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A B S T R A C T

The coupling of Reynolds and Rayleigh-Plesset equations has been used in several works to simulate lubricated
devices considering cavitation. The numerical strategies proposed so far are variants of a staggered strategy
where Reynolds equation is solved considering the bubble dynamics frozen, and then the Rayleigh-Plesset
equation is solved to update the bubble radius with the pressure frozen. We show that this strategy has severe
stability issues and a stable methodology is proposed. The proposed methodology performance is assessed on
two physical settings. The first one concerns the propagation of a decompression wave along a fracture con-
sidering the presence of cavitation nuclei. The second one is a typical journal bearing, in which the coupled
model is compared with the Elrod-Adams model.

1. Introduction

Cavitation modeling is a challenging issue when studying the hy-
drodynamics of lubricated devices [1,2]. It is experimentally known
that gases (small or large bubbles of air or vapor) appear in the liquid
lubricant in regions where the pressure would otherwise be negative.
The volume occupied by these gas bubbles affects the pressure field, to
the point of preventing it from developing negative regions. It is cus-
tomary to think of the whole fluid (lubricant + gas) as a mixture for
which it is possible to define effective fields of pressure (p), density (ρ)
and viscosity (μ). These three fields are linked by the well-known
Reynolds equation, which expresses the conservation of mass and must
thus hold for the cavitated mixture as well as for the pure lubricant.

Notice, however, that while in problems in which the lubricant is
free of gases the density and viscosity are given material data, in pro-
blems with significant gas content ρ and μ are two additional unknown
fields (totalling three with p). The overall behavior of the mixture ex-
hibits low-density regions (i.e., regions where the fraction of gas is
high), in such a way that the overall pressure field does not exhibit
negative (or very negative) values.

These low-density regions are usually called cavitated regions,
though the gas may have appeared there by different mechanisms:
cavitation itself (the growth of bubbles of vapor), growth of bubbles of
dissolved gases, ingestion of air from the atmosphere surrounding the
lubricated device, etc.

Many mathematical models have been developed over the years to
predict the behavior of lubricated devices that exhibit cavitation, and
most of them have been implemented numerically (see, e.g. [2]). The

most widely used models assume that the data (geometry, fluid prop-
erties) and the resulting flow are smooth in time, with time scales
governed by the macroscopic dynamics of the device. In particular, the
fast transients inherent to the dynamics of microscopic bubbles, though
being the physical origin of cavitation, are averaged out of the model.
To accomplish this, these models propose phenomenological laws re-
lating ρ, p and μ. These laws vary from very simple to highly sophisti-
cated and nonlocal, and may involve one or more additional (e.g.,
auxiliary) variables.

A representative example of the aforementioned models is
Vijayaraghavan and Keith's bulk compressibility modulus model [3,4].
Without going into the details, it essentially postulates that

=
+

p
p

p

ln( ) if

otherwise
,cav

cav (1)

where is the liquid density and p cav and β are constants. Another
example is the Elrod-Adams model, which here is considered in the
mathematical form made precise by Bayada and Chambat [5] and
which can be viewed, to some extent, as a limit of (1) for + .

In recent years, detailed measurement and simulation of lubricated
devices with wide ranges in their spatial and temporal scales has be-
come affordable [6–8]. Micrometric features of the lubricated surfaces
can now be incorporated into the simulated geometry, down to the
roughness scale. These micrometric spatial features of the two lu-
bricated surfaces, being in sliding relative motion, generate rapid
transients in the flow. This reason, among others, has lately revived the
interest on models that take the microscopic dynamics of the incipient
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cavitation bubbles (or nuclei) into account. We refer to them as bubble-
dynamics-based models, and they are the focus of this contribution.

To our knowledge, this kind of models was first used by Tønder [9]
for Michell Bearings. After that article, and progressively increasing the
complexity of the gas-nuclei dynamics, several works have been pub-
lished concerning tilting-pad thrust bearings [10], journal bearings
[11–14], squeeze film dampers [15,16] and parallel plates [17,18].

In bubble-dynamics-based models the gas-nuclei dynamics inter-
venes in the Reynolds equation through the fraction variable

= volume of gas
volume of gas and liquid

,
(2)

from which the density ( ) and viscosity µ ( ) of the mixture are ob-
tained. The gas fraction α, in turn, depends on the size and number of
nuclei, which are modeled as spherical bubbles of radius R and assumed
to obey the well-known Rayleigh-Plesset equation of bubble dynamics.

The resulting mathematical equations exhibit the so-called Reynolds-
Rayleigh-Plesset (RRP) coupling. By this it is meant that the coefficients
of the equation that determines p (i.e., the Reynolds equation) depend
on the local values of R, while the driving force of the equation that
governs the dynamics of R (i.e., the Rayleigh-Plesset equation) depends
on p.

In this work a stable numerical approach for RRP coupling is pre-
sented, designed for problems in which inertia can be neglected. It can
be seen as an extension of the work by Geike and Popov [17,18], who
only considered the very specific geometry of parallel plates.

In Section 2 the Rayleigh-Plesset equation is presented along some
of its properties, and the simplified version which is used in this work.
Section 3 is dedicated to the definitions needed to couple Reynolds and
Rayleigh-Plesset equations, and to present the two numerical methods
compared in this work. Numerical results are presented in Section 4,
first for an original problem where the pressure build-up is generated
only by expansion/compression of the bubbles both in one-dimensional
(1D) and two-dimensional (2D) settings. It is shown that the proposed
methodology allows to perform simulations and discover features of the
Reynolds-Rayleigh-Plesset coupling that are not possible to be com-
puted with the method found in the literature. After that, numerical
results regarding the Journal Bearing are presented showing the ro-
bustness of the proposed method when varying operational conditions
and fluid properties. Concluding remarks are given in the last section.

