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Abstract.

In this paper we describe and evaluate a geometric mass-praseng redistancing procedure
for the level set function on general structured grids. The poposed algorithm is adapted from
a recent nite-element-based method and preserves the mass hyeans of a localized mass cor-
rection. A salient feature of the scheme is the absence of ad§table parameters. The algorithm
is tested in two and three spatial dimensions and compared wh the widely used PDE-based
redistancing method using structured Cartesian grids. Though the use of quantitative error
measures of interest in level set methods, we show that the evall performance of the proposed
geometric procedure is better than PDE-based reinitializaton schemes, since it is more robust
with comparable accuracy. We also show that the algorithm iswell{suited for the highly{streched
curvilinear grids used in CFD simulations.



1 Introduction

The level set method, introduced by Sethian and Osher in 1988][has been exten-
sively used in the past few years to treat problems involving feesurfaces, basically due
to its simplicity to deal with the complex topological change that interfaces might un-
dergo along their transport in a general situation. Additiondl, quantities such as the
curvature of the interface and other related information ca be extracted from the level
set function making it a very attractive and powerful tool forproblems in two and three
spatial dimensions.

As is well known, one of the main drawbacks of this method forde surface problems
involving incompressible ows is the lack of mass conservatiomea excessive di usion,
which leads to unphysical motions of the interface that sevdyedeteriorate the accuracy
and stability of the results. These diculties have been addressedh basically three
di erent ways:

by improving the numerical algorithms used to transport the leel set function;
by combining the level set method with other computational tehniques;

by trying to keep the level set function as regular as possiblesing the so called
reinitialization or redistancing procedures.

Regarding the rst alternative, there are many methods to sok the level set equa-
tion, such as nite volume and nite di erence methods which @mbine total variation
diminishing (TVD) schemes in time, introduced by Shu and Osher [2], and essentially
non-oscillatory (ENO) schemes in space, based on the ideas rstlygposed by Harten
and coworkers [4, 5] to solve Hamilton-Jacobi type equationsn tthis area, the TVD-
Runge-Kutta and Hamilton-Jacobi Weighted-ENO scheme develep in [6] is considered
to be state-of-the-art for solving the level set equation wittm the framework of eulerian
methods [7]. In this case, curvilinear coordinates can be ustmdeal with complex ge-
ometries (see for instance [8] and [9]). It should be mentionelat TVD schemes can also
be used in space as ux limiter methods, as done for instance by Olasand Kreiss [10].
Stabilized nite elements and discontinuous Galerkin methds are used as well for treating
the level set equation. In this case, unstructured meshes can bapoyed and local grid
re nement becomes an easy task. A comparison of such methods iselon [11]. In [12]
a discontinuous Galerkin method is proposed and compared witfeveral other methods
including the ENO/RK(3) scheme presented in [13] and the HJ-WEN)/RK(3) scheme
used in [14, 15]. Finally, semi-Lagrangian schemes, which can inglemented in very
simple and e cient ways, are also used in level set methods (see [1G, 14]).

With respect to the second alternative in the bulleted list abos, hybrid methods that
combine the level set method either with Lagrangian partickor with the VOF (volume of
uid) method have been developed. The rst option consists in mang massless particles
forward in time in order to rede ne the level set function by mans of some procedure at
the end of each time step or with a prede ned frequency. See fmstance [14, 15] and
[18]. The other option uses the VOF method (see e.g. [19]), ahet surface capturing
method for free surface ows, to correct the level set function sas to locally enforce mass
conservation as done by Sussman in [20] and [21] for example.

In this article we focus on the redistancing procedure. Its ppose is to ensure that the
level set function remains smooth close to the interface. This achieved by periodically
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rede ning it, while trying to maintain the interface intact . The reinitialization improves
the robustness of the computations by keeping the distortion difie level set function under
control. A natural choice to reinitialize the level set funcion is the signed distance function
to the interface. The idea of reinitialization was rst preseted in the work of Chopp [22].
Later, Tsitsiklis [23] proposed in a completely di erent framevork, a method that can be
used for the construction of distance functions, and thereforerf reinitialization, known
as the fast marching method, further popularized by Sethiarsge [24] and [25]). A second
paper of Chopp [26], that introduces some improvements to theethod, can also be
mentioned in this context. It should be pointed out that reintialization can be avoided
using a velocity extension that preserves the signed distance @lilon (see [27] and [28]).
On the other hand, several PDE-based methods have been devised the purpose of
redistancing, which solve the so-called reinitialization e@tion as originally proposed by
Sussman and coworkers [29, 30, 13].

It should be pointed out that, in general, it is not possible to rmitialize the level set
function maintaining the interface intact in a discrete protbem. In fact, the space of level
set functions that share the same given interface is extremely afh[31] and it is likely
that none of its elements provides a reasonable approximatido the distance function.
The consequence of this is that each reinitialization distostthe interface to some extent,
implying a local numerical creation/destruction of uid mass. However, this distortion is
not explicit in PDE-based methods but embedded in the discretation adopted for the
reinitialization equation. The use of high-order schemes, tether with ad-hoc correction
terms, are needed to minimize the interface distortion duringeinitialization, which other-
wise completely destroys the accuracy of the computations [7[hough improved versions
of PDE-based reinitialization exist for Cartesian grids (see @. [32] and [33]), they are
not well{suited for highly{streched curvilinear grids.

