
A geometric mass-preserving redistancing scheme for
the level set function

Roberto F. Ausas a, Enzo A. Dari a, Gustavo C. Buscaglia b

aCentro At�omico Bariloche e Instituto Balseiro, 8400, Bari loche, Argentina,
rfausas@gmail.com, darie@cab.cnea.gov.ar

bInstituto de Ciências Matem�aticas e de Computa�c~ao, Univ. de S~ao Paulo, S~ao Carlos, Brasil,
e-mail: gustavo.buscaglia@gmail.com

July 7, 2009

Keywords: Level Set Method, Reinitialization, Redistancing, Curvilinear Coordi-
nates.

Abstract.
In this paper we describe and evaluate a geometric mass-preserving redistancing procedure

for the level set function on general structured grids. The proposed algorithm is adapted from
a recent �nite-element-based method and preserves the mass bymeans of a localized mass cor-
rection. A salient feature of the scheme is the absence of adjustable parameters. The algorithm
is tested in two and three spatial dimensions and compared with the widely used PDE-based
redistancing method using structured Cartesian grids. Through the use of quantitative error
measures of interest in level set methods, we show that the overall performance of the proposed
geometric procedure is better than PDE-based reinitialization schemes, since it is more robust
with comparable accuracy. We also show that the algorithm iswell{suited for the highly{streched
curvilinear grids used in CFD simulations.



1 Introduction

The level set method, introduced by Sethian and Osher in 1988 [1], has been exten-
sively used in the past few years to treat problems involving free surfaces, basically due
to its simplicity to deal with the complex topological changes that interfaces might un-
dergo along their transport in a general situation. Additionally, quantities such as the
curvature of the interface and other related information can be extracted from the level
set function making it a very attractive and powerful tool forproblems in two and three
spatial dimensions.

As is well known, one of the main drawbacks of this method for free surface problems
involving incompressible 
ows is the lack of mass conservation and excessive di�usion,
which leads to unphysical motions of the interface that severely deteriorate the accuracy
and stability of the results. These di�culties have been addressedin basically three
di�erent ways:

� by improving the numerical algorithms used to transport the level set function;

� by combining the level set method with other computational techniques;

� by trying to keep the level set function as regular as possible, using the so called
reinitialization or redistancing procedures.

Regarding the �rst alternative, there are many methods to solve the level set equa-
tion, such as �nite volume and �nite di�erence methods which combine total variation
diminishing (TVD) schemes in time, introduced by Shu and Osher [2, 3], and essentially
non-oscillatory (ENO) schemes in space, based on the ideas �rstly proposed by Harten
and coworkers [4, 5] to solve Hamilton-Jacobi type equations. In this area, the TVD-
Runge-Kutta and Hamilton-Jacobi Weighted-ENO scheme developed in [6] is considered
to be state-of-the-art for solving the level set equation within the framework of eulerian
methods [7]. In this case, curvilinear coordinates can be usedto deal with complex ge-
ometries (see for instance [8] and [9]). It should be mentioned that TVD schemes can also
be used in space as 
ux limiter methods, as done for instance by Olsson and Kreiss [10].
Stabilized �nite elements and discontinuous Galerkin methods are used as well for treating
the level set equation. In this case, unstructured meshes can be employed and local grid
re�nement becomes an easy task. A comparison of such methods is done in [11]. In [12]
a discontinuous Galerkin method is proposed and compared withseveral other methods
including the ENO/RK(3) scheme presented in [13] and the HJ-WENO(5)/RK(3) scheme
used in [14, 15]. Finally, semi-Lagrangian schemes, which can beimplemented in very
simple and e�cient ways, are also used in level set methods (see [16,17, 14]).

With respect to the second alternative in the bulleted list above, hybrid methods that
combine the level set method either with Lagrangian particles or with the VOF (volume of

uid) method have been developed. The �rst option consists in moving massless particles
forward in time in order to rede�ne the level set function by means of some procedure at
the end of each time step or with a prede�ned frequency. See forinstance [14, 15] and
[18]. The other option uses the VOF method (see e.g. [19]), another surface capturing
method for free surface 
ows, to correct the level set function soas to locally enforce mass
conservation as done by Sussman in [20] and [21] for example.

In this article we focus on the redistancing procedure. Its purpose is to ensure that the
level set function remains smooth close to the interface. This is achieved by periodically
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rede�ning it, while trying to maintain the interface intact . The reinitialization improves
the robustness of the computations by keeping the distortion ofthe level set function under
control. A natural choice to reinitialize the level set function is the signed distance function
to the interface. The idea of reinitialization was �rst presented in the work of Chopp [22].
Later, Tsitsiklis [23] proposed in a completely di�erent framework, a method that can be
used for the construction of distance functions, and therefore for reinitialization, known
as the fast marching method, further popularized by Sethian (see [24] and [25]). A second
paper of Chopp [26], that introduces some improvements to themethod, can also be
mentioned in this context. It should be pointed out that reinitialization can be avoided
using a velocity extension that preserves the signed distance function (see [27] and [28]).
On the other hand, several PDE-based methods have been devised for the purpose of
redistancing, which solve the so-called reinitialization equation as originally proposed by
Sussman and coworkers [29, 30, 13].

