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Abstract
Moving-Least-Squares (MLS) Surfaces undergoing large deformations need periodic regeneration of the point set
(point-set resampling) so as to keep the point-set density quasi-uniform. Previous work by the authors dealt with
algebraic MLS surfaces, and proposed a resampling strategy based on defining the new points at the intersections
of the MLS surface with a suitable set of rays. That strategy has very low memory requirements and is easy to
parallelize. In this article new resampling strategies with reduced CPU-time cost are explored. The basic idea
is to choose as set of rays the lines of a regular, Cartesian grid, and to fully exploit this grid: as data structure
for search queries, as spatial structure for traversing the surface in a marching-cubes-like algorithm, and also
as approximation grid for an interpolated version of the MLS surface. It is shown that in this way a very simple
and compact resampling technique is obtained, which cuts the resampling cost by half with affordable memory
requirements.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling G.1.2 [Numerical Analysis]: Approximation G.2.3 [Numerical Analysis]: Applications

1. Introduction

Point-based surfaces undergoing large deformations need
periodic regeneration of the point set (point-set resampling).
In fact, resampling must ensure that the density of points re-
mains quasi-uniform, so as to guarantee reasonable results
[WSS08, AK04]. An effective resampling algorithm should
be endowed with the following attributes: (a) Systematically
produce quasi-uniform point sets; (b) do not depend on any
tunable parameter; and (c) be efficient in terms of CPU time
and memory requirements.

In this article we address moving-least-squares (MLS)
surfaces, for which there already exist resampling techniques
oriented towards rendering [ABCO∗03, GBMP04, GGG08],
simplification [PGK02] or refinement [GBP05] applications.
However, none of the existing techniques exhibits the three
attributes discussed above when applied to the modeling of
surfaces undergoing large deformations. Recently, Gois et
al. [GNNB08] introduced a robust variant of algebraic MLS
surfaces, together with a resampling strategy based on in-
tersecting the surface with a suitably chosen set of rays.
Though they proposed to take as set of rays the lines of a
background cartesian grids, no use whatsoever was made of

the background grid to accelerate the algorithm. This had
the advantages of minimizing the memory requirements and
making parallelization easy, at the expense of not optimizing
the CPU time cost.

New resampling strategies with reduced CPU-time cost
are explored here. The basic idea is to choose as set of rays
the lines of a regular, Cartesian grid, and to fully exploit this
grid: as data structure for search queries, as spatial struc-
ture for traversing the surface in a marching-cubes-like al-
gorithm [Blo94], and also as approximation grid for an in-
terpolated version of the MLS surface. We eliminate the
need of kd-trees, ray-spheres intersections and other geomet-
rical calculations needed in the ray-tracing algorithm. Fur-
ther, exploiting the grid structure and the proposed traversing
method, we are able to inhibit the creation of point clusters,
thus avoiding to detect and remove them. This results in a
simple and compact resampling technique, which cuts the
cost by half with respect to the ray-tracing algorithm, keep-
ing the memory requirements affordable. Another version is
also introduced, based on the interpolation of the implicit
MLS function, that further reduces the CPU time cost.

We illustrate the proposed techniques with some quite

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



J.P. Gois & G.C. Buscaglia / Resampling MLS Surfaces

stringent 2D and 3D examples, and assess their accuracy in
the well-known single vortex flow test. The results show the
convenience of the optimized, grid-based algorithm, since
it saves CPU time without compromising the accuracy. On
the other hand, the interpolation-based version is shown to
significantly increase the error, making it attractive only if
CPU-time requirements are critical.

