneous, or nonconforming media, besides the physical
considerations other numerical-mathematical conditions have to be taken into account.
In particular, the trace of the approximation spaces employed at each side of the cou-
pling interface. It is worth noting that there exist inf-sup-like conditions that pose the
necessary requirements, regarding what was said above, to ensure existence and unique-

FIG. 2.3. Complex system with flow rate boundary conditions.
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ness of the solutions of the global system. Nevertheless, we will not delve into these
mathematical aspects, which are partially treated in [1], [6].

The simplest choice consists in taking as interface unknowns the variables corre-
sponding to the simplest model among those which share a given coupling interface.
In the cases developed in the present work (see section 2) such choice corresponds to
flow rateQi and pressure Pi, i ¼ 1; : : : ; iT . Hence, when talking about Neumann bound-
ary conditions we understand the imposition of the pressure Pi, while by Dirichlet
boundary conditions is understood the imposition of the flow rate Qi.

Rewriting problem (2.6) in terms of the interface variables ðfPigiTi¼1; fQigiTi¼1Þ re-
quires the elimination of the internal degrees of freedom of the system. In order to
do so, it is necessary to define the mappings that relate the interface variables among
them, in the spirit of the classical Steklov–Poincaré operator found in linear problems.
Let us isolate the treatment of each submodel (complex and simple ones). In what fol-
lows the numeration of the quantities is given locally, that is, a local numeration for each
submodel, without relation with the numeration given in the whole problem (2.6).

First, for each complex model N n we have Nn coupling boundaries. It is assumed
that there are NQ

n coupling boundaries where the flow rate is imposed (the data at hand
is (fQN n;jgj∈SQ

n
), SQ

n being the corresponding set of indexes and NQ
n its cardinality),

whereas NP
n is the number of coupling boundaries where a Neumann boundary

condition, via the value of the pressure, is considered (the data at hand is
(fPN n;jgj∈SP

n
), SP

n being the corresponding set of indexes and NP
n its cardinality). Then

it is Nn ¼ NQ
n þ NP

n . Thus, for each complex model N n, from problem (2.6), we can
write the following abstract functional relation among the unknowns
ðfPN n;jgj∈SQ

n
; fQN n;jgj∈SP

n
Þ and the data ðfPN n;jgj∈SP

n
; fQN n;jgj∈SQ

n
Þ as follows:

� fPN n;jgj∈SQ
nfQN n;jgj∈SP
n

�
¼ GN n

�� fQN n;jgj∈SQ
nfPN n;jgj∈SP
n

��
:ð3:1Þ

Note that there is a time dependence in the definition of the operator GN n
. This has

been disregarded for notational simplicity. The functional relation given by this operator
maps, at any time, RNQ

nþNP
n onto itself, that is,

GN n
∶ðR× · · · ×RÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

NQ
n times

× ðR× · · · ×RÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
NP

n times

→ ðR× · · · ×RÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
NQ

n times

× ðR× · · · ×RÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
NP

n times

∀ t;ð3:2Þ

and amounts to the solution of the following boundary value problem (for a given com-
plex model N n):

8>>>>>>>>><
>>>>>>>>>:

ρ ∂un

∂t þ ρð∇unÞun þ∇pn − μΔun ¼ 0 in N n;
divun ¼ 0 in N n;
un ¼ 0 on ∂Ωn \ Γn;
−
R
Γj
un · njdΓ ¼ QN n;j on Γj; j ∈ NQ

n ;

−PN n;jnj ¼ ð−pnIþ μð∇un þ ð∇unÞT ÞÞnj on Γj; j ∈ NQ
n ;

QN n;j ¼ −
R
Γj
un · njdΓ on Γj; j ∈ N P

n ;

ð−pnIþ μð∇un þ ð∇unÞT ÞÞnj ¼ −PN n;jnj in Γj; j ∈ N P
n :

ð3:3Þ

The mapping GN n
relates the imposed boundary conditions with the corresponding un-

knowns (dual variables). In vector notation expression (3.1) is
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�
PNQ

n

QNP
n

�
¼ GN n

��
QNQ

n

PNP
n

��
;ð3:4Þ

where each component of the vector represents a local interface of the complex
model N n.

Remark 3. Suppose that NP
n ¼ 0 (Nn ¼ NQ

n ) and that the problem is linear and
homogeneous. Then, expression (3.4) becomes

PNn
¼ GSP

N n
ðQNn

Þ;ð3:5Þ

which is the classical Steklov–Poincaré operator that, for a given primal quantity,
returns the dual variable. Likewise, if NQ

n ¼ 0 (Nn ¼ NP
n ), and under the same assump-

tions, expression (3.4) becomes

QNn
¼ ½GSP

N n
�−1ðPNn

Þ:ð3:6Þ

Remark 4. Take the case when NP
n ¼ 0, that is, the problem given by expression

(3.5) from the previous remark. Such a problem may not be well posed. Indeed, the flow
rate information provided as boundary conditions must meet the requirement

XNn

j¼1

QN n;j ¼ 0;ð3:7Þ

due to the incompressibility constraint, and we have to fix the pressure at some point.
Otherwise, the problem does not have a solution. This tells us that the choice of bound-
ary conditions is not always arbitrary. In fact, devising an iterative procedure to solve
(3.5) entails evaluating the residual at several iterations. Through the iterations, via an
orthonormalization-based algorithm (or Richardson iterations), for instance, the con-
straint

PNn

j¼1 QN n;j ¼ 0 is not satisfied in general. Therefore, the iterative procedure
is not well posed. This is the same problem as the one commented on in section 2.2
(see Remark 2).

Depending upon the model under study, it is not always possible to find an explicit
relation like (3.4), but it is possible to write an implicit relation as follows:

FN n

��
PNQ

n

QNP
n

�
;

�
QNQ

n

PNP
n

��
¼ 0:ð3:8Þ

With the purpose of simplifying the notation we reorder the variables as follows:

FN n

��
PNQ

n

PNP
n

�
;

�
QNQ

n

QNP
n

��
¼ FN n

ðPNn
;QNn

Þ ¼ 0:ð3:9Þ

Here we have analyzed the complex models. Analogously, let us turn our attention to the
simple models (the connections). In the class of models treated in the present work we
always have Nc ¼ 2 for any simple model Cc (a generalization could be in order, but we
stick to the simplest case for the sake of clarity). Then we have three possibilities
ðNP

c ; N
Q
c Þ ¼ ð1; 1Þ, ðNP

c ; N
Q
c Þ ¼ ð2; 0Þ, and ðNP

c ; N
Q
c Þ ¼ ð0; 2Þ. Particularly, in an itera-

tive setting the latter case suffers from the same ill-posedness as the complex model with
NP

n ¼ 0. For a simple model Cc we can write, from problem (2.6), the following relation
(for the case where ðNP

c ; N
Q
c Þ ¼ ð1; 1Þ):
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�
PCc;1
QCc;2