In this article we adapt the reinitialization scheme of Mut etal [34] to the case of
structured, curvilinear nite di erence grids. The scheme wasoriginally developed for
unstructured meshes of linear nite elements, and a simple subdsion of each quadri-
lateral (or of each hexahedron in 3D) is used to build a mesh suiie for applying it.
The advantages of the proposed reinitialization scheme ares isimplicity, its exibility to
handle arbitrarily distorted meshes, and the absence of adjust@bparameters.

We begin by showing the necessity of redistancing in Section 2. Bection 3 we
describe the proposed method, together with the TVD Runge-Ku# third-order ENO
scheme that is used to evolve the level set equation, for which wee a nite volume
implementation very similar to that presented in [8]. Since th proposed method is based
on a piecewise-linear representation of the level set functioconcerns may arise as to its
accuracy. Section 3 also contains a brief summary of a widely dseDE-based method,
the HIWENO-RK scheme of Peng et al [6]. This method will be compead to the proposed
one in the numerical examples.

In section 4, numerical experiments are shown in two and three ajal dimensions,
including the rigid rotation of Zalesak's disk, the deformatn of a circle under a swirling
ow vortex, and the deformation of a 3D sphere, which are classicbenchmark cases in
level set methods. Speci c measures of error of interest in freerfeice problems are used
to evaluate the results. Finally, to illustrate the versatility of the proposed geometric
redistancing scheme, we couple it with a nite di erence upwid method in curvilinear
coordinates that uses a second order TVD van Albada scheme as uxniter for the
transport of the level set function, similar to the one used in CFBhip-lowa [9]. We
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present numerical examples using curvilinear grids that haveppreciable distortion in
order to be able to test the mass-preserving scheme in relevant sitions that might
appear in real CFD computations. We draw some conclusions in siect 6.

2 Motivation

It is not obvious whether the periodic reinitialization of the level set function is conve-
nient or not in computations. It strongly depends, among othertings, on the particular
case considered, the method used to transport the level set furmsti , the level of dis-
cretization used and of course on the reinitialization algahm itself. However, as we
know, most level set methods assume that has to be reinitialized periodically for ro-
bustness of computations. To illustrate this point, a two dimensinal academic problem
is shown below, in which we use a simple semilagrangian algorittfor the transport of
the level set function, in combination with the mass-preservingedistancing scheme we
propose (details about the scheme will be given later in Seati@).

For the case considered, the initial value of the function has as zero level set a circle

with radius a centered at the origin, i.e.
(xyt=0)=a x2+y? '~

where =[ 0:750:75] [ 0:75 0:75].

Then, we consider the ow eld corresponding to a doublet with mtensity plus an

uniform stream of magnitudU, = =& and with an additional circulation =4 kaU o,

wherek is a constant. Using polar coordinatesr{ ), the velocity eld reads

(xy) 2,

Ur cos() Uo — (),

r2

c
1

sin() o+ 5 (1) +5— ()

where (r) is a regularization function de ned as

21 cos@) if r<a=4
= 2
(r) 1 : if r a4’ (1)

The regularization function avoids the singularity at the oigin. The presence of (r)
makes the velocity eld non divergence-free far< a=4, however, semi-lagrangian schemes
are perfectly capable of handling such velocity elds withauany additional e ort.
Since the radial component of the velocity, is identically zero forr = a, in the exact
problem the interface remains unaltered. However, this wilhot necessarily be true in
the discretized problem, and our aim is to study the role of theedistancing procedure in
keeping the interface as accurate as possible.

This case is specially tailored so that changing the parameteksand di erent be-
haviors can be observed:

k=1) =4 aUyg
This case has an stagnation point atr( ) =(a; 5).
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k>1) > 4alUy
In this case the stagnation point occurs at some point;( ) =(ri; 3);r:>a.

The cases corresponding tk < 1, with to two stagnation points at (r; )=(a; 5 )
and (; ) =(a; 5+ ), behave similarly to the case withk = 1. Therefore, we will
consider three di erent values fork: 1, 2 and 4 and for all of them, a mesh consisting of
70 70 cells and a time stept = 0:1 will be used to evolve the level set equation with the
semi-lagrangian scheme. We use a RK4 scheme with a time step50 to go back along
characteristics, so that the error in the computations is domigted by the interpolation
error.

The results can be seen in gure 1, where the ow eld and the leVeset att = 4:4
corresponding to each case are drawn, in blue we show the resulthaut including the
redistancing procedure and in red the results including it, wéreas the thick black line
corresponds to the exact interface.

The rst case corresponding tok = 1, at the top, clearly shows the bene ts of including
the redistancing step. Without it the interface severely distds (see the spurious bulge
on the right bottom quadrant) and loses its regularity (see thealetail).

