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Abstract

A numerical algorithm for fully–dynamical lubrication problems based on the Elrod–
Adams formulation of Reynolds equation with mass–conserving boundary conditions is
described. A simple but effective relaxation scheme is used to update the solution
maintaining the complementarity conditions on the variables that represents the pressure
and fluid fraction. The equations of motion are discretized in time using Newmark’s
scheme, and the dynamical variables are updated within the same relaxation process just
mentioned. The good behavior of the proposed algorithm is illustrated in two examples:
Oscillatory squeeze flow (for which the exact solution is available) and a dynamically
loaded journal bearing. This article is accompanied by the ready–to–compile source
code with the implementation of the proposed algorithm, which is publicly available at
www.lcad.icmc.usp.br/∼buscaglia/download.

Nomenclature

Notice that all quantities are non–dimensional.

B Bush width.
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x1 Longitudinal coordinate (along the sliding direction).

x2 Transverse coordinate.

h Gap thickness function.

H(t) Uniform gap thickness at time t in the oscillatory–squeeze flow example.

M Journal mass.

p Pressure field.

pa Feeding pressure.

pn,k
i,j Discrete pressure at node i, j at iteration k of time step n.

θ Fluid fraction field.

θn,k
i,j Discrete fluid fraction at node i, j at iteration k of time step n.

pn,k, θn,k Vectors of nodal values of p and θ at iteration k of time step n.

N1, N2 Number of grid cells along x1 and x2 directions.

∆x1, ∆x2 Grid spacing along x1 and x2 directions.

∆t Time step.

X, Y Position of the journal center at time t.

Xn,k, Y n,k Discrete position of the journal center at iteration k of time step n.

W Load carrying capacity [N ].

W a
X , W a

Y X and Y components of the applied load.

WX , WY X and Y components of the load carrying capacity.

ωp, ωθ Relaxation parameters for pressure and fluid fraction.

Ω Non-dimensional computational domain.

Ω+ Active region.

Ω0 Cavitated region.

Γ0 Outlet boundary.

Γa Feeding boundary.

1 Introduction

Significant progress has been made over the last decades in the field of numerical modeling of
lubricated devices. The mass–conserving Elrod–Adams model [1] is by now well–established as
the accurate tool for simulation in hydrodynamic lubrication involving cavitation. This model
contains two unknown fields, one of which is the pressure p and the other the fluid fraction
variable that will be denoted by θ, which takes values between zero and one. These variables
satisfy complementarity–like conditions: In the pressurized region Ω+ of the bearing (p > 0) the
film is complete (θ = 1), whereas in the cavitated region (incomplete film, i.e., θ < 1), denoted by
Ω0, the pressure is zero (p = 0). At the internal boundary Σ between these two regions (cavitation
boundary), which is an unknown of the problem, the mathematical conditions are the continuity
of the pressure (p tends to zero when approaching Σ from either side) and the conservation of the
mass of lubricant. Notice that Ω+, Ω0, and thus Σ, change with time. It should be kept in mind
that several complex phenomena, involving a wide range of spatial and temporal scales, take place
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in the cavitated region. The above complementarity conditions are of course only approximations
to the true physics. Recent attempts at incorporating a more sophisticated description of bubble
nucleation may lead to improvement (see e.g. Geike and Popov [2]).

The Elrod–Adams p–θ model can also be simply regarded as a set of mass–conserving boundary
conditions for Reynolds lubrication equation. These are usually called the JFO boundary
conditions honoring the pioneer work of Jacobson and Floberg[3] and Olsson[4]. The fluid fraction
field θ in the model can be seen as an auxiliary quantity that is used to determine the correct
conditions to be applied on Σ. Another possibility is given, instead, by the imposition of the
so–called Reynolds boundary conditions at Σ (both the pressure and its normal derivative required
to vanish at Σ), which are much easier to deal with numerically at the expense of not enforcing
the conservation of the mass of lubricant. In many cases the two models yield very similar results.
Ausas et al [5], however, have recently shown that for the increasingly popular micro–textured
bearings the use of a mass–conserving model is mandatory. Later on, an example showing that
mass–conservation is also crucial in untextured bearings if transient effects are strong is provided.