�
¼ GCc

��
QCc;1
PCc;2

��
;ð3:10Þ

where, as with expression (3.1), there is a time dependence that was not given explicitly
for ease of notation. Hence, the functional relation maps, at any time, R2 onto itself,
that is,

GCc∶R× R → R× R ∀ t;ð3:11Þ

and it represents the following problem (assuming that neither of the two boundaries of
this simple model is a network outlet):

�
Mc

dQCc;1

dt þKcQCc;1 − ðPCc;2 − PCc;1Þ− Bc ¼ 0 in Cc;
QCc;1 þQCc;2 ¼ 0 in Cc:

ð3:12Þ

Proceeding as before we can rearrange the equation to recast it through an implicit op-
erator FCc as follows:

FCc

��
PCc;1
PCc;2

�
;

�
QCc;1
QCc;2

��
¼ FCcðPCc

;QCc
Þ ¼ 0:ð3:13Þ

Remark 5. Suppose that we have ðNP
c ; N

Q
c Þ ¼ ð2; 0Þ and that the data at hand is P1

and P2. Then, problem (3.10) becomes
�
QCc;1
QCc;2

�
¼ ½GSP

Cc
�−1

��
PCc;1
PCc;2

��
:ð3:14Þ

Solving (3.12) we find the explicit form of operator ½GSP
Cc

�−1, and (3.14) yields

�
QCc;1

QCc;2

�
¼

0
B@− 1

Mc

R
t
0 e

−Kc
Mc

ðt−σÞð·Þdσ 1
Mc

R
t
0 e

−Kc
Mc

ðt−σÞð·Þdσ
1
Mc

R
t
0 e

−Kc
Mc

ðt−σÞð·Þdσ − 1
Mc

R
t
0 e

−Kc
Mc

ðt−σÞð·Þdσ

1
CA
�
PCc;1

PCc;2

�

þ

0
B@

1
Mc

R
t
0 Bce

−Kc
Mc

ðt−σÞdσ

− 1
Mc

R
t
0 Bce

−Kc
Mc

ðt−σÞdσ

1
CA:ð3:15Þ

This problem is well posed because forPCc;1 and PCc;2 given, we are able to find the values
of QCc;1 and QCc;2. Nevertheless, the operator matrix in (3.15) is not invertible. This
brings us to the problem of imposing flow rate at both ends of this component. In fact,
suppose we have ðNP

c ; N
Q
c Þ ¼ ð0; 2Þ; the data at hand now isQCc;1 andQCc;2, and problem

(3.10) becomes
�
PCc;1
PCc;2

�
¼ GSP

Cc

��
QCc;1
QCc;2

��
:ð3:16Þ

This functional relation is well posed just when QCc;1 þQCc;2 ¼ 0 and we fix one of the
pressure values; otherwise the problem is ill posed. Clearly, when the global problem is
well posed the operator GSP

Cc
exists. This is an example of the restrictions presented above

on the choice of boundary conditions (see Remark 4).
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Finally, consider the case ðNP
c ; N

Q
c Þ ¼ ð1; 1Þ; the data at hand isQCc;1 and PCc;2, and

problem (3.10) is written as
�
PCc;1
QCc;2

�
¼ HCc

��
QCc;1
PCc;2

��
:ð3:17Þ

The explicit form of this operator is given by
�
PCc;1
QCc;2

�
¼

�
−Mc

dð·Þ
dt −Kcð·Þ 1
−1 0

��
QCc;1
PCc;2

�
þ
�
Bc

0

�
:ð3:18Þ

The convenience of dealing with implicit operators as in expression (3.13) is evident
when we want to switch the role of the variables between data and unknowns, provided
that each local problem is well posed.

3.2. Multicomponent treatment. The way in which we treat separately a given
complex model or a given simple model has already been explained. In this section we
describe the formulation involving the interaction of many components, which corre-
sponds to the coupled problem (2.6).

As a first step we group all the interface variables fPigiTi¼1 and fQigiTi¼1, given in
global numeration, in the vector quantities P and Q, respectively, that is,

P ¼

2
6664

P1

P2

..

.

PiT

3
7775; Q ¼

2
6664

Q1

Q2

..

.

QiT

3
7775:ð3:19Þ

Such global quantities are related to the local quantities of each complex model through
a mapping RNn

as follows:

PNn
¼ RNn

P; QNn
¼ RNn

Q;ð3:20Þ

where

PNn
¼

2
6664

PN n;1

PN n;2

..

.

PN n;Nn

3
7775; QNn

¼

2
6664

QN n;1

QN n;2

..

.

QN n;Nn

3
7775:ð3:21Þ

Likewise, we give the counterpart relation, denoted by RCc
, with the local quantities of

each simple model

PNc
¼ RCc

P; QNc
¼ RCc

Q;ð3:22Þ

where

PNc
¼

�
PCc;1
PCc;2

�
; QNc

¼
�
QCc;1
QCc;2

�
:ð3:23Þ

These mappings also satisfy
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P ¼
XnT

n¼1

RT
Nn
PNn

; Q ¼
XnT

n¼1

RT
Nn

QNn
;ð3:24Þ

P ¼
XcT
c¼1

RT
Cc
PNc

; Q ¼
XcT
c¼1

RT
Cc
QNc

;ð3:25Þ

establishing a mapping between local and global numerations.
Remark 6. The linear mappings RNn

∶RiT → RNn and RCc
∶RiT → RNc (recall that

Nc ¼ 2) are, algebraically speaking, rectangular matrices whose entries are zeros and
ones.

For each coupling interface we have two unknowns Pi andQi, and the equations are
provided by the corresponding implicit operators (3.9) (complex models) and (3.13)
(simple models), that is,

FN n
ðPNn

;QNn
Þ ¼ 0; n ¼ 1; : : : ; nT ;

FCcðPCc
;QCc

Þ ¼ 0; c ¼ 1; : : : ; cT :ð3:26Þ

Changing now to a global numeration of the variables we get

FN n
ðRNn

P;RNn
QÞ ¼ 0; n ¼ 1; : : : ; nT ;

FCcðRCc
P;RCc

QÞ ¼ 0; c ¼ 1; : : : ; cT :ð3:27Þ

The next step consists in renumerating the interface equations using the transpose of the
mappings RNn

and RCc
, which implies

RT
Nn
FN n

ðRNn
P;RNn

QÞ ¼ 0; n ¼ 1; : : : ; nT ;

RT
Cc
FCcðRCc

P;RCc
QÞ ¼ 0; c ¼ 1; : : : ; cT :ð3:28Þ

With these sets of equations we assemble the global problem consisting of 2iT interface
unknowns

FN ðP;QÞ ¼
XnT

n¼1

RT
Nn
FN n

ðRNn
P;RNn

QÞ ¼ 0;

FCðP;QÞ ¼
XcT
c¼1

RT
Cc
FCcðRCc

P;RCc
QÞ ¼ 0:ð3:29Þ

This is the system of nonlinear interface equations associated to the coupled pro-
blem (2.6).