2. The field Rayleigh-Plesset equation

The evolution of a small spherical gas bubble immersed in a
Newtonian fluid (as illustrated in Fig. 1) in adiabatic conditions is
governed by the Rayleigh-Plesset (RP) equation including surface di-
latational viscosity effects [11,13], which reads

+ = + +R RR µ
R

R
R

F R p( 3
2

¨) ( ) 4 ( )
s2

(3)

where =R dR
dt is the total time derivative (following the bubble), R t( ) is

the radius, , µ correspond to the fluid density and viscosity respec-
tively, s is the surface dilatational viscosity [13], p is the liquid pres-
sure far away from the bubble and F R( ) reads

=F R P R
R R

( ) ( ) 2 ,k
0

0 3
(4)

where P0 is the inner pressure of the bubble when its radius is equal to
R0 and σ is the surface tension of the fluid. In the right-hand side of the
last equation the first term models the pressure of the gas contained in
the bubble (in this work the polytropic exponent is fixed to =k 1.4) and
the latter term corresponds to the surface pressure jump.

Hereafter the inertial terms in Eq. (3) are assumed to be negligible
(e.g. [13]), which leads to the inertialess Rayleigh-Plesset equation

=dR
dt

G R F R p( )( ( ) ), (5)

with

=
+

G R R
µ R

( )
4 4 /

.s

In Fig. 2 the typical shape of the function F (e.g. [19]) is shown.
Considering some value of p constant in time, from Eq. (5) it can be
noticed that for a bubble to be in equilibrium ( =R 0) at such =p pe
there must exist some radius =R R p( )e e e such that =F R p( )e e, i.e.,

=p P R
R R

( ) 2 .e
e

k

e
0

0 3
(6)

This is possible only if pe is higher that the minimum value of F.
Thus, we denote

= =
>

R F R kP Rargmin ( ) [ 3
2

] ,
R

k
k*

0

0 0
3 1

3 1
(7)

and

=p F R( ).cav
* (8)

From Eq. (5) it is observed that for <R Re
* the equilibrium states

are stable while for >R Re
* the equilibrium states are unstable (see the

phase plane in Fig. 2), for more details on this the reader is referred to

Fig. 1. Illustration of an idealized bubble of radius R immersed in a Newtonian
fluid. The formula for the inner pressure of the bubble, Pb, assumes adiabatic
behavior. The pressure far away from the bubble is denoted by p.

Fig. 2. Phase plane of Eq. (5) and the function F R( ) for a typical pair P R( , )0 0 .
The red continuous line and the dashed blue line correspond to the stable and
unstable branch respectively. The arrows indicate the sign of R at each region
separated by F R( ). Also =

>
R F Rargmin ( )

R

*

0
and =p F R( )cav

* . (For interpretation

of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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[20]. Moreover, if p is below p cav the bubbles grow monotonically, only
stopping if the pressure is increased. Hereafter, we name p cav as cavi-
tation pressure.

The single-bubble equation (5) is transformed into a field equation
by assuming that there is a large number of bubbles, and adopting
spatial, temporal or probabilistic averaging [21]. At this point the
complexity can grow substantially if there exist bubbles of different
sizes at any fluid point and instant, in which case one must adopt a
polydisperse model [21]. Such models are based on a population balance
equation for the so-called bubble density function f r x t( , , )b , defined
such that the number of bubbles per unit volume at x and t with radius
between r and +r dr is f r x t dr( , , )b [22,23]. Techniques for numeri-
cally handling polydisperse models can be found in the literature
[23–26].

In this contribution, as has been the rule in previous works on RRP
coupling, we assume the flow to be monodisperse. That is, we assume
that in the vicinity of any point x , at each time t, there exist bubbles of
one and only one radius, R x t( , ). In terms of the bubble density func-
tion,

=f r x t n x t r R x t( , , ) ( , ) ( ( , )) ,b b (9)

where nb is the number concentration of bubbles. In monodisperse
models, the field unknowns are R and nb. An equation for R is readily
obtained from the Rayleigh-Plesset equation. Denoting by =V u v w( , , )
the velocity field of the bubbles and now considering the field R x t( , )
one has, from Eq. (5),

+ =R
t

V R G R F R p( )( ( ) ) . (10)

The equation for nb, on the other hand, assuming there is no coa-
lescence or rupture of bubbles, simply reads

+ =n
t

V n( ) 0 .b
b (11)

Unlike Eq. (10), the equation above does not involve the pressure
field, so that if the bubble velocity V is known Eq. (11) can be solved
separately and n x t( , )b considered a given datum. Also, in some cases
algebraic expressions for nb can be built, as is shown in one of the
numerical examples. For these reasons, we consider hereafter that nb is
given, so that the field Rayleigh-Plesset equation (10) is the only equation
we are left with. Because it is a transport equation, it requires an initial
condition =R x t( , 0) and a boundary condition at inflow boundaries of
V .

Notice that Eq. (10) involves two unknowns (R and p), so that an
additional equation is needed to close the system. This equation is the
compressible Reynolds equation and will be introduced in the next sec-
tion.

For later use, let us point out that assuming the bubbles to be
spherical gives the algebraic relation (e.g. [27,28])

= n R4
3

b 3
(12)

which links the gas volume fraction α to the main unknown R.
Remark: Because the liquid is incompressible, it can be argued that

the number of bubbles per unit volume of liquid, that we denote here by
nb , remains constant. This is certainly valid if the bubbles are very
small and they move with the local velocity of the liquid. Under this
assumption Eq. (11) can be replaced by = =n n/(1 ) constantb b ,
which leads to

=
+

n n
n1

b
b

R
b

4
3

3
(13)

and thus (e.g. [29]) to

=
+

n

n1
.