It should be pointed out that, in general, it is not possible to reinitialize the level set
function maintaining the interface intact in a discrete problem. In fact, the space of level
set functions that share the same given interface is extremely small [31] and it is likely
that none of its elements provides a reasonable approximation to the distance function.
The consequence of this is that each reinitialization distorts the interface to some extent,
implying a local numerical creation/destruction of 
uid mass.However, this distortion is
not explicit in PDE-based methods but embedded in the discretization adopted for the
reinitialization equation. The use of high-order schemes, together with ad-hoc correction
terms, are needed to minimize the interface distortion duringreinitialization, which other-
wise completely destroys the accuracy of the computations [7]. Though improved versions
of PDE-based reinitialization exist for Cartesian grids (see e.g. [32] and [33]), they are
not well{suited for highly{streched curvilinear grids.

In this article we adapt the reinitialization scheme of Mut etal [34] to the case of
structured, curvilinear �nite di�erence grids. The scheme wasoriginally developed for
unstructured meshes of linear �nite elements, and a simple subdivision of each quadri-
lateral (or of each hexahedron in 3D) is used to build a mesh suitable for applying it.
The advantages of the proposed reinitialization scheme are its simplicity, its 
exibility to
handle arbitrarily distorted meshes, and the absence of adjustable parameters.

We begin by showing the necessity of redistancing in Section 2. InSection 3 we
describe the proposed method, together with the TVD Runge-Kutta third-order ENO
scheme that is used to evolve the level set equation, for which weuse a �nite volume
implementation very similar to that presented in [8]. Since the proposed method is based
on a piecewise-linear representation of the level set function, concerns may arise as to its
accuracy. Section 3 also contains a brief summary of a widely used PDE-based method,
the HJWENO-RK scheme of Peng et al [6]. This method will be compared to the proposed
one in the numerical examples.

In section 4, numerical experiments are shown in two and three spatial dimensions,
including the rigid rotation of Zalesak's disk, the deformation of a circle under a swirling

ow vortex, and the deformation of a 3D sphere, which are classical benchmark cases in
level set methods. Speci�c measures of error of interest in free surface problems are used
to evaluate the results. Finally, to illustrate the versatility of the proposed geometric
redistancing scheme, we couple it with a �nite di�erence upwind method in curvilinear
coordinates that uses a second order TVD van Albada scheme as 
ux limiter for the
transport of the level set function, similar to the one used in CFDShip-Iowa [9]. We
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present numerical examples using curvilinear grids that haveappreciable distortion in
order to be able to test the mass-preserving scheme in relevant situations that might
appear in real CFD computations. We draw some conclusions in section 6.

2 Motivation

It is not obvious whether the periodic reinitialization of the level set function is conve-
nient or not in computations. It strongly depends, among other things, on the particular
case considered, the method used to transport the level set function � , the level of dis-
cretization used and of course on the reinitialization algorithm itself. However, as we
know, most level set methods assume that� has to be reinitialized periodically for ro-
bustness of computations. To illustrate this point, a two dimensional academic problem
is shown below, in which we use a simple semilagrangian algorithmfor the transport of
the level set function, in combination with the mass-preservingredistancing scheme we
propose (details about the scheme will be given later in Section 3).
For the case considered, the initial value of the function� has as zero level set a circle
with radius a centered at the origin, i.e.

� (x; y; t = 0) = a �
�
x2 + y2

� 1=2
(x; y) 2 
,

where 
 = [ � 0:75; 0:75]� [� 0:75; 0:75].
Then, we consider the 
ow �eld corresponding to a doublet with intensity � plus an
uniform stream of magnitudU0 = � =a2 and with an additional circulation � = 4 �kaU 0,
wherek is a constant. Using polar coordinates (r; � ), the velocity �eld reads

ur = cos(� )
�
U0 �

�
r 2

� (r )
�

,

u� = � sin(� )
�
U0 +

�
r 2

� (r )
�

+
�

2�r
� (r ),

where� (r ) is a regularization function de�ned as

� (r ) =
�

1
2

�
1 � cos(4�r

a )
�

if r < a= 4
1 if r � a=4

, (1)

The regularization function avoids the singularity at the origin. The presence of� (r )
makes the velocity �eld non divergence-free forr < a= 4, however, semi-lagrangian schemes
are perfectly capable of handling such velocity �elds without any additional e�ort.
Since the radial component of the velocityur is identically zero for r = a, in the exact
problem the interface remains unaltered. However, this willnot necessarily be true in
the discretized problem, and our aim is to study the role of the redistancing procedure in
keeping the interface as accurate as possible.

This case is specially tailored so that changing the parametersk and � di�erent be-
haviors can be observed:

� k = 1 ) � = 4 �aU 0

This case has an stagnation point at (r; � ) = ( a; � �
2 ).
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� k > 1 ) � > 4�aU 0

In this case the stagnation point occurs at some point (r; � ) = ( r1; � �
2 ); r1 > a .

The cases corresponding tok < 1, with to two stagnation points at (r; � ) = ( a; � �
2 � � s)

and (r; � ) = ( a; � �
2 + � s), behave similarly to the case withk = 1. Therefore, we will

consider three di�erent values fork: 1, 2 and 4 and for all of them, a mesh consisting of
70� 70 cells and a time step�t = 0:1 will be used to evolve the level set equation with the
semi-lagrangian scheme. We use a RK4 scheme with a time step�t= 50 to go back along
characteristics, so that the error in the computations is dominated by the interpolation
error.
The results can be seen in �gure 1, where the 
ow �eld and the level set at t = 4:4
corresponding to each case are drawn, in blue we show the results without including the
redistancing procedure and in red the results including it, whereas the thick black line
corresponds to the exact interface.
The �rst case corresponding tok = 1, at the top, clearly shows the bene�ts of including
the redistancing step. Without it the interface severely distorts (see the spurious bulge
on the right bottom quadrant) and loses its regularity (see thedetail).
The second case, corresponding tok = 2, in the middle, still shows a signi�cant di�erence
between including the redistanding step (in red) and not including it (in blue) (see the
bottom part of the interface). Again, the interface loses its regularity in some regions as
shown in the detail.
Finally, for k = 4, at the bottom, the e�ect of including the redistancing stepis much less
noticeable.
The results above show that in some situations the reinitialization of the level set function
can be advantageous in the numerical simulation of free surface 
ows. We will thus assume
that reinitialization is performed, and concentrate onhowto perform it economically and
accurately on general meshes.