2. MLS Surface Definitions

Let P = {p1, . . . ,pm} be a set of quasi-uniformly-spaced
points, and let {qk} (k = 1, . . . ,5) be the so-called
algebraic–sphere polynomial basis (i.e.; q1(x) = 1, q2(x) =
x1, q3(x) = x2, q4(x) = x3, q5(x) = x2

1 +x2
2 +x2

3). We intro-
duce the function

f (α,x) =
5

∑
k=1

αk qk(x) (1)

where α = (α1, . . . ,α5) ∈ R5. The Algebraic-Moving-
Least-Squares (AMLS) Surface S is defined as the zero-set
of the (implicit) function

F(x) = f (γ(x),x), (2)

where γ(x) = (γ1(x), . . . ,γ5(x) is obtained as follows:

Let us consider a continuous non-negative localization
function:

ψ(s) =
{

(1− s2)4 if s < 1
0 otherwise

, (3)

and an influence radius ∆. A set of weight functions is de-
fined as wi(x) = ψ

(
‖x−pi‖

∆

)
. The following two-steps com-

plete the definition:

Step 1: For each pi ∈P , compute the pseudo-normal vec-
tors Ni as the normal to the best-fit sphere at pi. Let

Q =
{

α ∈ R5 : ‖∇x f (α,x)‖= 1 ∀x s.t. f (α,x) = 0
}

=
{

α ∈ R5 : α
2
2 +α

2
3 +α

2
4−4α1α5 = 1

}
(4)

For each point pi ∈P , compute α(i) ∈Q by solving the con-
strained minimization problem

α(i) = arg min
β∈Q

m

∑
j=1

w j(pi)| f (β,p j)|2, (5)

which reduces to a generalized eigenvalue problem in R5

[GNNB08,GG07]. The pseudo-normal Ni at pi are given by

Ni =∇x f (α(i),pi)/‖∇x f (α(i),pi)‖. (6)

Step 2: Computing the AMLS surface S(P). It only remains
to compute γ(x) for all x, which is done by solving uncon-
strained minimization problem:

γ(x) = lim
K→∞

arg min
β∈R5

(
m

∑
i=1

wi(x)| f (β,(pi))|2+

+ K
m

∑
i=1

wi(x)‖∇x f (β,pi)−Ni‖2

)
, (7)

All necessary details can be found in [GNNB08].

3. Point-set Resampling

As previously stated, the resampling technique consists of
defining the new points at the intersections of S(P) with
a Cartesian grid of spacing h. The details of the proposed
implementation are as explained below.

3.1. Storing and querying points

The underlying grid automatically defines a simple hashing
operatorH : pm ∈P 7→ H(pm) = (i, j,k), as depicted in Fig.
1. Since more than one point can be mapped to the same grid
vertex, chaining by linked lists is applied. The name of the
corresponding method is Hash().

A neighbor-query of a point pm, mapped to H(pm) =
(i, j,k) consists of finding all points p` ∈ P such that
w`(pm) 6= 0. These points are efficiently computed as the
image, by the inverse mappingH−1, of the neighboring ver-
tices [i−d, i+d)× [ j−d, j +d)× [k−d,k +d), where d is
an integer such that d h > ∆. In general, we choose d = 3.

There are threemethodswhich require neighbor-queries:
The method
Update_Normals(), which computes pseudo-normals
for each point in P (as described in Section 2); the method
Update_Function(), which computes the values of F
at grid vertices in a neighboorhood of P (this neighborhood
is described in Fig.1(b), it consists of 12 vertices in 2D and
of 44 in 3D); finally, the method Resample(), which cre-
ates new points on grid edges. This last method is detailed in
the next section.

3.2. Marching-cubes-like point creation

The intersections of the grid lines with the surface are com-
puted by traversing the edges of the underlying grid in a
marching-cubes-like way but, instead of creating polygons,
just the points are created, making the case table unneces-
sary. The algorithm for the two-dimensional case reads:

3.2.1. Method: Resample()

For each point p ∈ P

(I,J) =H(p); /*1*/
For each grid vertex (i, j)∈ [I − 1, I + 3) ×

[J−1,J +3) /*2*/
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(a)

(b)

Figure 1: Two-dimensional case of hashing operator H.
(a) Resample(): new points are created on pair of black
edges. These “L”-shapes are traversed from bottom to top
and from left to right. (b) Update_Function(): red ver-
tices are those where MLS function is stored, to safe process-
ing time.