R
b

R
b

4
3

4
3

3

3
(14)

The constant nb represents the number of microbubble nuclei pre-
sent in the liquid lubricant.

3. Coupling Reynolds and Rayleigh-Plesset equations

We consider two surfaces in close proximity that are in relative
motion at speed U along the x1-axis. The gap between these surfaces,
represented by the function h x t( , ), is assumed to be filled by a
Newtonian fluid (which can be a mixture) of density ρ and viscosity μ.
The functions h x t( , ) and =D h x t x t( , ) ( , )t

h
t are also assumed to be

known. To solve for the hydrodynamical pressure p we use the com-
pressible Reynolds equation [30],

= + +h
µ

p U h
x

h
t

h
t

(
12

)
2

( ) ,
3

1 (15)

along with the boundary conditions

= =p p p n g, on , ˆ , on ,D N (16)

where n̂ is the unitary vector pointing outwards of at each point of its
boundary = D N , and g is a smooth given function. Other
boundary conditions are possible but omitted for the sake of brevity.

The mixture density and viscosity are assumed to depend on α (and
thus on R, from Eq. (12)) according to

= +( ) (1 ) ,g (17)

= +µ µ µ( ) (1 ) .g (18)

The coupled RRP problem thus consists of determining the fields
R x t( , ) and p x t( , ) such that Eqs. (10) and (15) are simultaneously
satisfied for all x in the domain and all >t 0. The boundary conditions
are (16) and the value of R at inflow boundaries. An initial condition for
R is also enforced.

Notice that the coefficients ρ and μ depend on the local value of R
through Eqs. (12), (17) and (18). The two equations are thus coupled
and none of them can be solved independently of the other.

3.1. Discretization: the Staggered scheme

Assuming to be a rectangular domain, Eq. (15) is discretized by
means of a Finite Volume scheme using rectangular cells of length x1
( x2) along the x1-axis (x2-axis). The coordinates x y( , )i j correspond to
the cells' centers. Using a constant time step t , we denote =t n tn for

= …n N1 .
Consider that Rij

n and Rij
n 1, for all cells, have already been calcu-

lated. The Staggered scheme (presented, e.g., in Refs. [13,31]) of dis-
cretization of the coupled RRP problem is defined by the following
equations:

Stage 1: Computation of pn

+

= + +

+ +

+ +

+ + +

+ + +

D h h( ) ( )

c p c c p c p

x

c p c c p c p

x

U h h

x i j
n

t i j
n

i j
n

t

( )

( )

2 , , ,

i j i j
n

i j i j i j
n

i j i j
n

i j i j
n

i j i j i j
n

i j i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

1
2 , 1, 1

2 , 1
2 , , 1

2 , 1,

1
2

, 1
2

, 1 , 1
2 , 1

2
, , 1

2
, 1

2
2

, , 1, 1,
1

, ,
1

(19)

with

=

=

±
+

±
+

± ±

± ±

c

c

,

.

i j
h µ h µ

i j
h µ h µ

,
( ) / (12 ) ( ) / (12 )

2

,
( ) / (12 ) ( ) / (12 )

2

i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

i j
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1
2

, ,
3

1, 1,
3

1
2

, ,
3

, 1 , 1
3

Where D ht is a first order approximation of h
t
. Eq. (19) is used at
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each cell that belongs to the domain, while for the cells belonging to the
boundary of we have

=p p x y| for ( , )i j
n

x y i j D, ,i j (20)

and

=( )D p x y0 for ( , ) ,n i j
n

i j Nˆ , (21)

where ( )D pn i j
n

ˆ , is a first order approximation of the normal derivative at
the boundary N .

Stage 2: Computation of. +Rn 1

In the lubrication approximation w (the vertical speed) is neglected
in Eq. (10), turning it into a two-dimensional transport equation.
Among many possibilities, our implementation adopts the following
implicit scheme:

= ++ + + + +R R t G R F R p u D R v D R{ ( )( ( ) ) ( ) ( ) } ,i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

,
1

, ,
1

,
1

, 1 ,
1

2 ,
1

(22)

where =D x1 1
, =D x2 2

, and the convective terms u D R1 and v D R2 are
discretized by means of an upwind scheme. Notice that (22) is a dis-
cretization of Eq. (10), which is a transport equation but not a con-
servation law because V 0 in general. Gehannin et al. [16] discuss
its treatment by the finite volume method in the context of RRP cou-
pling.

After the two stages above all variables have been updated and the
code may proceed to the next time step. The scheme is called staggered
because the Reynolds solver (Stage 1) computes pn assuming that =R Rn

and =t t( / ) ( )/n n n 1 , both already calculated, and then the
Rayleigh-Plesset solver (Stage 2) computes +Rn 1 with the pressure fixed at

=p pn. The implementation of the staggered scheme of RRP coupling is
straightforward, since no modification is required in the Reynolds
solver. It should be noticed, however, that t/ is approximated with
information from the previous time step. Both and Rn are required to
compute +Rn 1. This gives rise to initialization issues and also, as shown
along the next sections, to stability issues. A method that only requires
information of the current time step is described next.