3 Numerical Formulation

3.1 Level Set Method

We adopt the conservation form of the level set equation for a divergence-free velocity
�eld; i.e.,

@�
@t

+ r � (~u� ) = 0, (2)

where � is the level set function whose zero isocontour represents the interface and~u =
(ux ; uy; uz) is the velocity �eld. Both, the level set function and the velocity �eld are
functions of (~x; t); ~x 2 
 ; t > 0.

We use a �nite volume method similar to that adopted in [8], in which the level set
equation is convected by means of a TVD Runge-Kutta scheme. Thevalue of � at time
level n + 1 is obtained as follows
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Figure 1: Flow �elds and level sets after several time steps for all the cases considered.
Top: k = 1, Middle: k = 2, Bottom: k = 4. The thick black line corresponds to the exact
interface, the thin blue line to the transport without the redistancing step and the thin
red line corresponds to the transport including the redistancing procedure at the end of
each time step.
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� (1) = � n � �t L (� n ; tn ),

� (2) =
3
4

� n +
1
4

� (1) �
1
4

�t L (� (1) ; tn + �t ), (3)

� n+1 =
1
3

� n +
2
3

� (2) �
2
3

�t L (� (2) ; tn +
1
2

�t ),

where� n is the value of� at the time level n, �t is the time step andL (�; t ) is the spatial
operator in equation (2), i.e.

L (�; t ) = r � (~u� ). (4)

Now, in order to obtain a fully discrete method, that for the sakeof simplicity is presented
here in two spatial dimensions, we subdivide the computational domain 
 = [0 ; L x ]� [0; L y ]
into I and J uniform cells in thex and y directions respectively, such that the grid spacing
will be given by �x and �y . Then, the discrete form of (4) for the control volume (i; j )
will be simply given by

L (� ) =
(ux � ) i +1 =2;j � (ux � ) i � 1=2;j

�x
+

(uy � ) i;j +1 =2 � (uy � ) i;j � 1=2

�y
. (5)

The extension to three spatial dimensions is straightforward. In this scheme,ux and uy

are computed at the cell faces, but� is given at the cell centre of the control volume,
from which, the cell face values of� (� i +1 =2;j , � i;j +1 =2, ...) are built by using a third-order
accurate ENO interpolation. Details for the construction of the corresponding stencils
can be found in [3] or [8].

3.2 Geometric mass-preserving redistancing scheme

The geometric mass-preserving reinitialization algorithm proposed here was originally
devised to be used within the �nite element framework [34], in which the level set function
is linearly interpolated over each simplex of an arbitrary triangulation Th (triangles in 2D
and tetrahedra in 3D).

To adapt it to �nite volume structured meshes we thus de�ne a �nite element partition
Th of 
 and assign the values of� , computed at the center of gravity of the �nite volume
cells, as nodal values onTh. In 2D, the triangulation Th is obtained by dividing each cell
into two triangles as shown in Figure 2, whereas in 3D each hexahedral cell is divided
into six tetrahedra. Therefore, the number of simplices in this partition will be two
(respectively, six) times the number of cells used for the �nitevolume discretization in
the 2D (respectively, 3D) case. The way this subdivision is made does not really in
uence
the performance of the redistancing scheme.

We now proceed to describe the geometric redistancing algorithm. Let Vh be the space
of continuous functions that are linear inside each simplex ofTh. Let � h 2 Vh be a
function, and let Sh be its zero-level set. Our aim is to �nd a function~� h 2 Vh which
approximates the signed distance functiond to Sh de�ned by
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Triangulation used
for redistancing algorithmFinite Volume cells used

for transport algorithm

Computed values of�
Zero-level set of�

~y

~x

Figure 2: Schematic showing the �nite volume discretization cells and the corresponding
triangulation Th for the redistancing algorithm.

d(~x) = sign [� h(~x)] min
~y 2 S h

k ~x � ~y k , (6)

noting that, in general, d does notbelong toVh. As an example, consider the problem of
computing the distance to a square as sketched in �gure 3. In thissimple case, we can
clearly see that the exact distanced to the interface, for any point such as~x (see �gure
3), will not be a function that belongs toVh as indicated by the contours ofd (continuous
red lines).

~y Square interfaceShd(~x)

~x

Contours of the distance function

Figure 3: Contours of the distance functiond to a square. Example showing that the
distance to the interface from outside the square region (contours drawn with continuous
red lines) does not belong to the spaceVh.