If (i, j) is not VISITED; /*3*/

Set (i, j) as VISITED; /*4*/
If MLS surface S(P) crosses edge(

(i, j)(i+1, j)
)
; /*5*/

Compute q as intersection be-
tween

S(P) and
(
(i, j)(i+1, j)

)
; /*6*/

s =H(q); /*7*/

If ‖s− (i, j)‖< ‖s− (i+1, j)‖ /*8*/

Then ri = i; /*9*/
Else ri = i+1; /*10*/

If (ri, j) does not HAVECLOSE-
POINT /*11*/

Insert q in the new list of
points; /*12*/

Set (ri, j) as HAVECLOSEPOINT;
/*13*/

If S(P) crosses edge
(
(i, j)(i, j +1)

)
/*14*/

Proceed as previously, but
considering the

edge (i, j)(i, j +1); /*15*/

Above, we denote by
(
(i, j)(i+1, j)

)
the edge with ver-

tices (i, j) and (i+1, j). Fig. 1(a) depicts those edges that are
traversed from a point p. These edges are organized as a set
of pairs sharing a common vertex; i.e. the “L”-shapes shown
in black in the figure. These L-shapes are traversed from bot-
tom to top and from left to right, but since several points can
share the same grid vertex (i, j) as neighbor, the flag VIS-
ITED is assigned to (i, j) to preclude the same L-shape to
be analyzed more than once. Also, the flag HAVECLOSE-
POINT is used to avoid creating points very close from one
another, thus eliminating the need of removing point clus-
ters. The 3D algorithm is analogous.

4. MLS Surfaces under Deformations

Let P0 be the initial point set and let S be the operator that,
for any point set, assigns the AMLS surface defined by it.
We thus have an initial surface S0 = S(P0).

Our aim is to deform the surface S0 according to some
known deformation history ϕs→t : Rn → Rn, continuous
with respect to the parameters s and t, which can be thought
of as initial and final instants of time. To be precise, a point
x ∈ Rn, as it deforms from time s to time t, goes from x
to ϕs→t(x). The deformed surface St is, in terms of ϕs→t ,
defined as

St = ϕ0→t(S0). (8)

Though St is well-defined by (8), it is not feasible to com-
pute it from its definition (one should map each and every
x ∈ S0!). Instead, the initial point set is mapped to its de-
formed position, Pt = ϕ0→t(P0), and used to define an ap-
proximation of St by

S̃t = S(Pt) = S (ϕ0→t(P0)) . (9)

The surface S̃t is only approximate because the operators S
and ϕ0→t do not commute. The approximation worsens as
the point set Pt deforms and becomes unevenly distributed.
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The basic idea to tackle this difficulty is to periodically re-
place the point set Pt with a new point set obtained by re-
sampling the surface S(Pt).

To clarify ideas, let R be the resampling operator defined
in Section 3. Notice that the deformation history from 0 to t
can be split, for some 0 < τ < t, as

ϕ0→t(x) = ϕτ→t (ϕ0→τ(x)) (10)

We can thus define a new approximation of St , in which the
point set is deformed from 0 to τ, then the surface is resam-
pled, and the new point set is deformed from τ to t. In terms
of the operators defined above this reads

˜̃St = S (ϕτ→t (R(S(ϕ0→τ(P0))))) (11)

This can be performed periodically with step τ, leading to
the following algorithm:

For each deformation ϕmτ→(m+1)τ (m =
1,2, . . .)