3.2. Discretization: the single-step scheme

This is the method proposed in this work, which can be seen as an
adaptation of that in Ref. [17]. The basic idea is to compute t( / )n

using only information about Rn (and thus n and n). From the chain
rule, assuming constant, we have

= + =

+ +

t t t
n R R

t
R n

t t

( ) 4 ( )

4 ( )
3

.

g
g

g b

g b g

2

3

(23)

To simplify the exposition, as done by other authors [11,15,17,18],
one may assume that =t/ 0g and that =n t/ 0b [11,13,15,17,18].
Denoting =K R n R( ) 4 ( )g b

2, one arrives at

=
t

K R R
t

( ) . (24)

It is worth mentioning that t/g is in fact equal to
R R R t(3 / ) /0 0

3 4 , where 0 is the density when =R R0. Incorporating
this effect in the model amounts to adding the term R R3 /0 0

3 4 to the
definition of K R( ). Similarly, if one adopts the model (13) the factor
K R( ) changes to = +K R K R¯ ( ) (1 ) ( ). These changes in K R( ) have no
numerical consequences, so that the algorithm presented below can be
applied in any case.

Combining Eqs. (24) and (10) justifies the following discretization
of t/ ,

=
t

K G R F R p uD R vD R( ) [ ( ) ( ( ) ) ( ) ( ) ] ,i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

i j
n

, , , , , 1 , 2 , (25)

Inserting this approximation into Eq. (19) instead of t( )/i j
n

i j
n

, ,
1

leads to the One-step Scheme. The equations are as follows:

Stage 1: Computation of pn

+ =

= +

+ +

+ +

+ + +

+ + +
h K G R p

D h

h K G R F R u D R v D R

( )

( ) ( )

( ( ) ( ) ( ) ( ) ) .
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, , , , 1 , 2 ,
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n

i j i j i j
n

i j i j
n

i j i j
n

i j i j i j
n

i j i j
n

i j
n

i j
n

i j
n

i j
n

1
2 , 1, 1

2 , 1
2 , , 1

2 , 1,

1
2

, 1
2

, 1 , 1
2 , 1
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, , 1

2
, 1

2
2

, , 1, 1,
1

(26)

Where D ht is a first order approximation of h
t
. Notice that the

matrix to be solved for pn is not the standard one in Reynolds-equation
solvers such as Eq. (19). There is the additional term h K G R( )i j

n
i j
n

i j
n

, , , in
the diagonal elements which is key to the enhanced stability of the
scheme.

Stage 2: Computation of +Rn 1

This stage of the Single-step scheme coincides with that of the
Staggered scheme. Equation (22) is solved to obtain +Ri j

n
,

1.
A MATLAB code for the 1D Fracture Problem along the Single-step

scheme can be found in Appendix A.

4. Numerical results

4.1. The planar fracture

Consider a fluid trapped between two smooth planar plates set
parallel to the x1-x2 plane and in close proximity at distance h (see
Fig. 3). The plates are infinite along the x2-axis, so that the liquid
pressure can be modeled by the 1D compressible Reynolds equation,
which reads

=h
x µ

p
x t

(
12

) .2

1 1 (27)

with the boundary conditions

= = =p t p t p
x

x L t(0, ) ( ), ( , ) 0 .
1

1

For this application it is assumed that the bubbles are attached to
the surfaces ( =V 0), and that they are uniformly distributed. Denoting
by nb

s the number of bubbles per unit area, the number of bubbles per
unit volume is computed as =n n h/b b

s . Thus, from Eq. (12) we have

= n
h

R( ) 4
3

.b
s

3
(28)

If there is no presence of bubbles in the liquid, i.e., =n 0b
s in (17)

and (18), the fluid density ρ is constant in time and so Eq. (27) implies
that the pressure along the domain is constant and equal to the
boundary condition at =x 01 (i.e., =p x t p t( , ) ( )1 ). That is, the pressure

Fig. 3. Scheme of the 1D fracture setup. The liquid is trapped between two
parallel plates, at the left boundary a Dirichlet condition on pressure is im-
posed, at the right boundary a null-flux condition is imposed. The white circles
represent the presence of gas-bubbles in the liquid.
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in the domain adjusts instantaneously to the boundary value.
On the other hand, if >n 0b

s , the response of the system to changes
in the boundary pressure is much more involved. Consider the system
with nb

s independent of x1, and with bubbles of initial radius
= =R x t R( , 0)1 0 and internal pressure P0. This system is in equilibrium

with a boundary pressure = =p p P R2 /e 0 0 in the sense that
=R t/ 0 for all x1. The specific problem considered here is the re-

sponse of the system, initially in equilibrium, after the boundary pres-
sure p is suddenly changed from >p pe cav to some different value

<p p*
cav at = +t 0 ( = >p t p t( ) , 0* ).

Since p x t( , )1 is continuous in x1, there will exist a region where
<p p cav and thus, recalling that p cav is the minimum of F, where the

right hand side of Eq. (5) will be strictly positive. In that region the
bubbles are expected to grow until touching one another or until filling
the volume between the surfaces, at which point the model looses
physical meaning. This numerical example aims at showing how this

fully-gaseous region progresses through the domain as predicted by the
RRP model. To extend the model to handle fully-gaseous regions, we
introduce an upper limitation to the definition of R( ) given in Eq. (28),
reading

=R n
h

R( ) min{( ) 4
3

, 1} ,b
s

3
(29)

and also turn off the right-hand side of the Rayleigh-Plesset equation
when 1, i.e.,

= <dR
dt

G R F R p R
R

( )( ( ) ) if ( ) 1 ,
0 if ( ) 1 . (30)

Notice that this is not a good model in general situations. In parti-
cular it cannot model problems in which a fully-gaseous region ( = 1)
transitions back into a liquid-gas region ( < 1).

4.1.1. Parameters setup
For the simulations presented in this Section, a set of parameters are

fixed and their values are shown in Table 1. The remaining free para-
meters, such as the length of the domain (L), the boundary condition
(p*), the bubbles internal pressure (P0) and the fluid viscosity (µ ), are
varied over wide ranges to explore the ability of the numerical methods
to yield converged solutions. We define the reference values

= <p p1.5 0cav (which depends on P0) and Pr
0 such that

=P R2 / 1r
0 0 atm. The results shown below correspond to

=x L/1024 and = ×t 1 10 6 s. The choice of these values is based on
a mesh and time step convergence analysis such that further refinement
would not be noticeable in the graphs.