The algorithm is divided into two di�erent stages

1. Reinitialization of nodes that belong to interface simplices(First Neighbors of
Sh) .

2. Reinitialization of nodes not belonging to interface simplices(Rest of the mesh) .
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3.2.1 Reinitialization of First Neighbors

Let P be the set of nodal points that are adjacent to the zero-level set of � h, in the
sense that they are vertices of simplices inside which� h changes sign.
Step 1:: We begin by computing

� �
h( ~X ) = d( ~X ) 8 ~X 2 P , (7)

so that the nodal values of the intermediate function� �
h coincide with the exact (signed)

distanced.
Let us de�ne K as the set of simplices in which� h changes sign, so thatSh � K . Notice
that the nodes in P are the vertices of the simplices inK. The \brute force" approach
to compute the exact distance in this case simply consists in the reconstruction of Sh

inside each element inK (a segment in 2D, a triangle or a quadrilateral in 3D) followed
by the computation of the corresponding geometrical distancefrom each node inP to the
reconstructed interface. This can be signi�cantly speeded-upby using suitable auxiliary
data structures such as quad/oct{trees to search for \near" simplices. This is, let us
suppose thatn 2 P (position denoted by ~X n ) is a node of a simplexK 2 K and with
initial distance ~d( ~X n ). If for simplex K we know all the simplices to a given distance
from itself, then, we just compute the geometrical distance from ~X n to the reconstructed
interface inside those simplices. Then, if the computed value issmaller than the current
one, we update~d( ~X n ) to this new value. When this process is �nished,� �

h( ~X n ) is given
the value ~d( ~X n ), which is the exact distance toSh.

Once � �
h is known, we must introduce a correction, since the volume enclosed by its

zero-level set is di�erent from that enclosed bySh, leading to a mass loss (or gain) that
is unacceptable for practical purposes. We now describe how to compute the correction
function  h such that the �nal function

~� h = � �
h +  h; (8)

is the desiredreinitialized level{set function. The zero{level set of ~� h, in particular,
encloses the same volume as that of� h.

It is easy to check that the di�erence in the volumes de�ned by� h and � �
h is given by

� V(� h; � �
h) =

Z

K
[H (� h(~x)) � H (� �

h(~x))] d~x, (9)

whereH is the Heaviside function (H(s) = 1 if s > 0, H(s) = 0 otherwise). So that our
objective is to determine h such that � V(� h; � �

h +  h) = 0.
For this purpose, we �rst notice that � V is the sum of contributions of the simplices

K 2 K , namely,

� V(� h; � �
h) =

X

K 2 K

� VK (� h; � �
h) =

X

K 2 K

Z

K
[H (� h(~x)) � H (� �

h(~x))] d~x, (10)

leading us to the second step:
Step 2:: Determine the piecewise constantfunction � h, with constant value � K inside
eachK 2 K such that

� VK (� h; � �
h + � K ) = 0, (11)
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Notice that Eq. 11 is a nonlinear equation for� K , which is solved independently for each
K using a simple Regula Falsi procedure that converges in very fewiterations.

The piecewise-constant function� h computed in this way contains the information of
how much volume loss or gain is contributed by each simplex inK. It is not possible,
however, to de�ne ~� h as� �

h+ � h, because� h is a discontinuous function and is thus multiply
valued at the nodes inP.
Step 3:: We now compute a continuous function� h as an approximateL2-orthogonal
projection of � h onto the space of piecewise continuous functions inK. This is implemented
in practice by simply computing the nodal values of� h averaging over the simplices that
share a node. LetI be a node inP, and let N I be the number of simplices inK that
contain I , then we de�ne

� h( ~X I ) =
1

N I

X

K 2 K
I 2 K

� K . (12)

Step 4:: Finally, the correction  h is computed onP as

 h = C � h, (13)

whereC is the constant that globally preserves volume; i.e.,C satis�es

� V(� h; � �
h + C� h) = 0. (14)

This nonlinear equation forC is again solved by a simple Regula Falsi method and con-
verges in very few iterations. From the description above it isevident that there are no
adjustable parameters in the scheme, except for the numericaltolerance in the Regula
Falsi algorithms, which does not play any signi�cant role since convergence to machine
precision takes place quickly. Steps 1,2,3 and 4 are summarized in Table 1.

The main advantage of the algorithm, as compared to previousones, is that� h local-
izes the correction in those regions where the mass loss/gain produced by � �

h is largest;
correcting � �

h by a constant, as done by other authors [35], corresponds to taking � h = 1
and unphysically distributes the correction uniformly over the interface simplices.

3.2.2 Reinitialization of the rest of the mesh

As discussed by Carrica et al [36], the most critical part of the reinitialization procedure
is the reinitialization of �rst neighbors. Once � �

h is known onP, these values are used as
boundary conditions for the reinitialization of the rest of the mesh points. This can be
done using a PDE-based scheme, as the one described in the next section. We however
adopt the geometric scheme introduced by Mut et al [34], for which the mesh is subdivided
into simplices as in the previous section. We brie
y recall theprocedure below.

We will describe the calculation of~� h just on the positive side ofSh; i.e., for the set
of nodesR at which � h is positive and that do not belong toP. We assume that~� h is
already known inP.

Step 5:: (Initialization)

10



Table 1: Steps 1,2,3 and 4 for the Reinitialization of �rst neighbors of Sh: compu-
tation of the exact distance followed by the mass correction.N I is the number of simplices
in K that contain node I .