The main difficulty concerning the mass–conserving model comes from its highly nonlinear nature.
The nonlinearity of the mathematical problem, combined with the discretization errors inherent to
the numerical approximation (be it finite differences, finite volumes, finite elements, etc.) leads to
nonlinear algebraic problems for which lack of convergence of iterative methods is frequent. The
interaction of the discretization scheme with the nonlinear iteration strategy makes the behavior
of the simulation codes quite dependent on the implementation details, which cannot be fully
described in journal articles. Though many algorithms have been published in the literature (see,
among others, [6, 7, 8, 9, 10]), the codes implementing them are not publicly available. Public
availability of source codes is an important step towards the maturity of numerical techniques in
any area of engineering simulation. In this paper, the numerical solution of the mass–conserving
lubrication model with the p − θ formulation of Elrod and Adams [1] for dynamically–loaded
bearings is addressed. A relaxation–type finite–volume–based algorithm that has proven to be
accurate and robust in several industrial applications is described. Further, the source code is
made freely available from the Web, in such a way that any interested reader can download it,
study the implementation details, reproduce the nontrivial examples that are discussed in the
next sections, and even modify the code to run more sophisticated examples or test algorithmic
variants.

The plan of the article is as follows: In Section 2, the mathematical model in the case of an
arbitrary, time–dependent gap–thickness h(x1, x2, t) is briefly recalled. In Section 3 the numerical
algorithm is described under the simplifying assumption of h(x1, x2, t) being known a priori. This
is illustrated in Section 4, in which the code is applied to an example for which the exact solution is
computable (oscillatory squeeze flow), also including the results of the non–mass–conserving model
(Reynolds boundary conditions) for comparison. The proposed methodology is then extended to
the fully dynamical case of a journal bearing under time–dependent load, as detailed in Section
5, followed by an application example in Section 6.
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2 Mathematical model and numerical treatment

2.1 Governing equations

The problem to be considered is that of a hydrodynamic bearing with a time–dependent gap
thickness h(x1, x2, t). The x1-axis is chosen parallel to the (fixed) sliding velocity, and the proximity
domain Ω is assumed to be a rectangle in the (x1, x2) coordinates. Throughout this article all
variables are non–dimensional. The well–known mass–conserving mathematical model (in the
p− θ form proposed by Elrod & Adams [1]) reads

div
(

h3∇p
)

= α
∂(θ h)

∂x1

+ 2
∂(θh)

∂t
in Ω \ Σ (1)

p ≥ 0, θ = 1 in Ω+ (2)

p = 0, θ < 1 in Ω0 (3)

p = 0 on Σ (4)

p = pa on Γa (feeding) (5)

p = 0 on Γ0 (oil outlet) (6)

supplemented with the mass–conservation condition at the cavitation boundary

(h0 θ0 − h+) α ê1 · n̂ + h3
+

(

∂p

∂n

)

+

= 2 (h0 θ0 − h+) Vn on Σ (7)

where α is the non–dimensional sliding velocity, assumed parallel to ê1, the unit vector parallel to
x1, n̂ is the unit vector normal to Σ, oriented outwards from Ω+, Vn represents the local normal
velocity at which Σ is moving, and the subscripts 0 and + refer to the limit values of the variables
as Σ is approached from the cavitated and active regions, respectively. The above set of equations
and boundary conditions is solved in time starting from an initial condition

θ(x1, x2, t = 0) = θ0(x1, x2) (8)

at all points belonging to Ω0(t = 0), the initial cavitated region. The mathematical analysis of
this model has been rigorously carried out by Bayada and Chambat[11, 12].

2.2 Discrete formulation

The computational domain is assumed to be the rectangle

Ω = (0, 1)× (0, B) (9)

on which a uniform, cartesian mesh of N1×N2 nodes, with spacing ∆x1 = 1/N1 and ∆x2 = B/N2

is defined. Subscripts i and j at a variable refer to its value at the discrete location (x1)i = i ∆x1,
(x2)j = j ∆x2.