In some particular cases, from (3.29) it is possible to obtain the explicit relation
between P and Q for components N and C yielding

P ¼ GSP
N ðQÞ or Q ¼ ½GSP

N �−1ðPÞ;ð3:30Þ

P ¼ GSP
C ðQÞ or Q ¼ ½GSP

C �−1ðPÞ.ð3:31Þ

Remark 7. In the classical domain decomposition context, usually the number of
unknowns is reduced by making use of the Steklov–Poincaré mappings GSP

N and GSP
C
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whenever these operators exist (in the case of compliant pipes this is true; for rigid pipes
see Remark 5). Indeed, after assembling the equations of all the complex models we
attain the system of iT nonlinear equations

T N ðQÞ ¼
XnT

n¼1

RT
Nn

FN n
ðRNn

GSP
C ðQÞ;RNn

QÞ ¼ 0;ð3:32Þ

or, performing the elimination in a different way,

T CðQÞ ¼
XcT
c¼1

RT
Cc
FCcðRCc

GSP
N ðQÞ;RCc

QÞ ¼ 0:ð3:33Þ

These equations are two alternatives of the version of the Steklov–Poincaré method for
the case of dimensionally-heterogeneous models treated in this work.

Remark 8. Giving continuation to the previous remark, the number of unknowns is
reduced again by making use of the inverse of the Steklov–Poincaré mappings, that is,
½GSP

N �−1 and ½GSP
C �−1 (see (3.30) and (3.31)). Thus, we reach a set of iT nonlinear equa-

tions given by

UN ðPÞ ¼
XnT

n¼1

RT
Nn

FN n
ðRNn

P;RNn
½GSP

C �−1ðPÞÞ ¼ 0;ð3:34Þ

or, proceeding analogously to the previous remark,

UCðPÞ ¼
XcT
c¼1

RT
Cc
FCcðRCc

P;RCc
½GSP

N �−1ðPÞÞ ¼ 0:ð3:35Þ

It can be noted that these two expressions are versions of the FETI method for the par-
ticular case of dimensionally-heterogeneous models dealt with in this work. As with the
previous remark, for linear problems both expressions are equivalent.

Remark 9. The previous remark states one of the most important features of the
methodology proposed in the present article. In fact, for the classical Steklov–Poincaré
and FETI methods it is necessary to be able to define the mappings GSP

N , GSP
C and their

inverses ½GSP
N �−1, ½GSP

C �−1. This limits the application of those more classical methods in
the cases where such operators cannot be defined.

3.3. An example to clarify notation. In order to exemplify the notation intro-
duced so far, let us consider a specific example like the one shown in Figure 3.1. It is a
closed network (the set Oo is empty), and we will consider that we impose the traction
(Neumann data) to all coupling points in all complex and simple components. Then, for
the problem to be well posed the pressure has to be fixed at any point in the network, for
which we assume a reference pressure at interface I1. This example resembles a network
that will be employed in section 4. The aim of this example is to provide all the elements
introduced in the previous section to this specific scenario.
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The matrices RNn
, n ¼ 1, 2, and RCc

, c ¼ 1, 2, 3, are given by

RN 1
¼

0
B@

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

1
CA; RC1

¼
�
1 0 0 0 0 0

0 1 0 0 0 0

�
;

RN 2
¼

0
B@

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

1
CA; RC2

¼
�
0 0 1 0 0 0

0 0 0 1 0 0

�
;

RC3
¼

�
0 0 0 0 1 0

0 0 0 0 0 1

�
:

Let us take for simplicity just the complex modelN 1. In this case, (3.26) for n ¼ 1 reads

FN 1
ðPN 1

;QN 1
Þ ¼

0
BB@

QN 1;1 − ½GSP
N 1

�−1
1
ðPN 1;1; PN 1;2; PN 1;3Þ

QN 1;2 − ½GSP
N 1

�−1
2
ðPN 1;1; PN 1;2; PN 1;3Þ

QN 1;3 − ½GSP
N 1

�−1
3
ðPN 1;1; PN 1;2; PN 1;3Þ

1
CCA ¼

0
@ 0

0
0

1
A;ð3:36Þ

where

½GSP
N 1

�−1 ¼

0
B@

½GSP
N 1

�−1
1

½GSP
N 1

�−1
2

½GSP
N 1

�−1
3

1
CA:ð3:37Þ

Then, expression (3.27) is

FN 1
ðRN 1

P;RN 1
QÞ ¼

0
B@

Q1 − ½GSP
N 1

�−1
1
ðP1; P3; P5Þ

Q3 − ½GSP
N 1

�−1
2
ðP1; P3; P5Þ

Q5 − ½GSP
N 1

�−1
3
ðP1; P3; P5Þ

1
CA ¼

0
@ 0

0
0

1
A:ð3:38Þ

The application of the mapping RN 1
to FN 1

yields the specific counterpart to (3.28),
that is,

FIG. 3.1. Specific network with iT ¼ 6, nT ¼ 2, cT ¼ 3, and oT ¼ 0.
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RT
N 1
FN 1

ðRN 1
P;RN 1

QÞ ¼

0
BBBBBBBBBB@

Q1 − ½GSP
N 1

�−1
1
ðP1; P3; P5Þ
0

Q3 − ½GSP
N 1

�−1
2
ðP1; P3; P5Þ
0

Q5 − ½GSP
N 1

�−1
3
ðP1; P3; P5Þ
0

1
CCCCCCCCCCA

¼ 0:ð3:39Þ

Performing the same steps for N 2 we assemble the system of equations provided by the
two complex models (see (3.29)) as follows:

FN ðP;QÞ ¼

0
BBBBBBBBBBBB@

Q1 − ½GSP
N 1

�−1
1
ðP1; P3; P5Þ

Q2 − ½GSP
N 2

�−1
1
ðP2; P4; P6Þ

Q3 − ½GSP
N 1

�−1
2
ðP1; P3; P5Þ

Q4 − ½GSP
N 2

�−1
2
ðP2; P4; P6Þ

Q5 − ½GSP
N 1

�−1
3
ðP1; P3; P5Þ

Q6 − ½GSP
N 2

�−1
3
ðP2; P4; P6Þ

1
CCCCCCCCCCCCA

¼ 0:ð3:40Þ

Analogously for the simple components after the assembling process we have

FCðP;QÞ ¼

0
BBBBBBBBBB@

Q1 − ½GSP
C1

�−1
1
ðP1; P2Þ

Q2 − ½GSP
C1

�−1
2
ðP1; P2Þ

Q3 − ½GSP
C2

�−1
1
ðP3; P4Þ

Q4 − ½GSP
C2

�−1
2
ðP3; P4Þ

Q5 − ½GSP
C3

�−1
1
ðP5; P6Þ

Q6 − ½GSP
C3

�−1
2
ðP5; P6Þ

1
CCCCCCCCCCA

¼ 0;ð3:41Þ

where, for c ¼ 1, 2, it is

½GSP
Cc

�−1 ¼
� ½GSP

Cc
�−1
1

½GSP
Cc

�−1
2

�
:ð3:42Þ

Therefore, to obtain the solution ðP;QÞ we have to solve the system of nonlinear equa-
tions composed by (3.40) and (3.41) using any iterative method.