Step 1:: Compute the exact distance toSh (Brute force)
� Set ~d( ~X n ) = + 1 for n = 1; 2; :::; N P

nod
do (K = 1; N K

el )
� Find SK , the reconstruction ofSh in K using � h

do (I = 1; N P
nod)

� Compute dI s.t. dI = min ~x 2 S K j ~X I � ~xj
� Set ~d( ~X I ) = dI if ( ~d( ~X I ) > d I )

end do
end do
� Set � �

h( ~X n ) = ~d( ~X n ) for n = 1; 2; :::; N P
nod

Step 2:: Find � h, a piecewise constant function
do (K = 1; N K

el )
� Set �VK = � VK (� h; � �

h)
do while (j�VK j > 10� 15)

� Find SK , the reconstruction ofSh in K using � �
h + � K

� Set � K = � �VK =size(SK )
� Set �VK = � VK (� h; � �

h + � K )
end do while

end do
Step 3:: Find � h, the orthogonal projection of� h

do (I = 1; N P
nod)

� Set � h( ~X I ) = 0
do (K = 1; N I )

� Set � h( ~X I )  � h( ~X I ) + � K =NI

end do
end do
Step 4:: Find  h = � �

h + C � h

� Initialize �V (i ) ; C(i ) for i = 1; 2
� Set i = 3
do while (j�V (i ) j > 10� 15)

� Set m(i ) = ( C(i � 1) � C(i � 2))=(�V (i � 1) � �V (i � 2))
� Set C(i ) = C(i � 2) � m(i ) �V (i � 2)

� Set �V (i ) = � V(� h; � �
h + C(i ) � h)

� Set i  i + 1
end do while
� Set C = C(i )

Let I be a node inR, and let CI be the set of nodes connected toI , I not included
(notice that CI � (P [ R ). The initial guess we use for~� h is a distance-along-edges
approximation, i.e., the unique function satisfying

~� h( ~X I ) = min
J 2 CI

h
~� h( ~X J ) + j ~X I � ~X J j

i
.
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In the process of initializing ~� h with this option, the elements can be ordered so as to
render the algorithm more e�ective. Also, if one wants to calculate ~� h up to a distance�
from Sh, one simply initializes ~� h as equal to� over R.
Step 6:: (Evaluation) The simplices in the mesh, excepting those inK, are swept until
~� h no longer changes. For each simplex, and for each nodeJ of the simplex (coordinates
denoted by ~X J ), ~� h is interpolated linearly on the opposite faceFJ , using the current
values at the nodes. Then, a tentative new value� J of ~� h at node J is calculated as

� J = min
~x 2 FJ

h
~� h(~x) + j ~X J � ~xj

i
. (15)

Finally, ~� h( ~X J ) is updated to the value� J if the current value is greater than� J . This is
ilustrated in �gure 4 and in Table 2 we summarize both procedures.

~x ! Intersection with FJ

First Neighbors ofSh

Sh ! Zero-level set of~� h

Th ! Finite element partition of 


~X J

FJ ~x

j ~X J � ~xj
~� h(~x)~� h( ~X J ) = min~x2 FJ

h
~� h(~x) + j ~X J � ~xj

i

Second Neighbors ofSh

Sh

Figure 4: Schematic ofStep 6:: (Evaluation) for the reinitialization of the rest of mesh.

3.3 PDE-based redistancing scheme

For the sake of completeness we brie
y describe the PDE-based redistancing method
that will be used for comparison, together with its discretization as proposed by Peng et
al [6].

Let � 0 be a level set function with zero-level set denoted byS. Our aim is to compute
from this initial data � 0 an approximation ~� for the distance functiond to the zero{level
set S of � 0, de�ned as in (6) (with � h replaced by� 0 and Sh replaced byS)
The property kr dk = 1 motivates the redistancing method in which the following hyper-
bolic partial di�erential equation (PDE) is solved

@~�
@�

+ sign(� 0)
�

k r ~� k � 1
�

= 0 in 
,

(16)
~� (~x;0) = � 0(~x),
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Table 2: Steps 5 and 6 for the Reinitialization of rest of the mesh. Nomenclature:P: set
of nodal points adyacent toSh, Nel: total number of elements (simplices),Nnpe: number
of nodes per single element (three for a triangle, four for a tetrahedron), glob(I ): is the
global index a local incidenceI , CI : set of nodes connected toI , I not included.

Step 5:: Edge distance approximation
� Set changes= 1
do while (changes== 1 )

� Set changes= 0
do (iel = 1; Nel)

do (I = 1; Nnpe)
if (glob(I ) =2 P ) then

� Find eI s.t. eI = min J 2 CI

h
~� h( ~X J ) + j ~X J � ~X I j

i

if ( ~� h( ~X I ) > e I ) then
� Set ~� h( ~X I ) = eI

� Set changes= 1
end if

end if
end do

end do
end do while
Step 6:: Shadow distance correction
� Set changes= 1
do while (changes== 1 )

� Set changes= 0
do (iel = 1; Nel)

do (J = 1; Nnpe)
if (glob(J) =2 P ) then

� Find FJ , the opposite face of nodeJ in iel

� Find � J s.t. � J = min ~x 2 FJ

h
~� h(~x) + j ~X J � ~xj

i

if ( ~� h( ~X J ) > � J ) then
� Set ~� h( ~X J ) = � J

� Set changes= 1
end if

end if
end do

end do
end do while

where� is a �ctitious time. The steady state solution of equation (16) is an approximation
of the signed distance function to the interface implicitly de�ned by � 0.