The second case, corresponding ko= 2, in the middle, still shows a signi cant di erence
between including the redistanding step (in red) and not inclding it (in blue) (see the
bottom part of the interface). Again, the interface loses itsegularity in some regions as
shown in the detail.

Finally, for k = 4, at the bottom, the e ect of including the redistancing stepis much less
noticeable.

The results above show that in some situations the reinitializadn of the level set function
can be advantageous in the numerical simulation of free sura@ws. We will thus assume
that reinitialization is performed, and concentrate ommowto perform it economically and
accurately on general meshes.

3  Numerical Formulation

3.1 Level Set Method

We adopt the conservation form of the level set equation for axdrgence-free velocity
eld; i.e.,

@

ot (®#)=0 (2)
where is the level set function whose zero isocontour represents theeiriace andt =
(ux; uy;uy) is the velocity eld. Both, the level set function and the vebcity eld are
functions of (x;t);%x2 ;t> 0.

We use a nite volume method similar to that adopted in [8], in wiich the level set

equation is convected by means of a TVD Runge-Kutta scheme. Thalue of at time
leveln + 1 is obtained as follows
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Figure 1: Flow elds and level sets after several time steps folldhe cases considered.
Top: k =1, Middle: k =2, Bottom: k = 4. The thick black line corresponds to the exact
interface, the thin blue line to the transport without the redistancing step and the thin
red line corresponds to the transport including the redistanog procedure at the end of
each time step.



L = n t L( n;tn),
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where " is the value of at the time leveln, t is the time step andL( ;t ) is the spatial
operator in equation (2), i.e.

LG;t)=r1 (1) (4)

Now, in order to obtain a fully discrete method, that for the sakef simplicity is presented
here in two spatial dimensions, we subdivide the computationabdhain =[0 ;L] [O;Ly]
into I and J uniform cells in thex andy directions respectively, such that the grid spacing
will be given by x and y. Then, the discrete form of (4) for the control volume i(j )
will be simply given by

(Ux Jisz=2j  (Ux )i 1=2; N (Uy Jij+1=2  (Uy )ij 1=
X y '

The extension to three spatial dimensions is straightforward.nlthis scheme,u, and uy
are computed at the cell faces, but is given at the cell centre of the control volume,
from which, the cell face values of ( j+1-25, ij+1=2, ...) are built by using a third-order
accurate ENO interpolation. Details for the construction of he corresponding stencils
can be found in [3] or [8].

L()= (5)

3.2 Geometric mass-preserving redistancing scheme

The geometric mass-preserving reinitialization algorithm mposed here was originally
devised to be used within the nite element framework [34], in hich the level set function
is linearly interpolated over each simplex of an arbitrary iangulation T, (triangles in 2D
and tetrahedra in 3D).

To adapt it to nite volume structured meshes we thus de ne a nite element partition
T, of and assign the values of , computed at the center of gravity of the nite volume
cells, as nodal values oit,. In 2D, the triangulation T, is obtained by dividing each cell
into two triangles as shown in Figure 2, whereas in 3D each héyedral cell is divided
into six tetrahedra. Therefore, the number of simplices in tlsi partition will be two
(respectively, six) times the number of cells used for the nitevolume discretization in
the 2D (respectively, 3D) case. The way this subdivision is mad®@es not really in uence
the performance of the redistancing scheme.

We now proceed to describe the geometric redistancing algdwin. Let \}, be the space
of continuous functions that are linear inside each simplex of,. Let , 2 V, be a
function, and let S, be its zero-level set. Our aim is to nd a function™, 2 V, which
approximates the signed distance functiod to S, de ned by
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Figure 2: Schematic showing the nite volume discretizationealls and the corresponding
triangulation T, for the redistancing algorithm.

dix) =sign[ n(JI mMin kx vk, (6)

noting that, in general, d does notbelong to V4. As an example, consider the problem of
computing the distance to a square as sketched in gure 3. In thsimple case, we can
clearly see that the exact distancel to the interface, for any point such asx (see gure
3), will not be a function that belongs toV}, as indicated by the contours ofl (continuous
red lines).

Contours of the distance function

Lo ) _
d(x) Ry Square interfaceSy
\ ™ J ]
N /
N /

Figure 3. Contours of the distance functiord to a square. Example showing that the
distance to the interface from outside the square region (conis drawn with continuous
red lines) does not belong to the spacé,.

The algorithm is divided into two di erent stages

1. Reinitialization of nodes that belong to interface simpties(First Neighbors of
Sh).

2. Reinitialization of nodes not belonging to interface singes(Rest of the mesh)



3.2.1 Reinitialization of First Neighbors

Let P be the set of nodal points that are adjacent to the zero-level tsef 4, in the
sense that they are vertices of simplices inside whicly changes sign.
Step 1:: We begin by computing

R(X) = d(X) 8X 2 P, (7

so that the nodal values of the intermediate function ,, coincide with the exact (signed)
distanced.