3.4. Coupling strategy in linear problems. In this section the strategy to be
applied to deal with linear problems is outlined. For a more detailed presentation of this
simpler case, the reader is referred to [15].

When all the submodels (complex and simple ones) are linear, the implicit functions
FN n

and FCc are affine relations. Then, the system of equations (3.29) can be rewritten
in matricial form as �

KPP KPQ

KQP KQQ

��
P
Q

�
¼

�
bP
bQ

�
ð3:43Þ
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with

KPP ¼
XnT

n¼1

RT
Nn

AN n
RNn

;ð3:44Þ

KPQ ¼
XnT

n¼1

RT
Nn

BN n
RNn

;ð3:45Þ

KQP ¼
XcT
c¼1

RT
Cc
ACcRCc

;ð3:46Þ

KQQ ¼
XcT
c¼1

RT
Cc
BCcRCc

;ð3:47Þ

bP ¼
XnT

n¼1

RT
Nn

ZN n
;ð3:48Þ

bQ ¼
XcT
c¼1

RT
Cc
ZCc ;ð3:49Þ

where block matrices AN n
, ACc , BN n

, and BCc above are the derivatives of the affine
mappings FN n

and FCc with respect to P and Q, respectively, and block vectors
ZN n

and ZCc are the contributions of such mappings to the right-hand side.
As shown in [15], the system of equations (3.43) can be solved using any matrix-free

version of any iterative method, without the need of assembling the system explicitly.
Remark 10. The system of equations (3.43) resembles the classical finite element

assembling process if each component in the system is understood as, say, a very special
generalized finite element. Therefore, we have that each Cc, c ¼ 1; : : : ; cT , is a 0D finite
element with four unknowns (two per coupling interface) and also that each N n,
n ¼ 1; : : : ; nT , is a 3D finite element with twice as many unknowns as coupling inter-
faces (two unknowns per coupling interface). To summarize, their contributions to the
interface equations are equivalent to the element contributions to node equations en-
countered in the assembling procedure of a finite element method.

3.5. Coupling strategy in nonlinear problems. When the problem is non-
linear, the system of equations (3.29) can be solved using any iterative method for sol-
ving systems of nonlinear equations. The main difficulty is that, except for very specific
cases, the Jacobian of the system cannot be evaluated exactly, and the numerical eva-
luation becomes something computationally unaffordable. As a result, we must resort to
a Jacobian-free iterative procedure for nonlinear systems of equations. In the present
work, we shall analyze two of them: the so-called Broyden-update method (or simply
Broyden) and the Newton-GMRESmethod (see [13]). These algorithms are presented in
Table 3.1. Furthermore, two versions of the Broyden method are considered, the plain
algorithm and an orthonormalized version.

In the descriptions of Broyden and Newton-GMRES algorithms given by Table 3.1
the stopping criterion is not detailed. In the actual implementation a (standard) stop-
ping criterion is, of course, incorporated.
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In the Broyden method, when the inner loop is carried out, the algorithm is referred
to as the orthonormalized version of the Broyden method. If this loop and the subse-
quent normalization are skipped, we refer to it simply as the Broyden method.

The main difference between the Broyden and Newton-GMRES methods is that the
first method provides an estimate of the Jacobian of the system, which implies storing a
2iT × 2iT matrix. In turn, the second method does not perform such an estimate (it is
“matrix-free”). Moreover, while the orthonormalized version of the Broyden mtehod and
the Newton-GMRES method converge to the exact solution, in the case of linear pro-
blems (with exact arithmetic), in 2iT iterations, the plain Broyden method converges in
4iT iterations. Although the matrix storage might be considered a disadvantage of the
Broyden algorithm, it becomes something very desirable for transient problems. It is
easy to show that the initialization matrix of these algorithms is equivalent to a pre-
conditioner (see [13]). Therefore, for transient nonlinear problems, the number of itera-
tions to reach the convergence can be reduced drastically by picking, as the initialization
matrix, the estimation of the Jacobian obtained in the previous time step.

As well, the popular Gauss–Seidel method—with and without relaxation—and the
pure Newton method—Jacobian calculated by finite differences—are considered in some
comparisons.

4. Numerical results.

4.1. Implementation issues. Throughout the iterative process the 0D and 3D
subproblems have to be solved. This implies performing the time discretization of
the ordinary differential equation associated to the 0D model and the time and spatial
discretizations of the 3D model.

For the 0D model a first order backward Euler method is employed, and the equa-
tion is treated in a fully implicit fashion. The time discretization in the 3D model is also
accounted for by a first order backward Euler. The spatial discretization is carried out
with the finite element method for the monolithic velocity-pressure problem. We make
use of equal order interpolation with SUPG/PGP stabilization (see [7] for the details).
For the Navier–Stokes component we employ the full symmetric gradient variational
form, consistent with physical traction boundary conditions. Since each component

TABLE 3.1
Orthonormalized Broyden-update and Newton-GMRES algorithms for nonlinear systems.

System of m nonlinear equations of the form FðxÞ ¼ 0

Orthonormalized Broyden-update algorithm Newton-GMRES algorithm

Given x0 and B0, compute r0 ¼ Fðx0Þ Given x0, compute r0 ¼ Fðx0Þ
For j � 0 to m v1 ¼ r0

kr0k
wj ¼ −B−1

j rj For j � 1 to m
v ¼ wj wj ¼ 1

σ
½Fðx0Þ− Fðx0 þ σvjÞ�

For i � 0 to j− 1 For i � 1 to j
v ¼ v− ðvTwiÞwi hi;j ¼ wT

j vi
Enddo wj ¼ wj − hi;jvi
v ¼ v

kvk Enddo
xjþ1 ¼ xj þwj hjþ1;j ¼ kwjk
rjþ1 ¼ Fðxjþ1Þ vjþ1 ¼ wj

hjþ1;j

Bjþ1 ¼ Bj þ rjþ1v
T

vTwj
Enddo

Enddo xm ¼ x0 þVmH
−1
m kr0ke1
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may have a nonlinear response (the Navier–Stokes equations indeed have), a lineariza-
tion procedure must be taken into account when assessing the residual at each interation
of the nonlinear solver of the coupling interface equations. In this work (unless stated
otherwise) a Newton method is considered for the linearization of each nonlinear com-
ponent. This gives rise to outer and inner iterations. The outer iterations are the itera-
tions of the nonlinear solver for the system of coupling interface equations (Broyden,
Gauss–Seidel, etc.), whereas the inner iterations are the iterations needed to evaluate
the residual in the nonlinear components (Newton, fixed point, etc.). Regarding non-
linear tolerances, in all cases studied here (unless stated otherwise), convergence is
achieved when the relative residual is less than 1 · 10−6 or when the absolute residual
is less than 1 · 10−10.