Now, the PDE-based reinitialization method considered here discretizes equation (16)
by a RK-HJWENO (weighted essentially non-oscillatory) scheme (see[6]). According to
[7] the accuracy gained with this type of high order scheme is comparable to the one
obtained by means of the improvements introduced in [29], inwhich mass conservation is
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enforced through the introduction of a constraint in the solution of (16). The approach
is very similar to that presented in the previous section for thediscretization of the level
set equation (2). First, the semidiscrete form of equation (16) for node (i; j ), that for
simplicity is presented again in two spatial dimensions reads

@~� i;j

@�
= � Ĥ (x i ; yj ; ~� i;j ; ~� +

x;i;j ; ~� �
x;i;j ; ~� +

y;i;j ; ~� �
y;i;j ), (17)

where Ĥ is the discrete form of the spatial operator sign(� 0)
�

k r ~� k � 1
�

. Then, for

the construction of ~� �
x;i;j and ~� �

y;i;j , that are the WENO approximations to @~�
@x(x i ; yj ) and

@~�
@y(x i ; yj ) respectively, we follow exactly [6]. Finally, we use a fourthorder Runge-Kutta
method to explicitly advance the system of ODE's given in (17),which reads

~� (1) = ~� n �
1
2

�� Ĥ ( ~� n ),

~� (2) = ~� n �
1
2

�� Ĥ ( ~� (1) ),

~� (3) = ~� n � �� Ĥ ( ~� (2) ),

~� n+1 = �
1
3

~� n +
1
3

~� (1) +
2
3

~� (2) +
1
3

~� (3) �
1
6

�� Ĥ ( ~� (3) ).

For all the numerical experiments we present, the time step�� will be taken as�x= 2 and

the reinitialization will be carried out as long as the quantity
�
�
�k r ~� k � 1

�
�
� remains greater

than a numerical tolerance of 10� 5.

4 Results

To assess the behavior of the proposed reinitialization procedure, the following two
measures of error will be used:

em = max
t

jV (� c) � V (� e)j=V(� e), (18)

ep = max
t

D(Sc(t); Se(t)) = max
t

max
xe2S e

min
xc2S c

jj~xc � ~xejj , (19)

with the subindex c denoting the computed result and the subindexe the exact one, and
whereV(� ) is computed according to

V(� ) =
Z



H(� (~x)) d~x. (20)

The �rst measure of errorem is the classical \mass error". The second measureep provides
information on the position of the computed interface with respect to the exact one and
will be refered to as the \position error". It should be pointedout that linear interpolation
will be used to evaluateem and ep. These two measures of error are useless if the level
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set is not reasonably resolved by the mesh. We have thus chosen casesin which local
feature sizes of the level set are not smaller than the grid resolution. Finally, we must
mention that the reinitialization procedure will be applied every 10 time steps for all the
simulations to be presented.

4.1 Numerical Experiments in 2D

Two examples will be presented in the two dimensional case: the Zalesak's problem
([37]) and the stretching of a circle under a deformation vortex ([38]).

4.1.1 Zalesak's disk

The initial data is a slotted disk centered at (0:5; 0:75) with a radius of 0:15, a slot
width of 0:075 and a slot lenght of 0:25 in a unit square computational domain.

We �rst study the in
uence of the repeated application of the redistancing procedures
without considering the advection step into account (zero convection velocity). Signi�cant
di�erences are observed between the two schemes. On the left of Fig. 5 we show the
evolution of the PDE-based scheme towards its steady state, as a function of the number
of pseudo-time steps. The trend of the method to make sharp corners round is evident,
together with the local loss of mass conservation. In fact, we believe that this behavior of
the PDE-based redistancing scheme may be responsible of much of the numerical di�usion
attributed to level-set-based methods. As the number of pseudo-time steps is increased (or
equivalently, as the tolerance to achieving pseudo-steady state is tightened), the smoothing
e�ect of PDE-based reinitialization becomes stronger. The number of pseudo-time steps
performed at each time step thus becomes a tunable parameter,for which the optimal
choice depends on the speci�c problem, mesh, etc.

On the right of Fig. 5 we show the e�ect of the repeated application of the geometry-
based scheme. Notice that one application of this method is analogous to evolving the
PDE-based method to steady state, so that no hidden tunable parameter exists. Repeated
application only occurs, as in this example, when the interface velocity is zero. Though the
reinitialization distorts the interface, the distortion is much smaller than that caused by
the PDE-based method. Also, the mass is exactly conserved, as by design geometry-based
reinitialization is mass-conserving.

Now, in order to study the interaction between advection and reinitialization, we advect
the slotted disk by the following velocity �eld

ux =
�

3:14
(0:5 � y),

(21)

uy =
�

3:14
(x � 0:5),

which represents a rigid body rotation with respect to (0:5; 0:5). The disk completes one
revolution after 6:28 units of time.

In �gure 6 we compare the �nal stage of the Zalesak's disk with theexact result after one
turn, for di�erent grid resolutions. The time step for the �rst ca se (h = 1=64) is 6:28=600.
For the rest of the grids we mantain the same Courant number. As itcan be seen the
geometry-based scheme performs similarly to the PDE-based one when the grid resolution
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Figure 5: E�ect of the repeated application of the PDE-based (left) redistancing scheme
on a 128� 128 grid. Note in the detail the interfaces after 10 (blue), 100 (green) and 1000
(magenta) pseudo-time steps. On the right, an analogous plot shows the e�ect of 10, 100
and 1000 applications of the geometry-based scheme.