4.1.2. Results for the Staggered scheme
The first striking result of the experiments is that if

> ×L 8.59 10 m4 the Staggered scheme produces numerical outcomes

Table 1
Default parameters.

Symbol Value Units Description

1000 kg/m3 Liquid density
µ ×8.9 10 4 Pa⋅s Liquid viscosity

g 1 kg/m3 Gas density

µg
r ×1.81 10 5 Pa⋅s Gas viscosity
s ×7.85 10 5 N⋅s/m Surface dilatational viscosity
σ ×7.2 10 2 N/m Surface tension
H 10 μm Gap thickness
R0 0.5 μm Bubbles' radii at 1 atm
nb

s ×1.91 1011 m-2 Number of bubbles per unit area
p p1.5 cav Pa Reference value for p p*

cav
(notice that <p 0)

Fig. 4. Results of the Staggered scheme for = ×L 2.15 10 4 m. Shown are some snapshots of the gas fraction profiles x t( , )1 , for =p p p p, 2*
cav . The rest of the

parameters were set to their default values.
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that explode exponentially after a few time steps. This instability cannot
be avoided by refining the mesh or reducing the time step.
Furthermore, no relevant dependency of the instability on the boundary
condition p p*

cav was observed.
The next section explains this issue by linearizing the RRP equations

and performing a zero-stability analysis [32] of the Staggered scheme.
Before that, let us provide a sample of the results that could be obtained
to illustrate the behavior of the system for L being small. Selecting

= ×L 2.15 10 4 m, Fig. 4 depicts the profiles of α over the domain at
several times, with two boundary conditions, = +p p p*

cav and
= +p p p2*

cav (recall that <p 0). It can be observed that for such
small value of L the pressure field is almost independent of x1. One can
also notice that the bigger the magnitude of p p*

cav, the faster the
growth of α in time.

4.1.3. Linearizing the coupling Reynolds-Rayleigh-Plesset
Linearizing Eq. (5) around an equilibrium state R p( , )e e one gets

=dR
dt

R p( ),0 1 (31)

where

=
+

= =
R

µ R
dF
dR4 4 /

, | .e
s

e
R R0 1 e

Please notice that < 01 since it is assumed that R p( , )e e is an
equilibrium state (stable branch in Fig. 2). Recalling now that µ/ is a
function of R and assuming that R x t R( , ) e1 (as a C1 function of x1),
one can choose the perturbation small enough so that

+µ
R

R R R R
x

p
x

p
x

| ( / ) (| | ( ) )| | | ,e
e

1 1

2

1
2

which justifies the approximation

x µ
p
x

R
µ R

p
x

( ) ( )
( )

.e

e1 1

2

1
2

Using this approximation, one can linearize Eq. (27) and use Eq.
(31) to get

=p
x

R
t2

2

1
2 (32)

where =
=

h R
µ R2 ( ) |

( )
( )

g R R Re

e
e

2
.

Let us now discretize Eqs. (31) and (32) in space to get, respectively,

=d
dt
R R p1 and

0
1 (33)

L = d
dt

p R ,2 (34)

where tR( ) and tp( ) are radii and pressure vectors in N andL is the
discrete Laplacian operator corresponding to the grid size = x1. Let

=g{ }i i
N

1 be an orthonormal basis of N formed by the eigenvectors ofL
s.t.L = = …i Ng g , 1i i i . Then, p can be expressed as = = tp g( )i

N
i i1

and so Eq. (33) reads

= = …d
dt

t i NR g R g1 , , ( ), 1 ,i i i
0

1 (35)

where the fact that each gi is time-independent has been used. In the
same way, Eq. (34) may be written as

= = …t d
dt

i NR g( ) , , 1 .i i i2 (36)

These last two equations imply that stability analyses can be made
independently for each mode = …i NR g, , 1i . To simplify notation we
denote =R R g˜ , i , =˜ i and =t t˜ ( ) ( )i for some arbitrary index i.
Next, Eqs. (35) and (36) are discretized in time with a constant time
step t , such that =t 00 and =t n tn .

4.1.4. Zero-stability of the Staggered scheme
The time discretization of Eqs. (35) and (36) by the Staggered

scheme is

=

=

++
R̃ ˜ ,

˜ .

R R
t

n n

n R R
t

1 ˜ ˜
1

1

1
˜

˜ ˜

n n

n n
0

1

2

1

Substituting ˜n from the latter equation into the former leads to

+ =+t R R R˜ (1 ) ˜ ( ˜) ˜ ˜ 0.n n n
1 0 2

1
0 2 0

1

This methodology thus corresponds to a multistep method (e.g. Ref.
[32], Section 5.9). Its characteristic polynomial is given by

= +Q t( ) ˜ (1 ) ( ˜) .1 0 2
2

0 2 0

For the multistep method to be zero-stable the roots ofQ ( ) must lie
within the unit circle of the complex plane. Denoting these roots by 1
and 2, we have

O= +
+

+
t

t1 (| | )1
1

1 1
˜

2

0 2

and

O= +
t

t˜ ˜ (| | ).2
0

2

0
3

1

2
2 2

2

Recalling that > 00 , < 01 , < 02 and <˜ 0, one observes that
<| | 11 for t small enough. On the other hand, if <˜ /0 2 , then | |2 is

always bigger than one. Therefore, as the minimum eigenvalue (in
magnitude) of the Laplacian operatorL is L˜ /(4 )2 2 , instability is
predicted for >L /(4 )2

2 0 . The Staggered scheme is thus not zero-
stable (and thus, unconditionally unstable) for L large enough.