Concerning the Broyden solver, unless stated otherwise we initialize the algorithm
at the initial time step with the identity matrix, which is the worst-case scenario.

In all the examples presented below, the notation introduced in sections 2 and 3 can
easily be identified, and no further reference is made. Finally, the units used in the ex-
amples follow the SI system.

4.2. On the boundary conditions at coupling interfaces. As aforementioned,
when splitting an original dimensionally-heterogeneous system into dimensionally-
homogeneous subsystems (stand-alone 0D/1D or 3D/2D problems), it is necessary to
specify the way in which the coupling interface is going to behave for each one of these
components. From the practical point of view we have some convenient choices.

• In the case of 0D noncompliant models we have the restriction stated in
Remark 5 due to which we are not able to impose flow rate conditions on both
ends of a given 0D model.

• In the case of 2D/3D models notice that it is far easier to impose a Neumann
boundary condition, that is, to impose the normal traction, than to impose the
flow rate, and yet in the latter case we have the issue from Remark 4.

In view of these comments, in all the examples that follow the complex models (2D/3D
models) are fed with Neumann boundary data through all the coupling interfaces, while
for the 0D models this is specified in each case.

The imposition of the flow rate in 2D/3D models, although more difficult than
Neumann boundary conditions, can be performed (see [9], [11], [20], [21]). In any case,
it is important to note that the flexibility in the choice of the boundary conditions per-
mits us to formulate the problem making use of any available black-box solver (which
may allow for flow rate and/or Neumann boundary conditions).

4.3. Example 1: Axisymmetric jet pump. This first example presents the sim-
plest situation, in which we have one coupling interface. Then, the interface problem
consists of two unknowns, namely, flow rate Q and normal force P. The problem dwells
in modeling the flow produced by a jet pump in a reservoir through a secondary pipe, as
shown in Figure 4.1. Particularly, we will model the jet flow produced in such a pipe of
the reservoir. According to the spatial dimensions and flow regime, this pipe will be
considered through a 2D axis-symmetric domain. The rightmost boundary in the do-
main of analysis is a traction-free boundary. Over the lower-left part, where the 2Dmod-
el will be coupled to the 0D model (line C), a Neumann boundary condition is imposed.
Also, a nonslip boundary condition is taken over the pipe wall, whereas for the rest of the
boundary traction-free boundary conditions are assumed.

In Figure 4.2 the dimensions are specified. According to the notation of this figure
we have Z ¼ 0.9 m, h ¼ 0.1 m, H ¼ 0.3 m, and W ¼ 6.3 m. In addition, all the
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boundary conditions are given. The immersed pipe with the pump is incorporated in the
problem through a 0Dmodel, which is coupled with the 2D axis-symmetric model for the
pipe through the lower-left interface (thick line; see Figure 4.2). This coupling interface
is such that we impose the flow rate to the 0D model and the pressure—coupling force—
(a Neumann boundary condition) to the 2D model.

For this problem we simulate the effect of an oscillatory pump characterized by its
mean value Pmean, the mean-to-maximum oscilation amplitude Pamp, and the period T .
These data are specified in each case. The density and viscosity of the fluid are
ρ ¼ 1 kg∕ m3 and μ ¼ 0.01 Pa:s, respectively. Recall that the parameters that charac-
terize the 0D model corresponding to the immersed pipe are L ¼ 6 m (unless stated
otherwise) and R ¼ h; therefore, A ¼ πh2 for the 0D model. The time step in all tested
cases was Δt ¼ 0.05 s, and the spatial discretization resulted in a 2D mesh with
7265 nodes.

We choose this simple situation to carry out the sensitivity analysis of the number of
iterations to achieve convergence with respect to different elements in the problem:
(1) the iterative algorithm used to solve the interface problem, (2) the qualitative
and quantitative form of the pump signal, and (3) the parameters that define the
0D pipe.

4.3.1. Sensitivity with respect to the iterative algorithm. First of all we
compare different iterative algorithms when imposing a squared wave at the entrance
of the pipe defined by Pmean ¼ 300 Pa, Pamp ¼ 30 Pa, and T ¼ 1 s. In Figure 4.3 the
solution at the coupling interface (flow rate and normal force) is presented together with
the comparison of the performance of the different methods: orthonormalized Broyden

FIG. 4.1. Reservoir with a jet pump.

FIG. 4.2. Details of the axis-symmetric geometry of the complex component.
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method and Newton-GMRES method (see Table 3.1) and Gauss–Seidel and pure
Newton methods.

We observe that the Broyden method performs much better than the other meth-
ods. In particular, we note the poor convergence properties of the Newton-GMRES
method. Even the pure Newton method takes fewer iterations to converge. The worst
case is the Gauss–Seidel solver as expected (relaxation ω ¼ 0.25). Also, numerical tests
were carried out taking Pmean ∈ f100 Pa; 200 Pag, rendering analogous results (not pre-
sented here) in terms of the number of iterations performed by each method, exhibiting
an apparent lack of sensitivity with respect to the Reynolds number.

4.3.2. Sensitivity with respect to the pump waveform. In order to gain in-
sight into the performance of the methods, we investigate the sensitivity of the number
of iterations with respect to the waveform applied through the 0D pipe. Here we focus on
the Broyden method, and we employ three kinds of signals: (i) sine, (ii) tooth, and
(iii) square. The period is T ¼ 1 s, Pmean ¼ 300 Pa, and Pamp ¼ 30 Pa. Figure 4.4

FIG. 4.3. Performance of different iterative algorithms for the square waveform.

FIG. 4.4. Performance of orthonormalized Broyden method for different input conditions.
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features the number of iterations for the three input conditions. As well, the flow rate at
the coupling interface is given. It can be noticed that there are no significant differences
when changing the forcing pump regarding the average number of iterations to achieve
convergence.

In addition, we close this example testing for the square waveform and for the same
Pmean ¼ 300 Pa and T ¼ 1 s, different amplitudes Pamp ∈ f15 Pa; 45 Pa; 75 Pag.
Figure 4.5 displays the resulting flow rate at the coupling point, and the performance
of the Broyden method is assessed. Note that although the amplitude enlarges signifi-
cantly, the number of interations taken to achieve convergence changes slightly.

Finally, we modify the frequency that defines the square signal in the pump in order
to evaluate the robustness of the Broyden method, which appears to be the best method
according to the previous findings. As well, we compare this performance with the
Gauss–Seidel method. Thus we consider Pmean ¼ 300 Pa, Pamp ¼ 30 Pa, and a period
ranging T ∈ f0.3 s; 0.5 s; 1.0 s; 2.0 s; 3.0 sg. The results are summarized in Table 4.1. In
this table the Broyden method is shown to be also insensitive to the frequency of the
input signal (recall that the same time step was used in all cases, Δt ¼ 0.05 s). As for the
relaxed Gauss–Seidel method, the relaxation parameter was taken to be ω ¼ 0.25 which
was tested to be among the ones that made the Gauss–Seidel method perform better for
this case.