Let us de ne K as the set of simplices in which, changes sign, so thaS, K . Notice
that the nodes in P are the vertices of the simplices ifK. The \brute force" approach
to compute the exact distance in this case simply consists in thecanstruction of S,
inside each element irK (a segment in 2D, a triangle or a quadrilateral in 3D) followed
by the computation of the corresponding geometrical distandeom each node inP to the
reconstructed interface. This can be signi cantly speeded-upy using suitable auxiliary
data structures such as quad/oct{trees to search for \near" sinles. This is, let us
suppose thatn 2 P (position denoted by X,) is a node of a simplexK 2 K and with
initial distance d(X,). If for simplex K we know all the simplices to a given distance
from itself, then, we just compute the geometrical distance fro X, to the reconstructed
interface inside those simplices. Then, if the computed value ssnaller than the current
one, we updated(X,) to this new value. When this process is nished, ,(Xn) is given
the value d(X,), which is the exact distance toS;,.

Once  is known, we must introduce a correction, since the volume epskd by its
zero-level set is di erent from that enclosed by, leading to a mass loss (or gain) that
Is unacceptable for practical purposes. We now describe how tongpute the correction
function | such that the nal function

ThE ot o (8)
Is the desiredreinitialized level{set function The zero{level set of 7, in particular,
encloses the same volume as that of,.
It is easy to check that the di erence in the volumes de ned by , and , is given by
Z

V(h on)= K[H( h(3)) H ( ()] dx (9)

whereH is the Heaviside function H(s) = 1 if s> 0, H(s) = 0 otherwise). So that our
objective is to determine  suchthat V( n; ,+ 1)=0.

For this purpose, we rst notice that V is the sum of contributions of the simplices
K 2 K, namely,

X x £
V(n n)= Vic( h; n) = [H( h(®) H ( 1(39)] dx (10)
K 2K K2k K

leading us to the second step:
Step 2:: Determine the piecewise constanfunction , with constant value ¢ inside
eachK 2 K such that

Vik( i nt k) =0, (11)
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Notice that Eg. 11 is a nonlinear equation for ¢ , which is solved independently for each
K using a simple Regula Falsi procedure that converges in very f@erations.

The piecewise-constant function , computed in this way contains the information of
how much volume loss or gain is contributed by each simplex K. It is not possible,
however, to de ne ™, as ,+ n, becausey, is a discontinuous function and is thus multiply
valued at the nodes inP.

Step 3:: We now compute a continuous function, as an approximatelL 2-orthogonal
projection of 1, onto the space of piecewise continuous functionskn This is implemented
in practice by simply computing the nodal values of}, averaging over the simplices that
share a node. Let be a node inP, and let N, be the number of simplices irK that
contain |, then we de ne

1 X
h(X1) = N K - (12)
|
K 2K
I 2 K
Step 4:: Finally, the correction | is computed onP as
h=C n, (13)

where C is the constant that globally preserves volume; i.eC satis es
V(nh p+Cup)=0. (14)

This nonlinear equation forC is again solved by a simple Regula Falsi method and con-
verges in very few iterations. From the description above it isvident that there are no
adjustable parameters in the scheme, except for the numericallerance in the Regula
Falsi algorithms, which does not play any signi cant role sinceanvergence to machine
precision takes place quickly. Steps 1,2,3 and 4 are summadize Table 1.

The main advantage of the algorithm, as compared to previoumes, is that , local-
izes the correction in those regions where the mass loss/gain gweed by , is largest;
correcting ,, by a constant, as done by other authors [35], corresponds to ta , = 1
and unphysically distributes the correction uniformly over he interface simplices.

3.2.2 Reinitialization of the rest of the mesh

As discussed by Carrica et al [36], the most critical part of the rettialization procedure
is the reinitialization of rst neighbors. Once , is known onP, these values are used as
boundary conditions for the reinitialization of the rest of he mesh points. This can be
done using a PDE-based scheme, as the one described in the nextisectWe however
adopt the geometric scheme introduced by Mut et al [34], for vith the mesh is subdivided
into simplices as in the previous section. We brie y recall th@rocedure below.

We will describe the calculation of 7, just on the positive side ofS;; i.e., for the set
of nodesR at which | is positive and that do not belong toP. We assume that™, is
already known inP.

Step 5:: (Initialization)

10



Table 1: Steps 1,2,3 and 4 for the Reinitialization of rst neighbors of  S,: compu-
tation of the exact distance followed by the mass correctiorlN, is the number of simplices
in K that contain nodel .