For the default values of the parameters (see Table 1) it turns out
that = ×8.0 100

10 and = ×1.9 102
13 (in SI units), then one should

have numerical instability for >L 0.024 m. This behavior is indeed
observed when a small perturbation is imposed on p t( ). In Section 4.1.2
a large perturbation was imposed and in fact instability was observed
for much smaller values of L ( > ×L 8.59 10 4 m). The reason for this is
that the nonlinear behavior that corresponds to cavitation amplifies the
instability of the Staggered scheme, which can be explained from the

Fig. 5. Gas fraction and pressure in time along the fracture setup for
= ×L 6.9 10 3 m, =p p p4*

cav , and the rest of the parameters set to their
default values.
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change in sign of F R' ( ) from negative to positive when cavitation oc-
curs.

4.1.5. Zero-stability of the single-step scheme
The time discretization of Eqs. (35) and (36) by the Single-step

scheme consists in substituting t( )i from Eq. (36) into Eq. (35). The
resulting equation reads

= +
+

+R R
t

R
˜ ˜

( 1 1
˜ ) ˜ .

n n
n

1

0 2

1
1

1

Thus,

=+
+

R
t

R˜ 1

1
˜ .n n1

1
˜
˜

2 0
2 0

which to be zero-stable needs the factor multiplying R̃n to be 1 in
magnitude. But this is always true, since > 00 , < 01 , < 02 and

<˜ 0. The unconditional zero-stability of the proposed method for the

linearized RRP model has been proved. This does not guarantee nu-
merical stability, since nonlinear effects could deteriorate its behavior.
This motivates the numerical experiments below, which show that the
method is stable beyond the linear regime.

4.1.6. Results for the single-step scheme
The Single-step scheme allows to perform simulations for arbitrary

values of the domain length L. A wave-like solution, with the cavitated
region advancing towards the right side, develops whenever

> ×L L 1.7 10* 3 m. An example is shown in Fig. 5 for = ×L 6.9 10 3

m. To depict the front advance, the position t( ) such that
< =x t t( ( ), ) 11 and > <x t t( ( ), ) 11 is tracked in time and the

resulting curves are shown in Fig. 6 for several values of L. Notice that
the time variable has been non-dimensionalized by dividing it by T f ,
the filling time, defined as the first time for which = 1 on the whole
domain.

Interestingly, with the proposed non-dimensionalization the curves
of t( ) converge to a unique curve when L is large enough (in this case,
for > =L L 0.0275** m). The relative difference between the curves
corresponding to =L 0.0275 m and =L 0.055 m, for example, is less
than 2%. Next, a numerical study of the dependence of the filling time
T f on the liquid parameters and the boundary condition p* is presented.

Fig. 7. Filling time for several values of L and p p*
cav , and the rest of the

parameters set to their default values.

Fig. 8. Filling time for several values of L and P0; fixing =p 3.83* atm and the
rest of the parameters set to their default values.

Fig. 9. Filling time for several values of L and µg; fixing =p p p4*
cav and the

rest of the parameters set to their default values.

Fig. 6. Non-dimensional advance of the wave for the 1D Fracture Problem for
several values of L and the default parameters.
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For these analyses, the domain's length is also varied from values lower
than L* up to values higher than L**.

Varying p p*
cav and fixing both =P Pr

0 0 and =µ µg g
r the resulting

filling times are shown in Fig. 7 for several values of L. For the shorter
domains, T f does not depend on the domain's length, while for the
larger domains it grows quadratically with it. Notice also that T f is
roughly inversely proportional to p p*

cav.
Regarding the bubbles' mass, simulations where P0 is varied and p*

is fixed to 3.83 atm are reported in Fig. 8. This value of p* corresponds
to the boundary pressure condition for the default case =P Pr

0 0 . It is
found that the filling time diminishes when augmenting P0, which is
expected since p cav increases monotonically with P0.

In the cavitated region (where = 1) the Poiseuille flux is inversely
proportional to the gas kinematic viscosity (µ /g g). This affects Tf when
L is large enough, as shown in Fig. 9. Finally, the value of s is varied
and the results for T f are shown in Fig. 10. Notably, T f is proportional

to s for small values of L, and independent of s for the larger domains
considered.

4.1.7. A 2D example of the fracture problem
To assess the robustness of the Single-step scheme, 2D simulations

of the Fracture Problem are here reported. The domain corresponds to
the rectangle ×L W[0, ] [0, ] with = ×L 1.25 10 2 m and = ×W 1 10 2

m. The grid length along x1 was set to =x L/3481 and along x2 to
=x W /2562 , while the time step was fixed to = ×t 1 10 5 s. The

Dirichlet condition =p 2* atm is set at =x 02 , and the null-flux
condition is set at =x W2 , =x 01 and =x L1 .

For the 2D cases the gap h depends on x as shown in Fig. 11. To fix
an initial gas fraction = 0.010 , the initial bubbles' radii are taken as

=R h x n[ 3 ( )/(4 )]b
s

0 0
1/3. This way, R0 assumes values between 0.40 μm

and 0.54 μm (for the parameters here considered). Since it is assumed
that the bubbles are in equilibrium at 1 atm, the initial internal pressure
is set according to Eq. (6) or, equivalently, = +P R R( ) 1 atm 2 /0 0 0.
Thus, the cavitation pressure depends on x since it varies with P0 (see
Eqs. (7) and (8)).