is good enough (h = 1=256, h = 1=512 andh = 1=1024), while the former outperforms
the latter when the grid resolution is poor. In Figure 7 we compare the evolution of the
disk for the mesh with 128� 128 cells, when both reinitialization algorithms are used.
On the left, we show the results for the PDE-based scheme (thin blue line) and on the
right the results for the Geometry-Based algorithm (thin red line). Finally, in Table
3 we present the two measures of error for both algorithms and for the di�erent grids
considered. It should be noted, on the one hand, that the mass error of the PDE-based
scheme is smaller than that of the geometry-based scheme whenh = 1=128; 1=256, 1=512
and 1=1024, which, we think, is the result of the compensation of the mass gained near the
top of the slot and the mass lost near the corners at the bottom of the slot. The mass loss
of the geometry-based scheme obviously arises because of advection, since reinitialization
is mass-conserving. Regarding the second measure of errorep, on the other hand, the
Geometry-based scheme performs better than the PDE-based for grid resolutions 1=64,
1=128 and 1=256, while for better resolutions (1=512 and 1=1024) the PDE-based scheme
is superior.
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Figure 6: Final stage of the Zalesak's disk after one revolutionfor di�erent grids. The
thick black line corresponds to the exact solution, the thin blue line to the PDE-based
and the dashed red line to the geometry-based scheme.

4.1.2 Swirling 
ow vortex

The initial data consists of a disk centred at (0:5; 0:75) with a radius of 0:15. The
computational domain is again a square of size [0; 1]� [0; 1]. The disk of 
uid is convected
by the following time dependent divergence-free velocity �eld

ux = � sin2(�x )sin(2�y ) cos(�t=T ),

(22)

uy = sin(2�x )sin2(�y ) cos(�t=T ).

In this case, the initial disk is stretched out into a �lament andafter a certain time T it
comes back to its initial state. This reversal periodT is taken equal to 2, so that the size
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Figure 7: Evolution of the Zalesak's disk using the PDE-based (left) and the Geometry-
based (right) redistancing procedures. The thick black line corresponds to the exact
solution.

Table 3: Measures of error for the Zalesak's disk after one revolution.

em [%] ep

Mesh PDE-based GEO-based PDE-based GEO-based

64� 64 7:902 4:949 0:0709 0:0353

128� 128 0:789 2:254 0:0291 0:0134

256� 256 0:202 0:477 0:0126 0:0105

512� 512 0:018 0:253 0:0065 0:0070

1024� 1024 0:0046 0:119 0:0040 0:0050

of the tale of the �lament will be reasonably well resolved for all times by the mesh used
for computations.

First, in �gure 8 we compare the interface att = T=2 (maximum deformation) and
t = T (�nal time) for all the grids previouly considered. Now, the time step for the case
with h = 1=64 was equal to 2=300 and as done before the Courant number was kept
the same for the other grids. Again, both algorithms perform similarly when the grid
resolution is good. Actually, for the case withh = 1=512 the di�erence cannot be seen
without zooming in at the sharp corners. In Table 4 we present thedi�erent measures of
error. In this case, we can see that the Geometric mass-preservingscheme in general has
a better performance than the PDE-based scheme.
We summarize some results in �gure 9 where we report the errorep againsth in logarithmic
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Figure 8: Intermediate (t = T=2) and �nal stage (t = T) of the disk under a swirling

ow vortex with reversal period T = 2 for di�erent grid resolutions. The thick black line
corresponds to the exact solution, the thin blue line to the PDE-based and the dashed
red line to the geometry-based scheme.

scale and in �gure 10 the error as a function of time for the Zalesak's case and the swirling

ow vortex case. In 10 we only include two di�erent grid resolutions for clarity reasons
but a similar behavior is observed for other grids.

Now, for testing of robustness of the two methods, we change the value of the reversal
period to T = 8. In �gure 11 we show the results for a grid spacing ofh = 1=128 for which
the tale of the strechted circle results clearly under resolved. In the �gure, is plotted the
interface at t = T=2 (maximum deformation) and att = T (�nal time) in the upper right
corner.
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Table 4: Measures of error for the streatching of a disk under a swirling 
ow vortex with
reversal periodT = 2.

em [%] ep

Mesh PDE-based GEO-based PDE-based GEO-based

64� 64 5:074 0:668 0:0641 0:0146

128� 128 1:643 0:118 0:0272 0:0028

256� 256 0:408 0:257 0:0100 0:0016

512� 512 0:086 0:136 0:0021 0:0005

1024� 1024 0:051 0:056 0:0028 0:0004

4.2 Numerical Experiments in 3D

For the three dimensional case, we present, on the one hand, results using Cartesian
coordinates and comparing both redistancing procedures and, on the other hand, results
using curvilinear coordinates with the Geometric mass-preserving redistancing scheme
coupled with a �nite di�erence second order TVD van Albada schemefor the transport
of the level set function, similar to the one used in CFDShip-Iowa as already mentioned
in the introduction.

4.2.1 Deformation vortex - Cartesian coordinates

In this example, the initial data consists simply of a sphere, centered at (0:35; 0:35; 0:35)
and with a radius of 0:15. The computational domain is the unit cube. The sphere is
then convected by the following solenoidal �eld

ux = 2 sin2(�x )sin(2�y )sin(2�z ) cos(�t=T ),

uy = � sin(2�x )sin2(�y )sin(2�z ) cos(�t=T ), (23)

uz = � sin(2�x )sin(2�y )sin2(�z ) cos(�t=T ),

again, as in the 2D case, the velocity �eld is modulated by a periodic function, such that
the sphere will recover its initial state after a timeT = 2.