4.3.3. Sensitivity with respect to the physical parameters. In this section we
test the behavior of the orthonormalized Broyden and Gauss–Seidel algorithms with
respect to variations in the physical parameters. We focus on the length of the 0D pipe,
denoted by L, which, in turn, changes the values of M ¼ ρL

A and K ¼ 8πμL
A2 according to

the expression (2.2). The rest of the parameters are Pmean ¼ 300 Pa, Pamp ¼ 30 Pa, and

FIG. 4.5. Performance of orthonormalized Broyden method for different amplitudes of the square wave.
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T ¼ 1 s with Δt ¼ 0.05 s. In Table 4.2, we present the iteration number for different
values of L for the Broyden and Gauss–Seidel algorithms. In the last case we consider
with (ω ¼ 0.25) and without (ω ¼ 1.0) relaxation.

We observe in Table 4.2 that the number of iterations for the Broyden algorithm is
bounded to less than 10 in all range of values of L, while for Gauss–Seidel the number of
iterations depends strongly on L and also on the chosen relaxation parameter ω. Hence,
the Broyden method turns out to be far less expensive and robust than the Gauss–Seidel
method.

4.4. Example 2: Interconnected closed systemwith two pumps. The aim of
this second example is to analyze a more complex situation where the fluid is confined in
a closed-loop network as shown in Figure 4.6. Two forcing pumps are introduced in the
vertical pipes that drive the fluid through the pipes and the five fluid collector compart-
ments. In the 2D fluid compartments all the boundaries, save for those in which we per-
form a coupling with a 0D model, are no-slip boundaries. The number of coupling
interfaces is 16; therefore the number of unknowns in the interface problem is 32. When
spliting the system into homogeneous subsystems we apply Neumann boundary condi-
tions on the 2D models (the normal force) and pressure on the 0D models. Since the
network is closed we fixed the pressure reference value (Pref ¼ 0).

As already said, there are two sinusoidal pumps with amplitudes P1;max ¼ P2;max ¼
150 Pa and periods T 1 ¼ 10 s and T 2 ¼ 7 s, respectively. Index 1 denotes the pump
located over the left vertical pipe and index 2 is used for the right vertical pipe. The

TABLE 4.1
Number of iterations for the different periods.

Iterations (min-max)

Period, T Orthonormalized Broyden Relaxed Gauss–Seidel (ω ¼ 0.25)

0.3 2–4 35–40

0.5 2–4 35–41

1.0 2–4 36–43

2.0 2–4 36–43

3.0 2–2 36–39

TABLE 4.2
Number of iterations for different values of L.

Iterations (min-max)

L Orthonormalized Broyden Relaxed Gauss–Seidel (ω ¼ 0.25) Gauss–Seidel

0.12 3–5 49–49 7–8

0.6 3–5 46–49 23–24

1.2 3–10 37–49 diverges

6.0 2–4 36–43 diverges

12.0 7–7 diverges diverges

60.0 2–4 diverges diverges

120.0 2–2 diverges diverges
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density and viscosity of the fluid are ρ ¼ 1 Kg ∕ m3 and μ ¼ 0.01 Pa:s, respectively. The
2D compartments are squares with a side measure S ¼ 4 m. The 2D connecting pipes
that are incoming and outgoing the compartments are all L2D ¼ 4 m long; the vertical
and horizontal ones have a separation between the parallel plates ha ¼ 1 m, whereas for
the diagonal pipes this separation is hb ¼

ffiffiffi
2

p
m. In turn, the vertical and horizontal 0D

models are configured such that they represent pipes (actually parallel plates) La;0D ¼
16 m long, while the diagonal 0D models are such that the pipes they represent are ap-
proximately Lb;0D ¼ 7.556 m long so as to get the conduction system closed. The time
step used was Δt ¼ 0.1 s, and the spatial discretization rendered meshes of approxi-
mately 1100 nodes per 2D component. Throughout the simulation the Reynolds number
reaches a maximum value of Remax ≃ 1100.

Different iterative methods were tested in this case: (i) Broyden, (ii) Broyden with
orthonormalization, and (iii) Newton-GMRES with parabolic line search. In Figure 4.7
a comparison of the performance of the different nonlinear solvers is presented. From the
figure we conclude that the Broyden method with orthonormalization is without a
doubt the best option, taking 4 to 6 iterations per time step to converge. The pure Broy-
den method is less effective than its orthonormalized version, taking between 20 and 30
iterations. Nevertheless, both versions of the Broyden algorithm are more convenient
than the Newton-GMRES algorithm, which takes around 30 iterations at each
time step.

Recall that the Broyden method builds an inverse matrix that is an approximation
of the Jacobian as time goes by. Thus, such a matrix is used at each time step to initialize
the iterations (initialization of the approximate Jacobian). This is quite an interesting
aspect of Broyden methods, in contrast with the Newton-GMRES method, for which,
since it is a matrix-free method, no approximate Jacobian is built along the iterations.
Hence, in this sense, the Broyden method must be seen as a preconditioned method,
whereas the Newton-GMRES method is just initialized with the solution of the previous
time step. Matrix-free preconditioning techniques for the Newton-GMRES method are
out of the scope of the present paper but are worth exploring in future works.

The initialization using the exact Jacobian computed just once at the first time step
is another option which improves the performance of both Broyden methods. Figure 4.8
gives a comparison between (i) the orthonormal Broyden with initialization, that is,

FIG. 4.6. Closed-loop conduction system with two forcing pumps.
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using the Jacobian of the Newton method as initial matrix for the first time step, and
(ii) the orthonormal Broyden case without initialization, that is, when the initial
matrix is the identity. There it can be seen that the initialization improves the
convergence properties of the Broyden method. The case of the Broyden method with-
out orthonormalization exhibits the same behavior.

Figure 4.9 presents the flow rate as a function of time for each one of the 0D con-
necting elements. Also, the complexity of the system dynamics can be seen in this figure.

FIG. 4.7. Performance of the different nonlinear solvers.

FIG. 4.8. Orthonormal Broyden with and without Jacobian initialization.
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For obvious reasons, we present the flow rate corresponding to each 0D model, which is
the corresponding flow rate to the associated coupling interfaces at both sides of such a
0D model. The sign of the flow rate is consistent with the following definition: (i) for the
four 0D pipes which surround the system (left, right, up, and down pipes), the flow rate
is positive in the clockwise direction, and (ii) for the four 0D pipes which are linked to the
center of the system, the flow rate is positive in the outward direction (going away from
the center).

In turn, Figure 4.10 shows the velocity magnitude for different time instants in a
given period of the whole simulation. In the sequence of figures the complex interactions
among the 2D components can be appreciated. In this regard, in spite of the high level of
coupling due to the fact that the system is closed, the Broyden algorithm with ortho-
normalization performs quite well.