Update_Normals()
Update_Function()
Resample()
Deform_Points()
Hash()

End For

5. Results

We first examine the improvements brought by the proposed
resampling strategy to the modeling of curves and surfaces
under large deformations. The first example consists of de-
forming a circle of unit radius into a four-leaf clover. The
deformation consists of several steps, as shown in Fig. 2(a),
and is defined by repositioning the control points (as shown
in the figure) using the method proposed by Schaefer et al.
[SMW06]. Part (b) of the figure shows the evolution of the
MLS curve defined by applying the deformation to a point
set consisting of 250 evenly spaced points on the initial circle
(shown in blue). Notice that, because of our choice of poly-
nomial basis, the initial MLS curve exactly coincides with
the circle. If no resampling is applied and ∆ = 0.0075 is kept
fixed, the MLS curve associated to the deformed point set is
only well defined until the stage shown in the second graph
of Fig. 2(b). After that stage, the points on the stem are too
far apart (third graph) and the MLS curve breaks down. One
can nevertheless go on deforming the point set so as to take
it to the final deformed position. In the rightmost graph of
Fig. 2(b) we show the final point set and the pseudo-normals
obtained with the Update_Normals() method. Their il-
logical magnitudes and orientations are clear evidences of
the breakdown of the MLS curve.

In Fig. 2(c), on the other hand, we show the results ob-
tained with the resampling algorithm, using a grid that keeps
the distance between points close to the initial one. In this

case, the MLS curve remains well defined throughout the de-
formation, and the final curve is a good approximation of the
exact final shape (compare to the rightmost graph in part (a)
of the figure). The pseudo-normals are also plotted, showing
that they are consistent with the deformed curve.

We also examined the ability of the proposed algorithm
to model three-dimensional deformations. In Fig. 3 we show
two representative examples, both of them using a 2503 grid.
The first one corresponds to exactly the same deformation
as above, but now applied to a sphere. The point set con-
tains 10,000 points initially, and ends up with 18,000 points,
which is a quite small quantity for modeling complex 3D
shapes. The second one corresponds to a model of Homer
Simpson, which is deformed so as to render it “elf-like”. The
initial point set has 48,000 points, which reduces to 20,000
points in the last stage. Both examples show that the resam-
pling algorithm allows us to accomplish severe deformations
without any user intervention, and without the appearance of
numerical artifacts.

Having shown the benefitial effects of resampling on the
modeling of deformations of point-set surfaces, let us now
turn to a quantitative assessment of the newly-developed,
marching-cubes-like algorithm. For this purpose, we con-
sider the single vortex flow test already considered in the
previous article [GNNB08]. The initial geometry is a circle
centered at (0.5,0.75) with radius r = 0.15 inside a square
unit domain. The deformation is defined by its associated
velocity field (v(x, t) = ∂sϕt→t+s(x)|s=0)

v(x1,x2, t) = T (t)
(

sin2(πx1)sin(πx2)cos(πx2),

sin(πx1)cos(πx1)sin2(πx2)
)

(12)

where T (t) = 2cos
(
π

t
8
)
. At t = 8 the exact surface St co-

incides with the initial circle S0, as illustrated in Fig. 4. We
resample the surface every 0.01 time units, leading to a to-
tal of 800 resampling operations. A comparison of the ray-
tracing algorithm with the marching-cubes-like algorithm is
reported in Table 1. The total time (in seconds) for a sin-
gle processor of a QuadCore 3.0 GHz is 96.57 (5122 grid)
and 48.73 (2562 grid) for the original ray-tracing algorithm.
These CPU times are reduced by 60% with the marching-
cubes-like algorithm, to 39.95 and 20.69, respectively. Most
of the time of the ray-tracing algorithm (85%) is spent in
calculating the intersections to get the new point set. In the
new algorithm, this is accomplished by calculating the val-
ues of the implicit function at the vertices (Update Function
in the table) so as to detect edges in which change of sign
occurs, together with the resampling step that computes the
actual intersections. These two steps of the new algorithm
take 57% of the CPU time, and in them concentrates most
of the gain with respect to the ray-tracing algorithm, with
a reduction from 70.5 seconds to 22.6 seconds on the 5122

grid. Some gain is also obtained in the step of calculating the
pseudo-normals, coming from the convenience of the hash-
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(a) Exact deformation