Step 1:: Compute the exact distance toSy, (Brute force)
Setd(X,)=+1 for n=1;2;:;NP

nod

do (K =1;NK
Find Sk, the reconstruction ofS, in K using
do (I =1;NF,

Computed, s.t. di =miny,s, jX| %
Setd(X,) = d, if (a(X,)>d,)
end do
end do
Set ,(Xn) = d(X,) for n=1;2:5N]
Step 2:: Find 4, a piecewise constant function
do (K =1;NK
Set Vk = W ( n; 1)
do while (j Vkj> 10 )
Find Sk, the reconstruction ofS;, in K using ,+ «
Set ¢ = VK:SiZdSK)
Set Vi = W( ny nt «)
end do while
end do
Step 3:: Find §, the orthogonal projection of
do (I =1;N},
Set h(X|) =0
do (K =1;N,)
Set (X)) h(X1)+ k=N
end do
end do
Step 4:: Find = ,+C
Initialize V O:C fori=1;2
Seti =3
do while (jV ®j> 10 19)
Setm® =(Cl v ¢cl 2)z(vi v v 2)
Setc® =¢cl 2 m y(i 2
Set V= V(q ,+COY
Seti i+1
end do while
SetC = c

Let | be a node inR, and let C, be the set of nodes connected tb, | not included
(notice that C, (P [R ). The initial guess we use forT, is a distance-along-edges
approximation, i.e., the unique function satisfying

h [
h(X1) = min h(Xo)+ JX0 Xy .
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In the process of initializing 7, with this option, the elements can be ordered so as to
render the algorithm more e ective. Also, if one wants to caldate 7}, up to a distance
from Sy, one simply initializes 7, as equal to overR.

Step 6:: (Evaluation) The simplices in the mesh, excepting those ik, are swept until
~h no longer changes. For each simplex, and for each nabef the simplex (coordinates

denoted by X;), 7, is interpolated linearly on the opposite facd-;, using the current
values at the nodes. Then, a tentativehnew value; of 7. at nodeJ is calculated as
i

g=min W)+ JRy K (15)
?(ZFJ

Finally, 7 (X;) is updated to the value ; if the current value is greater than ;. This is
ilustrated in gure 4 and in Table 2 we summarize both proceduse

® First Neighbors of Sy
Second Neighbors o8y,
N X x| Intersection with F;

\ — Sy ! Zero-level set of 7,
— T, ! Finite element partition of

h

. . . “h(%
Th(Xy) =mingor, Th()+ Xy X h()

Figure 4. Schematic ofStep 6:: (Evaluation) for the reinitialization of the rest of mesh.

3.3 PDE-based redistancing scheme

For the sake of completeness we brie y describe the PDE-based istdncing method
that will be used for comparison, together with its discretizabn as proposed by Peng et
al [6].

Let © be a level set function with zero-level set denoted k. Our aim is to compute
from this initial data ° an approximation ~ for the distance functiond to the zero{level
setS of ©, dened as in (6) (with , replaced by ° and S, replaced byS)

The property kr dk = 1 motivates the redistancing method in which the following kiper-
bolic partial di erential equation (PDE) is solved

%+sign( % kr "k 1 =0 in
(16)

(%0 = °(x),
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Table 2: Steps 5 and 6 for the Reinitialization of rest of the mesh. NomenclatureP: set
of nodal points adyacent toS,, Ng: total number of elements (simplices)Ne: number
of nodes per single element (three for a triangle, four for attahedron), glob( ): is the
global index a local incidence, C,: set of nodes connected tb, | not included.

Step 5:: Edge distance approximation
Setchanges=1
do while (changes==1)
Setchanges=0

do (iel =1;Ng)
do (I =1;Nnpe)
if (glob(l) 2P ) then h i

Find & s.t. & =minj,c, “h(Xy)+ jX;  Xij
if (Th(X))>e) then

Set h(X)) = &
Setchanges=1
end if
end if
end do
end do

end do while
Step 6:: Shadow distance correction
Setchanges=1
do while (changes==1)
Setchanges=0
do (iel =1;Ng)
do (J = 1;Nppe)
if (glob(J) 2P) then
Find F;, the opposite facg,of nodd in iel
Find ; s.t. 3 =miny2g, "Hh(¥)+ jX; ¥
if (Th(X3)> ;) then
Set h(Xy)=
Setchanges=1
end if
end if
end do
end do
end do while

where is a ctitious time. The steady state solution of equation (16)$ an approximation
of the signed distance function to the interface implicitly dened by .

Now, the PDE-based reinitialization method considered here stiretizes equation (16)
by a RK-HIJWENO (weighted essentially non-oscillatory) scheme (sd¢6]). According to
[7] the accuracy gained with this type of high order scheme i®mparable to the one
obtained by means of the improvements introduced in [29], mwhich mass conservation is
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enforced through the introduction of a constraint in the solubn of (16). The approach
is very similar to that presented in the previous section for theliscretization of the level
set equation (2). First, the semidiscrete form of equation (16)f node (;j ), that for
simplicity is presented again in two spatial dimensions reads

@
@

where B is the discrete form of the spatial operator sign() kr ~k 1 . Then, for

= AGY T e ki oy

X1 yii , ~y:i;j )’ (17)

X;ii]

the construction of and ~;; , that are the WENO approximations to %Tx(xi;yj) and

%—T)(xi;yj) respectively, we follow exactly [6]. Finally, we use a fourtlorder Runge-Kutta
method to explicitly advance the system of ODE's given in (17)yhich reads

1
~1) = ~n = |q ~n
2 ( )’
1
@ = - L g
> A,
o= (),
w1 oo la lw 2o, 1o 1 ope,)
3 3 3 3 6

For all the numerical experiments we present, the time step will be taken as x=2 and
the reinitialization will be carried out as long as the quarity kr ~k 1 remains greater
than a numerical tolerance of 10°.