The results here exposed are obtained with the Single-step scheme,
since simulations with the Staggered scheme invariably crashed. In
Fig. 12 the advance of cavitation in time along the 2D domain is shown.
The complexity of the field α can be also observed in Fig. 13. Notice the
presence of cavitation in the crevices (regions with a higher value of h)
even in places where the wave (traveling in the positive x2-direction)
has not arrived. This can be explained due to a higher cavitation
pressure in these regions.

Remark: Another possibility to perform these simulations is to set a
constant R0 and an initial gas fraction that depends on the position. For
instance, = =x t R n h x( , 0) 4/3 / ( )b

s
0 . The corresponding simulation

yields solutions that are much smoother than the case presented and are
not shown here since the objective is to test the Single-step method in a
demanding situation.

4.2. The journal bearing

In this section results of simulations of the Journal Bearing

Fig. 10. Filling time for several values of L and s; fixing =p p p4*
cav and

the rest of the parameters set to their default values.

Fig. 11. Height function h x x( , )1 2 for the 2D Fracture Problem example. This gap represents the realistic distance between a flat surface and a rough surface with the
presence of honed channels.
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mechanism (see Fig. 14) are presented. This problem is a typical
benchmark and has already been used by other authors [11–14]. For
this application, the transport of bubbles is incorporated by setting

= =V u v U( , ) ( , 0) with [0,1], and the bubbles are assumed to be
uniformly distributed in the fluid at the initial time =t 0. The geome-
trical and fluid/gas parameters are shown in Table 2. As in Ref. [13],
the initial bubbles' radii is set to = = =R x t R( , 0) 0.3850 μm. The
number of bubbles per unit volume nb is assumed to be constant in
space and time. Let us observe that in this setting, and by means of Eq.
(12), to fix nb is equivalent to fix = R( )0 0 .

While traveling through the domain, the bubbles are contracted or
expanded depending on the sign of F R p( ) in Eq. (5). Their evolution
is strongly dependent on the surface dilatational viscosity s [13], and
so are the pressure and gas fraction fields. Considering the same pro-
blem, Natsumeda and Someya set s to ×7.85 10 4 N⋅s/m [11]. Here we
explore the range ×7.85 10 6 to ×7.85 10 3 N⋅s/m, with the results
shown in Figs. 15 and 16. It is observed that for = ×7.85 10s 3 N⋅s/m
the liquid fraction 1 is almost constant throughout the domain and
thus the pressure profile is similar to the full-Sommerfeld curve. For
lower values of s the liquid fraction shows significant inhomogeneities
which very much suggest the appearance of a cavitated region (low li-
quid fraction, quasi-uniform pressure). This is further discussed in
section 4.2.2.

Remark: The results above are qualitatively similar to those re-
ported by Snyder et al. [13] for the same journal geometry, rotational
speeds, and fluid/gas physical properties. However, our results for

= ×7.85 10s 6 N⋅s/m best agree with theirs for = ×7.85 10s 4 N⋅s/
m. Similar differences on s were observed when trying to reproduce
other results in their article. This difference may possibly arise from
differences in the definition of α in terms of R.

Remark: If the bubbles' transport velocity is taken as
=V U e pˆ h

µ
1
2 1 12

2
(with ê1 the unit vector parallel to x1), as done in

Ref. [13], then the number concentration of bubbles nb can no longer be
considered a datum of the problem and it must be computed by means
of a transport equation (e.g., Eq. (11)). Effective algorithms for this
three-equation model are the subject of current research.

4.2.1. Stability and convergence
To test the stability of both methods a series of simulations were

performed for = ×7.85 10s 4, ×7.85 10 5 and ×7.85 10 6 N⋅s/m, ro-
tational speeds of 1000,2000 and 4000 rpm, = 0,0.5, 1, and = 0.10
which gives a total of 27 configurations. The mesh adopted was

×512 64, but the same conclusions were obtained on other meshes. The
time step was adjusted so that CFL 1.

The Single-step scheme exhibits stable behavior for all of the tested
configurations, reaching a stationary solution in finite time. On the
other hand, the Staggered scheme fails to provide stable solutions in
most of the cases. The instabilities persist even if the time step is re-
duced a thousand times with respect to the unit-CFL value. Only for

= ×7.85 10s 4 N⋅s/m and {0.5, 1} the Staggered scheme behaves
stably.

A convergence analysis is now presented for the Single-step scheme.
This analysis is done for the journal rotating at 2000 rpm, with an initial
gas fraction = 0.10 and = ×7.85 10s 4 N⋅s/m. To test the depen-
dence of the solutions on the time step, the grid size is set to

=x J2 /512R1 and =x J /64w2 . A reference solution, denoted by
p R( , )ref ref , is computed by setting t to 640 time steps per cycle and
running the simulation until =t 0.06 s. The measure of the temporal
discretization error for a variable f (which can be p or R) is defined as

Fig. 12. Evolution of the field α in a 2D fracture problem with a uniform initial
gas fraction 0.
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=
=

E f
f t f

f
( )

( 0.06s)
,t

t
ref 2

ref 2

where f t is the numerical solution computed with time step t . The
results are shown on the left side of Fig. 17, with strong evidence of a
convergence rate of order 1.

The convergence of the discretization in space is studied for the
stationary solution ( = +t ) to avoid interference with time dis-
cretization errors. A sequence of nested meshes is built by setting

=x J M2 /R1 and =x J M8 /w2 , with =M 64,128,256, etc. The re-
ference solutions p ref and R ref are computed by setting =M 2048. The
measure of the spatial discretization error is

=
= +

E f
f t f

f
( )

( )
,x

M
ref 2

ref 2

where f M is the numerical solution computed with the grid corre-
sponding to M. The empirical convergence order as the spatial mesh is
refined is of order 1, as shown in the right side of Fig. 17. Notice that
the discrete convective term for h in Eq. (26) is a first order approx-
imation of h( )U

2 , which explains the observed order of convergence.
Up to our knowledge, this is the first numerical convergence study

of algorithms for the RRP coupling. It shows that the Single-step
method is indeed stable and convergent in problems with strong non-
linear effects. The accuracy is however limited to first order in both
space and time.