4.5. Example 3: Closed parallel 3D system. The problem involves the flow of a
fluid driven by a pump which connects two 3D collectors. Two other connectors are
included in the system. All the connectors are modeled with 0D representations. The
scheme is shown in Figure 4.11. In the 3D fluid collectors all the boundaries, except
the coupling ones, are homogeneous Dirichlet boundaries (nonslip condition). Here
we have 6 coupling interfaces; then the interface problem consists of 12 unknowns.
As before, all coupling interfaces are Neumann boundaries concerning the 0D and
3D submodels, and the pressure is fixed to a reference value (Pref ¼ 0) because the net-
work is closed.

FIG. 4.9. Flow rate over area at each 0D connecting element.

PARTITIONED HYDRAULIC NETWORKS 895

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Although the system is smaller than in the previous section, in this case the coupling
level with respect to the number of unknowns coupled over each interface is more cri-
tical. Indeed, given a certain fixed number of coupling interfaces, and assuming a cor-
respondence in the number of degrees of freedom over the coupling interfaces with the
dimension of the problem, the monolithic approach for a 3D-0D problem is more expen-
sive than the 2D-0D counterpart. In addition, the associated matrix of the linear coun-
terpart of the interface problem is more dense.

The sinusoidal pump is defined by an amplitude Pmax ¼ 25 Pa and period
T 1 ¼ 10 s. The density and viscosity of the fluid are, again, ρ ¼ 1 kg∕ m3 and
μ ¼ 0.01 Pa:s, respectively. The 3D collectors are cylinders with three connections sym-
metrically distributed over one of the flat sides. The dimensions of the system, according
to Figure 4.11, are Re ¼ 3 m, Ri ¼ 2 m, r ¼ 0.5 m, H ¼ 7 m, and h ¼ 1 m. The 0D con-
nections are configured such that they represent the corresponding pipes with
L0D ¼ 16 m long. The mesh of each collector is, approximately, of 7000 nodes, and
the Reynolds number has a maximum value of Remax ≃ 100 during the simulation.

In consideration of the results seen in the previous sections, here we restrict our-
selves to the use of the Broyden method with orthonormalization for solving the
nonlinear interface problem. In the present example we analyze how the convergence
is affected when changing the time step in the simulation. Three time steps are used;
they are (i) Δt1 ¼ 0.025 s, (ii) Δt2 ¼ 0.05 s, and (iii) Δt3 ¼ 0.1 s.

FIG. 4.10. Velocity magnitude for different instants.
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In Figure 4.12 the results are presented with a comparison of the iterations needed
to converge for the time steps tested. For the first time step, since the Broyden method is
started from the identity matrix, it takes (i) 13, (ii) 13, and (iii) 15 iterations to con-
verge. It was removed from the plots in Figure 4.12 so as to compare the details once the

FIG. 4.11. Closed-loop 3D conduction system with a forcing pump.

FIG. 4.12. Performance of the orthonormalized Broyden method for different time steps.
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periodic regime is established. Notice that the convergence properties remain almost the
same as the time step is increased.

Figure 4.13 presents the flow rate in the three pipes as a function of time. As well,
the streamlines at time t ¼ 25 s are plotted. Evidently, due to the symmetry of the
system, the two inferior pipes in the figure behave in the same manner, whereas the
superior pipe is the one that contains the pump and therefore drives the flow. In addi-
tion, to appreciate the dynamics of the system in Figure 4.14, a detail of the velocity field
in different transversal cuts is displayed at four time instants along a certain cycle of the
pressure pump.

4.6. Example 4: Blood flow in the arm. In this last section we present an ap-
plication to hemodynamics, complementing a previous work on decomposition of 1D
models [3]. We deal with the arterial network of the arm with slightly different physical
components than before. The so-called simple components (or simple models) are 1D
models for the flow of an incompressible fluid in compliant vessels, while the complex
components (or complex models) are 3D Navier–Stokes equations in compliant domains
(see [2], [19] for more details on these components). Therefore, the operators GN n

and GCc
for the complex and simple models, introduced in section 3 (see (3.4) and (3.10), respec-
tively), correspond to the solution of these problems. The evaluation of the nonlinear
components in this case is carried out using fixed point iterations (see again [2], [19] for
more details about the numerical approximation).

The scheme of the coupled system can be seen in Figure 4.15. The 3D-1D model of
the arm is set up starting from the subclavian artery and following the main branches
found in the arm. It consists of a 1D model for which the five larger bifurcations have
been replaced by 3D geometries. Also, an inflow boundary condition is prescribed, as
shown in Figure 4.15, whereas at the outflow boundaries 3-element Windkessel models
are considered. All the mechanical and geometrical properties are taken from the data
given in [2]. The boundary condition is taken from a pure 1D model of the whole arterial
tree. It is noticed that the interface problem consists of 15 coupling interfaces, and then
30 interface unknowns (flow rate and pressure). When splitting the network into 1D and

FIG. 4.13. Flow rate versus time in the pipes and streamlines at t ¼ 25 s.
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FIG. 4.15. Coupled 3D-1D system to represent the arterial branches in the arm.

FIG. 4.14. Warp of the velocity field for different time instants.
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3Dmodels we have considered the coupling interfaces to behave as Neumann boundaries
for all the components.

The convergence in this problem is considered when the relative residual is less than
1 · 10−4, as well as when the absolute residual is less than 1 · 10−8. The cardiac beat is
characterized by a period of T ¼ 0.8 s, while the time step, which is limited by conver-
gence issues related to the 3D components, is Δt ¼ 6.25 · 10−4 s. Three cardiac cycles
have been simulated, and the results presented here correspond to the last cycle, when it
can be considered that the periodic state has been established. The dimensional units are
cm3 ∕ s and dyn ∕ cm2 for flow rate and pressure, respectively. The discretization of the
3D models resulted in meshes of approximately 20000 nodes per 3D component. Based
on our previous experience in the hemodynamics field (see [3] for more details) and also
on the tests performed in the previous sections, we choose the Broyden method without
orthonormalization to solve the interface problem, and at each cardiac beat the Broyden
method is initialized with the Jacobian matrix (computed by finite differences).

The performance of the Broyden method is presented in Figure 4.16. There, the
flow rates at each one of the inlets of the 3D models are also displayed. We
point out that although the interface problem has 30 degrees of freedom, the Broyden
method applied to the interface problem requires just between 3 and 10 iterations per
time step to converge. This puts in evidence the robustness of the partitioning strategy
developed here even in situations involving more sophisticated complex and simple
components.

The results for the coupling unknowns at the interfaces among the 3D and 1D mod-
els are presented in Figure 4.17. There, the results (pressure and flow rate) at the inlet of
each one of the five 3D bifurcations are displayed. In that figure, the propagation phe-
nomenon can be noticed clearly as a result of the compliance of the models employed in
the simulation.

Finally, the magnitude of the velocity field at several time instants throughout the
cardiac cycle is featured in Figure 4.18. Though very simplified 3D geometries have been

FIG. 4.16. Performance of the Broyden method and flow rates at inlets of each bifurcation.
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adopted for the bifurcations in this example, the complexity of the blood flow is remark-
able. Indeed, Womersley-like velocity profiles due to inverse pressure gradient and re-
circulation regions are observed around t ¼ 0.3.