4 Results

To assess the behavior of the proposed reinitialization proce@y the following two
measures of error will be used:

€n = mtaX IV( c) V( &j=V( o) (18)
& = max D(S(t); Se(t)) = max max min jix %, (19)

with the subindex ¢ denoting the computed result and the subinder the exact one, and
whereV ( ) is computed according to

z
V()= H( (») dx (20)

The rst measure of errore,, is the classical \mass error”. The second measueg provides
information on the position of the computed interface with repect to the exact one and
will be refered to as the \position error”. It should be pointedout that linear interpolation

will be used to evaluatee, and g,. These two measures of error are useless if the level
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set is not reasonably resolved by the mesh. We have thus chosen caseshich local
feature sizes of the level set are not smaller than the grid restbn. Finally, we must
mention that the reinitialization procedure will be applial every 10 time steps for all the
simulations to be presented.

4.1 Numerical Experiments in 2D

Two examples will be presented in the two dimensional case: thal&sak's problem
([37]) and the stretching of a circle under a deformation voeix ([38]).

41.1 Zalesak's disk

The initial data is a slotted disk centered at (05;0:75) with a radius of Q15, a slot
width of 0:075 and a slot lenght of @5 in a unit square computational domain.

We rst study the in uence of the repeated application of the ralistancing procedures
without considering the advection step into account (zero cemction velocity). Signi cant
di erences are observed between the two schemes. On the left a§.F5 we show the
evolution of the PDE-based scheme towards its steady state, asuaétion of the number
of pseudo-time steps. The trend of the method to make sharp corgemound is evident,
together with the local loss of mass conservation. In fact, we lmsve that this behavior of
the PDE-based redistancing scheme may be responsible of much & ttumerical di usion
attributed to level-set-based methods. As the number of pseudo¥te steps is increased (or
equivalently, as the tolerance to achieving pseudo-steady &tas tightened), the smoothing
e ect of PDE-based reinitialization becomes stronger. The maber of pseudo-time steps
performed at each time step thus becomes a tunable parametéor which the optimal
choice depends on the speci c problem, mesh, etc.

On the right of Fig. 5 we show the e ect of the repeated applican of the geometry-
based scheme. Notice that one application of this method is angbus to evolving the
PDE-based method to steady state, so that no hidden tunable paraater exists. Repeated
application only occurs, as in this example, when the interé& velocity is zero. Though the
reinitialization distorts the interface, the distortion is much smaller than that caused by
the PDE-based method. Also, the mass is exactly conserved, as bgida geometry-based
reinitialization is mass-conserving.

Now, in order to study the interaction between advection and igitialization, we advect
the slotted disk by the following velocity eld

Uy = TM(O:S Y),

(21)
Uy, = 3:—14(x 0:5),
which represents a rigid body rotation with respect to ((; 0:5). The disk completes one
revolution after 6:28 units of time.

In gure 6 we compare the nal stage of the Zalesak's disk with thexact result after one
turn, for di erent grid resolutions. The time step for the rst case h = 1=64) is 628=600.
For the rest of the grids we mantain the same Courant number. As itan be seen the
geometry-based scheme performs similarly to the PDE-based onleen the grid resolution
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Figure 5: E ect of the repeated application of the PDE-based|éft) redistancing scheme
on a 128 128 grid. Note in the detail the interfaces after 10 (blue), ID(green) and 1000
(magenta) pseudo-time steps. On the right, an analogous plot skis the e ect of 10, 100
and 1000 applications of the geometry-based scheme.

is good enoughtf = 1=256,h = 1=512 andh = 1=1024), while the former outperforms
the latter when the grid resolution is poor. In Figure 7 we congre the evolution of the
disk for the mesh with 128 128 cells, when both reinitialization algorithms are used.
On the left, we show the results for the PDE-based scheme (thin dine) and on the
right the results for the Geometry-Based algorithm (thin red ine). Finally, in Table
3 we present the two measures of error for both algorithms andrfthe di erent grids
considered. It should be noted, on the one hand, that the mass errof the PDE-based
scheme is smaller than that of the geometry-based scheme wien 1=128 1=256, 512
and 1=1024, which, we think, is the result of the compensation of theass gained near the
top of the slot and the mass lost near the corners at the bottom ohé slot. The mass loss
of the geometry-based scheme obviously arises because of adwecsince reinitialization
iIs mass-conserving. Regarding the second measure of eggron the other hand, the
Geometry-based scheme performs better than the PDE-based faidgresolutions 1=64,
1=128 and E256, while for better resolutions (£512 and ¥1024) the PDE-based scheme
IS superior.
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Figure 6: Final stage of the Zalesak's disk after one revoluticior di erent grids. The
thick black line corresponds to the exact solution, the thin hle line to the PDE-based
and the dashed red line to the geometry-based scheme.