(b) Approximate (MLS) deformation without resampling

(c) Approximate (MLS) deformation with 120 resampling operations along the process

Figure 2: Deforming a circle into a four-leaf clover, with a deformation defined by the control points (in purple). (a) Exact
deformed shapes. (b) MLS curve corresponding to the deformed point set (on the left) at the last stage in which the curve is well
defined. (c) Same as (b), but with resampling turned on (120 resampling operations between initial and final shapes).

ing technique based on the background grid with respect to
the general kd-tree used in the ray-tracing version. Finally,
the convenience of inhibiting the creation of points that are
too close, as proposed in method Resample(), leads to
additional CPU-time savings, since less points are deformed
and no need of removing excess points is needed. This saves
about 4 seconds on the 5122 grid.

We believe the performances of Table 1 to be quite satis-
factory, since they tell us essentially that a relatively com-
plex 2D shape of about 1,000 points can be resampled in
just 24 milliseconds. Similar tests in 3D yield an estimate of
about 15 seconds for a complex 3D shape defined by 50,000
points.

It is possible to further reduce the CPU-time by not com-
puting the intersection exactly. Instead, the new points can be
created at those edges where the implicit function changes

sign by linearly interpolating the values at the grid points.
This leads to a redefinition of the AMLS surface, reducing
its accuracy (as will be shown below), but reduces the total
time to just 24 seconds in the 5122 grid. This means just 15
milliseconds to resample a 2D curve of 1,000 points.

It is however essential to numerically assess the accuracy
both of the new algorithm and of its interpolated variant.
As discussed above, the marching-cubes-like algorithm does
not generate exactly the same points as the ray-tracing one,
implying that the approximate deformed surfaces they gen-
erate are not coincident. Further, the interpolated version of
the proposed algorithm explicitly modifies the MLS surface
by redefining it as the zero level-set of the interpolant of
the implicit function. To quantify the difference between the
different approximations, we measure the error of the final
shape ˜̃St=8 with respect to the exact one S0 (i.e., the unit cir-
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Figure 3: Three-dimensional examples. The top sequence corresponds to the same deformation of Fig. 2, here applied to a
sphere. The bottom sequence corresponds to the deformation of Homer Simpson into an elf-like creature.

MyText MyText MyText MyText MyText

Figure 4: Scheme of single vortex flow deformation at t = 0 (initial), 2, 4 (maximun torsion), 6 and 8 (final curve) time units.
Results of the proposed method corresponding to 5122-grid.

cle). This error is defined as the area between ˜̃St=8 and S0
(this is denoted by L1-error by Gois et al. [GNNB08] and
other authors).

Table 2 reports the errors obtained with the new algo-
rithm, both in its non-interpolated and interpolated versions,
together with those obtained with the original ray-tracing al-
gorithm. The comparison is made for meshes ranging from
1282 to 10242. It is observed that the new algorithm does
not exhibit any significant loss of accuracy with respect to
the original ray-tracing one. In fact, the error of both algo-
rithms converge to zero at a rate of about h2.7, h being the
grid spacing. The accuracy of the interpolated version, on
the other hand, is significantly poorer. In fact, its error is of
order h2, requiring a 10242-grid to attain the same accuracy
as the non-interpolated algorithm on a 2562-grid.

6. Conclusion

We have explored the benefits of exploiting a background
Cartesian grid to reduce CPU-time cost of resampling MLS

surfaces under deformation. A new algorithm was proposed
which traverses the MLS surface in a marching-cubes-like
way and cuts the cost by half. It was also shown that further
savings can be obtained by replacing the implicit function by
its interpolant. An accuracy assessment was then conducted,
which suggests that the non-interpolated version should be
preferred in general, unless CPU-time restrictions are criti-
cal.

Suggested improvement of the proposed method includes
the development of point-set quality to automatically trigger
resampling, and the use of the hierarchical run-length encod-
ing of the grid data [HNB∗06] to enable the use of very large
3D grids.
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