4.2.2. Comparison with Elrod-Adams and Reynolds models
When the value of s is small enough (e.g., = ×7.85 10s 6 N⋅s/m)

the pressure profiles that develop in the journal bearing are observed to
satisfy the condition p p cav , with p cav computed from Eqs. (7) and
(8). In fact, a large region where p p cav is observed, which resembles
the cavitation regions predicted by more traditional models. This mo-
tivates to incorporate =p 0.77cav atm into the Elrod-Adams and the
Reynolds cavitation models in order to perform comparisons with the
RRP model. Doing so, the resulting pressure profiles are shown in
Fig. 18 for rotating speeds of 1000 and 5000 rpm and = ×7.85 10s 5

and ×7.85 10 6 N⋅s/m. Notice that the rupture point for both the Elrod-
Adams and Reynolds models are the same (which is a well-known fact),
while for the RRP coupling the rupture is placed further along the fluid's
movement direction. On the other hand, it is also known that the
Reynolds model fails to accurately predict the reformation point when
compared to a mass-conserving model [33]. Remarkably, when s is

Fig. 13. Three dimensional view of the gas-fraction field α at time = ×t 4 10 1 s for the 2D fracture problem with uniform initial gas fraction = 0.010 .

Fig. 14. Scheme of the Journal Bearing.

Table 2
Parameter values for the Journal Bearing.

Parameter Value Units Description

854 kg/m3 Liquid density
µ ×7.1 10 3 Pa⋅s Liquid viscosity

g 1 kg/m3 Gas density
µg ×1.81 10 5 Pa⋅s Gas viscosity

s 10 4 - 10 6 N⋅s/m Surface dilatational viscosity
σ ×3.5 10 2 N/m Liquid surface tension

p* 1 atm p t( ) for >t 0
pe 1 atm Bubbles' equilibrium pressure
R0 0.385 μm Bubbles' radii at 1 atm

0 0.05–0.1 Initial gas fraction
Jw ×25.4 10 3 m Journal width
Jr ×25.4 10 3 m Journal radius
Jc J0.001 r m Journal clearance
J J0.4 c m Journal eccentricity
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Fig. 15. Pressure profiles of the solution for the RRP model when varying the surface dilatational viscosity s for the journal bearing rotating at 5000 rpm. Here
= 0.050 and = 0.5.

Fig. 16. Liquid fraction of the solution for the RRP model when varying the surface dilatational viscosity s for the journal bearing rotating at 5000 rpm. Here
= 0.050 and = 0.5.
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Fig. 17. Convergence analysis for the journal bearing at 2000 rpm, with = ×7.85 10s 4 N⋅s/m, = 0.10 and = 0.5. Left: Time discretization error measure. Right:
Space discretization error measure (M is the number of grid cells along the circumferential direction). The triangles indicate the slope of the fitted lines.

Fig. 18. Pressure profiles obtained with the RRP, Elrod-Adams and Reynolds models for a journal bearing rotating at 1000 and 5000 rpm. Here = 0.050 ,
= × ×7.85 10 , 7.85 10s 5 6 N⋅s/m and = 0.5.
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small enough the RRP model predicts a reformation point similar to that
of the Elrod-Adams model. Furthermore, Fig. 19 shows the comparison
of the fluid fraction produced by the RRP model, 1 , with the fluid
fraction produced by the Elrod-Adams model, θ. Qualitatively both
fluid fraction fields are similar, the one corresponding to the RRP model
being a regularized version of the other, in some sense. Notice that
increasing s to ×7.85 10 5 N⋅s/m significantly reduces the similarities
between the two models.

Let us Remark that the results shown in these last comparisons were
obtained with a mesh having =x J2 /512r1 and =x J /64w2 (i.e.,

=M 512) and with the time step fixed to 400 steps per cycle
(CFL=1.3).

5. Conclusions

A stable numerical method for the RRP model (the Single-step
scheme) has been proposed and compared with a strategy used in re-
cent works (the Staggered scheme). A linear perturbation analysis
showed that the Single-step scheme is unconditionally zero-stable,
while the zero-stability of the Staggered scheme depends upon the
geometrical characteristics of the mechanical system considered. The

behavior in the nonlinear range was assessed numerically, considering
two problems: A “Fracture problem”, in which pressure build-up takes
place solely by the expansion of the bubbles (with no Couette fluxes or
squeeze effects), and the well-known Journal Bearing problem. It was
found that the Single-step scheme is convergent with first order in both
space and time and quite robust, allowing to perform simulations for a
wide range of parameters both in the 1D and 2D settings.

The simulations of the Journal Bearing also included a comparison
to the Elrod-Adams model. Good agreement between both models was
found when the surface dilatational viscosity is small enough. In par-
ticular, the liquid fraction 1 from the RRP model is quite close to
the fluid fraction θ from the Elrod-Adams model. To our knowledge,
this is the first time such a comparison is made and further work is
under way to obtain a better insight into the relation between both
models.
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Fig. 19. Fluid fractions obtained along the RRP coupling, Elrod-Adams and Reynolds models for a journal bearing rotating at 1000 and 5000 rpm. Here = 0.050 ,
= × ×7.85 10 , 7.85 10s 5 6 N⋅s/m and = 0.5.
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Appendix A

A MATLAB code for the Fracture Problem 1D

A MATLAB code for the 1D Fracture Problem is presented below. The parameters correspond to those of Fig. 5.
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