4.1.2 Swirling ow vortex

The initial data consists of a disk centred at (€b;0:75) with a radius of Q15. The
computational domain is again a square of size;[] [0;1]. The disk of uid is convected
by the following time dependent divergence-free velocityeld

Uy sin?( x )sin(2y ) cos(t=T ),

(22)

Uy sin(2 x )sin?(y ) cos(t=T ).

In this case, the initial disk is stretched out into a lament andafter a certain time T it
comes back to its initial state. This reversal period is taken equal to 2, so that the size
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128x128 - PDE-based 128x128 - Geometry-Based
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Figure 7: Evolution of the Zalesak's disk using the PDE-based {t® and the Geometry-
based (right) redistancing procedures. The thick black line cresponds to the exact
solution.

Table 3: Measures of error for the Zalesak's disk after one rewtbn.

em[%] €
Mesh PDE-based GEO-based PDE-based GEO-based
64 64 7:902 4949 0:0709 00353
128 128 0:789 2254 0:0291 00134
256 256 0:202 Q477 0:0126 00105
512 512 0:018 0253 0:0065 00070
1024 1024 0:0046 0119 0:0040 00050

of the tale of the lament will be reasonably well resolved for latimes by the mesh used
for computations.

First, in gure 8 we compare the interface att = T=2 (maximum deformation) and
t = T (nal time) for all the grids previouly considered. Now, the time step for the case
with h = 1=64 was equal to 2300 and as done before the Courant number was kept
the same for the other grids. Again, both algorithms perform sirdarly when the grid
resolution is good. Actually, for the case withh = 1=512 the di erence cannot be seen
without zooming in at the sharp corners. In Table 4 we present théi erent measures of
error. In this case, we can see that the Geometric mass-preservaaipeme in general has
a better performance than the PDE-based scheme.
We summarize some results in gure 9 where we report the errey againsth in logarithmic
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Figure 8: Intermediate ¢ = T=2) and nal stage (t = T) of the disk under a swirling
ow vortex with reversal period T = 2 for di erent grid resolutions. The thick black line
corresponds to the exact solution, the thin blue line to the PD#based and the dashed
red line to the geometry-based scheme.

scale and in gure 10 the error as a function of time for the Zasak's case and the swirling
ow vortex case. In 10 we only include two di erent grid resoluions for clarity reasons
but a similar behavior is observed for other grids.

Now, for testing of robustness of the two methods, we change the walof the reversal
periodto T = 8. In gure 11 we show the results for a grid spacing di = 1=128 for which
the tale of the strechted circle results clearly under resolvedn the gure, is plotted the
interface att = T=2 (maximum deformation) and att = T ( nal time) in the upper right
corner.
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Table 4: Measures of error for the streatching of a disk under a siing ow vortex with
reversal periodT = 2.

em[%] €
Mesh PDE-based GEO-based PDE-based GEO-based
64 64 5:074 0668 0:0641 00146
128 128 1:643 0118 0:0272 00028
256 256 0:408 Q257 0:0100 00016
512 512 0:086 Q136 0:0021 00005
1024 1024 0:051 Q056 0:0028 00004

4.2 Numerical Experiments in 3D

For the three dimensional case, we present, on the one hand, résulsing Cartesian
coordinates and comparing both redistancing procedures gnah the other hand, results
using curvilinear coordinates with the Geometric mass-preseng redistancing scheme
coupled with a nite di erence second order TVD van Albada schemdor the transport
of the level set function, similar to the one used in CFDShip-losvas already mentioned
in the introduction.

4.2.1 Deformation vortex - Cartesian coordinates

In this example, the initial data consists simply of a sphere, cered at (0:35; 0:35; 0:35)
and with a radius of Q15. The computational domain is the unit cube. The sphere is
then convected by the following solenoidal eld

ue = 2sin?(x)sin(2y)sin(2z) cos(t=T ),
u, = sin(2x )sin?( 'y )sin(2 z ) cos(t=T ), (23)
u, = sin(2x )sin(2 'y )sin?( z ) cos(t=T ),

again, as in the D case, the velocity eld is modulated by a periodic function, sth that
the sphere will recover its initial state after a timeT = 2.

In Table 5 we present the two measures of error, in this case just two di erent grids
of 64 64 64 and 128 128 128 cells. The time step was taken equal tc200 and 2800
respectively. In gure 12 we plot the level set at di erent times for both algorithms for
the case withh = 1=128. In the top (red colour) are the results for the Geometrydsed
redistancing and in the bottom (blue colour) the results for te PDE-based redistancing.
From both, the gure and the table we can see that the Geometrpased redistancing has
a better performance.
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Figure 9: Measure of errog, versush. Left: Rigid body rotation of Zalesak's disk. Right:

h

Deformation of the disk under the swirling ow vortex.