In Table 5 we present the two measures of error, in this case just for two di�erent grids
of 64� 64� 64 and 128� 128� 128 cells. The time step was taken equal to 2=400 and 2=800
respectively. In �gure 12 we plot the level set at di�erent times for both algorithms for
the case withh = 1=128. In the top (red colour) are the results for the Geometry-based
redistancing and in the bottom (blue colour) the results for the PDE-based redistancing.
From both, the �gure and the table we can see that the Geometry-based redistancing has
a better performance.
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Figure 9: Measure of errorep versush. Left: Rigid body rotation of Zalesak's disk. Right:
Deformation of the disk under the swirling 
ow vortex.

Table 5: Measures of error for the deformation of a sphere undera three dimensional
vortex. Cartesian coordinates.

em [%] ep

Mesh PDE-based GEO-based PDE-based GEO-based

64� 64� 64 40:21 2:241 0:0673 0:0267

128� 128� 128 10:76 1:543 0:0355 0:0056

4.2.2 Zalesak's sphere - Curvilinear coordinates

The initial data consists of a notched sphere centered at (0:5; 0:75; 0:3) of radius 0:15,
with a slot width of 0:075 and a slot lenght of 0:25. The sphere is rotating in thexy-plane
with the velocity �eld given in (21) ( uz = 0). The computational domain is the region
[0; 1] � [0; 1] � [0; 0:6] deformed by the mapping given by

x(�; �; � ) = � �
5

16�
sin(2� (� � � � � )),

y(�; �; � ) = � �
5

16�
sin(2� (� � � � � )), (24)

z(�; �; � ) = � �
5

16�
sin(2� (� � � � � )).

The resulting mesh (see �gure 13) is then used to compute the appropiate metric co-
e�cients by using a second order �nite di�erence rule, in order to be able to solve the
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Figure 11: Intermediate (t = T=2) and �nal stage (t = T) of the disk under a swirling 
ow
vortex with reversal periodT = 8, using the PDE-based (left) and the Geometry-based
(right) redistancing procedures. The thick black line corresponds to the exact solution.

transformed level set equation (see [9]). The grid in this case have 128� 128� 64 cells
and the time step is equal to 6:28=800.
In this case, for the sake of simplicity, instead ofep we compute the following measure of
error el

el = max
t

Z



H(� � c(~x) � � e(~x)) d~x, (25)
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Figure 12: Evolution of a sphere under a three dimensional deformation vortex. Com-
parison of the Geometry-based redistancing scheme (top-red) with the PDE-based redis-
tancing scheme (bottom-blue). Cartesian grid 128� 128� 128.

which is the measure of (
e � 
 c) [ (
 c � 
 e). This is possible since we are dealing here
with a rigid body rotation, which makes the computation of� e very easy.

Results are shown in �gure 14 where we can appreciate that the Zalesak's sphere is
reasonably preserved. Regarding the measures of error we have computed a mass change
em of 1:859% and a value forel equal to 0:00162.

4.2.3 Sphere approaching a bump - Curvilinear coordinates

For this last example, the initial condition corresponds to a sphere centred at (� 0:05; 0:4; 0:25)
of radius 0:15. The computational domain is the region [� 0:25; 1:25]� [0; 1]� [0; 0:5] trans-
formed under the following mapping (see [39])

x(�; �; � ) = � ,

y(�; �; � ) = B(� ) + � (1 � B (� )) , (26)

z(�; �; � ) = � ,

where the functionB is given by

B(� ) =
1
2

e� 50(� � 0:5)2
, (27)

23



Figure 13: Three dimensional curvilinear grid used and reference system for the transport
of the Zalesak's sphere.

Figure 14: Evolution of the Zalesak's sphere using the geometric mass-preserving redis-
tancing scheme. Curvilinear grid of 128� 128� 64 cells.
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which represents a bump centred atx = 0:5. The sphere is then transported by the
following divergence free velocity �eld based on the shape of the bump

ux =
1

1 � B(x)
,

uy =
B

0
(x)(1 � y)

(1 � B (x))2 , (28)

uz = 0.

In this numerical test the grid consists of 128� 102� 62 cells and the time step is equal
to 1=800.

Results are shown in �gure 15, where a detail of the curvilineargrid can be observed.
In this case, the mass changeem was 4:686% and the value ofep = 0:0306. We should
mention that the error reported here (which is the maximum over t) happens when the
level set passes near the cusp of the bump, where the maximum distortion of cells is
present, as seen in the detail of the grid.

Figure 15: Evolution of the sphere approaching a bump using thegeometric mass-
preserving redistancing scheme. Curvilinear grid of 128� 102� 62 cells.

5 Conclusions

In this paper we have discussed some issues related to the reinitialization of the level
set function and we have focused on the description and evaluation of ageometric mass-
preservingredistancing scheme that was originally introduced in the framework of �nite
elements.
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The geometric mass-preserving algorithm proposed can be used on an arbitrary tri-
angulation of the computational domain, making it a very attractive tool to be used on
any type of discretized domains such as the structured curvilinear grids widely used in
CFD computations. A salient feature of the scheme is its simplicity and lack of adjustable
parameters, which is an important di�erence as compared to other available methods.

The scheme is designed to preserve the mass (or the volume) delimited by the zero-level
set, which is de�ned by linear interpolation on a subdivision ofthe computational grid
into simplices.

In the numerical tests using Cartesian grids in two and three spatial dimensions, we
have observed in some cases a better performance of the geometric mass-preserving redis-
tancing scheme and in some cases a better performance of the PDE-based method used
for comparison, which is formally of higher order of convergence. This was illustrated
qualitatively by means of plots of the level set and quantitatively be means of computing
relevant measures of error for level set methods. Numerical examples were then reported,
showing that the performance of the method does not deteriorate when applied on arbi-
trary curvilinear grids.
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