The use of the present methodology for dealing with the coupling of 1D models and
patient-specific 3D geometries obtained from medical images is straightforward, not en-
tailing further issues from the point of view of the convergence of the iterative methods
proposed here.

5. Conclusions. In this work, a partitioning procedure for solving iteratively
coupled dimensionally-heterogeneous models has been set up within the context of
the numerical simulation of fluid mechanics problems. The methodology was developed
by recasting the monolithic problem as a nonlinear problem written in terms of interface
variables, those which perform the coupling. For the cases treated in this work these
physical variables were flow rate and its dual variable (the normal component of the
traction vector). Several nonlinear solvers have been compared in different situations,
in which Broyden-like methods turn out to perform far better than the classical
Gauss–Seidel method and even better than the Newton-GMRES algorithm. As well,
the iterative strategy was tested in 2D and 3D problems, performing satisfactorily even
in situations involving deforming domains like those encountered in the hemodynamics
field.

FIG. 4.17. Flow rate and pressure at some coupling interfaces.
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Thus, the approach proposed in the present work featured high robustness as a re-
sult of employing sophisticated nonlinear solvers as well as flexibility concerning the
setting of boundary conditions for the complex and simple models, something that is
advantageous when compared with classical domain decomposition strategies based
on Gauss–Seidel-like methods.

REFERENCES

[1] S. BERTOLUZZA, Substructuring preconditioners for the three fields domain decomposition method, Math.
Comp., 73 (2004), pp. 659–689.

[2] P. J. BLANCO, R. A. FEIJÓO, AND S. A. URQUIZA, A unified variational approach for coupling 3D-1Dmodels
and its blood flow applications, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 4391–4410.

[3] P. J. BLANCO, J. S. LEIVA, AND G. C. BUSCAGLIA, Black-box decomposition approach for computational
hemodynamics: One-dimensional models, Comput. Methods Appl. Mech. Engrg., 200 (2011),
pp. 1389–1405.

FIG. 4.18. Velocity magnitude at different time instants through the cardiac cycle.

902 J. S. LEIVA, P. J . BLANCO, AND G. C. BUSCAGLIA

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



[4] P. J. BLANCO, M. R. PIVELLO, S. A. URQUIZA, AND R. A. FEIJÓO, On the potentialities of 3D-1D coupled
models in hemodynamics simulations, J. Biomech., 42 (2009), pp. 919–930.

[5] P. J. BLANCO, S. A. URQUIZA, AND R. A. FEIJÓO, Assessing the influence of heart rate in local hemo-
dynamics through coupled 3D-1D-0D models, Int. J. Num. Meth. Biomed. Engng., 26 (2010),
pp. 890–903.

[6] F. BREZZI AND D.MARINI,A three-field domain decomposition method, in Domain DecompositionMethods
in Science and Engineering, Contemp. Math. 157, A. Quarteroni, J. Périaux, Y. A. Kuznetsov, and
O. B. Widlund, eds., American Mathematical Society, Providence, RI, 1994, pp. 27–34.

[7] R. CODINA, J. BLASCO, G. C. BUSCAGLIA, AND A. HUERTA, Implementation of a stabilized finite element
formulation for the incompressible Navier–Stokes equation based on a pressure gradient projection,
Internat. J. Numer. Methods Fluids, 37 (2001), pp. 419–444.

[8] L. FORMAGGIA, J. F. GERBEAU, F. NOBILE, AND A. QUARTERONI, On the coupling of 3D and 1D Navier–
Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Engrg.,
191 (2001), pp. 561–582.

[9] L. FORMAGGIA, J. F. GERBEAU, F. NOBILE, AND A. QUARTERONI, Numerical treatment of defective boundary
conditions for the Navier–Stokes equations, SIAM J. Numer. Anal., 40 (2002), pp. 376–401.

[10] L. FORMAGGIA, F. NOBILE, A. QUARTERONI, AND A. VENEZIANI, Multiscale modelling of the circulatory sys-
tem: A preliminary analysis, Comput. Vis. Sci., 2 (1999), pp. 75–83.

[11] L. FORMAGGIA, A. VENEZIANI, AND C. VERGARA, Flow rate boundary problems for an incompressible fluid in
deformable domains: Formulations and solution methods, Comput. Methods Appl. Mech. Engrg.,
199 (2010), pp. 677–688.

[12] J. G. HEYWOOD, R. RANNACHER, AND S. TUREK, Artificial boundaries and flux and pressure conditions
for the incompressible Navier–Stokes equations, Internat. J. Numer. Methods Fluids, 22 (1996),
pp. 325–352.

[13] C. T. KELLEY, Iterative Methods for Linear and Nonlinear Equations, Frontiers Appl. Math. 16, SIAM,
Philadelphia, 1995.

[14] H. J. KIM, I. E. VIGNON-CLEMENTEL, C. A. FIGUEROA, J. F. LADISA, K. E. JANSEN, J. A. FEINSTEIN, AND C. A.
TAYLOR, On coupling a lumped parameter heart model and a three-dimensional finite element aorta
model, Annu. Rev. Biomed. Eng., 37 (2009), pp. 2153–2169.

[15] J. S. LEIVA, P. J. BLANCO, AND G. C. BUSCAGLIA, Iterative strong coupling of dimensionally heterogeneous
models, Internat. J. Numer. Methods Engrg., 81 (2010), pp. 1558–1580.

[16] A. QUARTERONI, S. RAGNI, AND A. VENEZIANI, Coupling between lumped and distributed models for blood
flow problems, Comput. Vis. Sci., 4 (2001), pp. 111–124.

[17] A. QUARTERONI AND A. VENEZIANI, Modeling and simulation of blood flow problems, in Computational
Science for 21st Century, Lions et al., eds., John Wiley and Sons, New York, 1997, pp. 339–350.

[18] A. QUARTERONI AND A. VENEZIANI, Analysis of a geometrical multiscale model based on the coupling of
ODEs and PDEs for blood flow simulations, Multiscale Model. Simul., 1 (2003), pp. 173–195.

[19] S. A. URQUIZA, P. J. BLANCO, M. J. VÉNERE, AND R. A. FEIJÓO,Multidimensional modelling for the carotid
artery blood flow, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 4002–4017.

[20] A. VENEZIANI AND C. VERGARA, Flow rate defective boundary conditions in haemodynamics simulations,
Internat. J. Numer. Methods Fluids, 47 (2005), pp. 803–816.

[21] A. VENEZIANI AND C. VERGARA, An approximate method for solving incompressible Navier–Stokes pro-
blems with flow rate conditions, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 1685–1700.

[22] I. E. VIGNON-CLEMENTEL, C. A. FIGUEIROA, K. E. JANSEN, AND C. A. TAYLOR, Outflow boundary conditions
for three-dimensional finite element modeling of blood flow and pressure waves in arteries, Comput.
Methods Appl. Mech. Engrg., 195 (2006), pp. 3776–3996.

PARTITIONED HYDRAULIC NETWORKS 903

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.