Table 5. Measures of error for the deformation of a sphere undarthree dimensional

vortex. Cartesian coordinates.

Swirling flow vortex

h

em[%0] €
Mesh PDE-based GEO-based PDE-based GEO-based
64 64 64 4021 2241 0:0673 00267
128 128 128 1076 1543 0:0355 00056

4.2.2 Zalesak's sphere - Curvilinear coordinates

The initial data consists of a notched sphere centered at:@0:75; 0:3) of radius Q15,
with a slot width of 0:075 and a slot lenght of 5. The sphere is rotating in thexy-plane
with the velocity eld given in (21) (u, = 0). The computational domain is the region

[0;1] [0;1] [O;0:6] deformed by the mapping given by
o B 5
X(::) = g5 Sin@ ( ),
- = S i 2 24
y(; 5 ) = 15 Sn@ ( ), (24)
o B 5
z(;; ) = 16 sin(2 ( ).

The resulting mesh (see gure 13) is then used to compute the apmiate metric co-
e cients by using a second order nite di erence rule, in orderto be able to solve the
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Figure 10: Measure of errog, versus timet. Left: Rigid body rotation of Zalesak's disk.
Right: Deformation of the disk under the swirling ow vortex.
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Figure 11: Intermediate ¢ = T=2) and nal stage (t = T) of the disk under a swirling ow
vortex with reversal period T = 8, using the PDE-based (left) and the Geometry-based
(right) redistancing procedures. The thick black line correspnds to the exact solution.

transformed level set equation (see [9]). The grid in this caseveal1l28 128 64 cells
and the time step is equal to &8=800.

In this case, for the sake of simplicity, instead of, we compute the following measure of

error g

4

6 = max

H(

o(%)

22

e(%) dx,
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Figure 12: Evolution of a sphere under a three dimensional defieation vortex. Com-
parison of the Geometry-based redistancing scheme (top-red)tvihe PDE-based redis-
tancing scheme (bottom-blue). Cartesian grid 128 128 128.

which is the measure of (¢ ol (¢ e)- This is possible since we are dealing here
with a rigid body rotation, which makes the computation of . very easy.

Results are shown in gure 14 where we can appreciate that the [Baak's sphere is
reasonably preserved. Regarding the measures of error we hawvmputed a mass change
en of 1:859% and a value fol equal to Q00162.

4.2.3 Sphere approaching a bump - Curvilinear coordinates

For this last example, the initial condition corresponds to a dpere centred at ( 0:05; 0:4; 0:25)
of radius Q15. The computational domain is the region [0:25; 1:25] [0;1] [O0; 0:5] trans-
formed under the following mapping (see [39])

(55 ) =,
y(;; ) = B()+ (1 B()), (26)
z(;5 ) =
where the functionB is given by
— 1 50( 0:5)2
B()= ée , (27)
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Figure 13: Three dimensional curvilinear grid used and refaree system for the transport
of the Zalesak's sphere.

Figure 14: Evolution of the Zalesak's sphere using the geometrinass-preserving redis-
tancing scheme. Curvilinear grid of 128 128 64 cells.
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which represents a bump centred ak = 0:5. The sphere is then transported by the
following divergence free velocity eld based on the shape dig¢ bump

B 1
T 1B

_ B )
RO CI-T0% )
u, = 0.

In this numerical test the grid consists of 128 102 62 cells and the time step is equal
to 1=800.

Results are shown in gure 15, where a detail of the curvilineagrid can be observed.
In this case, the mass change, was 4686% and the value ok, = 0:0306. We should
mention that the error reported here (which is the maximum osr t) happens when the
level set passes near the cusp of the bump, where the maximum distmr of cells is
present, as seen in the detail of the grid.

Figure 15: Evolution of the sphere approaching a bump using thgeometric mass-
preserving redistancing scheme. Curvilinear grid of 128102 62 cells.

5 Conclusions

In this paper we have discussed some issues related to the reinitiaiion of the level
set function and we have focused on the description and evaluati of ageometric mass-
preservingredistancing scheme that was originally introduced in the fraework of nite
elements.
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The geometric mass-preserving algorithm proposed can be used onaabitrary tri-
angulation of the computational domain, making it a very attactive tool to be used on
any type of discretized domains such as the structured curvilar grids widely used in
CFD computations. A salient feature of the scheme is its simpligiand lack of adjustable
parameters, which is an important di erence as compared to ber available methods.

The scheme is designed to preserve the mass (or the volume) dekuhiby the zero-level
set, which is de ned by linear interpolation on a subdivision othe computational grid
into simplices.

In the numerical tests using Cartesian grids in two and three spal dimensions, we
have observed in some cases a better performance of the geometass-preserving redis-
tancing scheme and in some cases a better performance of the Pitdsed method used
for comparison, which is formally of higher order of convergee. This was illustrated
gualitatively by means of plots of the level set and quantitavely be means of computing
relevant measures of error for level set methods. Numerical exales were then reported,
showing that the performance of the method does not deterideawhen applied on arbi-
trary curvilinear grids.
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