The x1 component of the flux going from node (i− 1, j) to node (i, j) is approximated by

−h3 ∂p

∂x1

+ α h θ ≃ −
h3

i−1,j + h3
i,j

2

pi,j − pi−1,j

∆x1

+ α hi−1,j θi−1,j (10)
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Notice that in the second term both h and θ are taken at node (i−1, j), which provides upwinding
since the sliding velocity is assumed from left to right. A generalization of the algorithm that allows
for a sliding velocity from right to left is straightforward and has been omitted for the sake of
brevity. The approximation of the x2 component of the flux going from node (i, j) to node (i, j+1)
reads

−h3 ∂p

∂x2

≃ −
h3

i,j+1 + h3
i,j

2

pi,j+1 − pi,j

∆x2

(11)

The time variable is discretized into uniform time steps of length ∆t, and a superscript n on a
variable refers to its value at time tn = n∆t. Combining the spatial and temporal discretizations
above in an implicit scheme, the following discrete equation for mass conservation at node (i, j)
can be obtained:

2 ∆x2
1

cn
i,j − cn−1

i,j

∆t
+ α ∆x1 (cn

i,j − cn
i−1,j) = sn

i,j pn
i+1,j −

(

sn
i,j + sn

i−1,j

)

pn
i,j + sn

i−1,j pn
i−1,j +

(12)

+ q2
[

sn
i,j+1 pn

i,j+1 − (sn
i,j+1 + sn

i,j) pn
i,j + sn

i,j pn
i,j−1

]

where

si,j =
h3

i,j + h3
i+1,j

2
, ci,j = θi,j hi,j, q =

∆x1

∆x2

(13)

Notice that, since the scheme is based on the mass balance at each node with uniquely–defined
fluxes, it is automatically mass–conserving. The complementarity conditions for the discrete
variables are, for all i, j and n:

0 ≤ pn
i,j , 0 ≤ θn

i,j ≤ 1, (14)

pn
i,j > 0 ⇒ θn

i,j = 1, (15)

or, equivalently,

θn
i,j < 1 ⇒ pn

i,j = 0 (16)

From this it is clear that cavitation will always take place at the grid nodes.

Considering h(x1, x2, t) known, and pn−1
i,j , θn−1

i,j already available at all nodes from the previous
time step, it is not obvious at all that new nodal values pn

i,j, θn
i,j exist satisfying the equation

(12) and the boundary conditions, together with the complementarity conditions (14)-(15), but
an existence analysis is out of the scope of this article. It is assumed that a discrete solution does
exist, and discussed next an iterative algorithm to determine it.

2.3 Iterative algorithm

The proposed algorithm is adapted from the one used in [5] for the steady case. The nodal
variables are obtained as limits of an iterative process, so that adding a second superscript to
denote the iteration number the algorithm reads:

Find pn
i,j, θn

i,j , for i = 1, 2, ..., N1, and j = 1, 2, . . . , N2 as

(pn
i,j, θ

n
i,j) = lim

k→∞

(pn,k
i,j , θn,k

i,j ), (pn,0
i,j , θn,0

i,j ) = (pn−1
i,j , θn−1

i,j )
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To describe the way in which the k-th iterate is built let us first define P n,k
i,j and Θn,k

i,j , which are
intermediate values of the pressure p and of the fluid fraction field θ that are obtained from Eq.
(12) by elimination of the nodal values with all other unknowns frozen at the previous iteration.
They are thus given by

P n,k
i,j =

1

sn,k−1

i,j + sn,k−1

i−1,j + q2(sn,k−1

i,j+1 + sn,k−1

i,j )

{

− 2 ∆x2
1

cn,k−1

i,j − cn−1
i,j

∆t
− α ∆x1 (cn,k−1

i,j − cn,k−1

i−1,j ) +

(17)

+sn,k−1

i,j pn,k−1

i+1,j + sn,k−1

i−1,j pn,k−1

i−1,j + q2
(

sn,k−1

i,j+1 pn,k−1

i,j+1 + sn,k−1

i,j pn,k−1

i,j−1

)

}

Θn,k
i,j =

1
(

2∆x2

1

∆t
+ α ∆x1

)

hn
ij

{

2∆x2
1c

n−1
ij

∆t
+ α ∆x1 cn,k−1

i−1,j +

+ sn
i,j pn

i+1,j −
(

sn
i,j + sn

i−1,j

)

pn
i,j + sn

i−1,j pn
i−1,j + (18)

+ q2
[

sn
i,j+1 pn

i,j+1 − (sn
i,j+1 + sn

i,j) pn
i,j + sn

i,j pn
i,j−1

]

}

The proposed algorithm consists of a relaxation scheme combined with corrections to enforce the
complementarity conditions (14)-(15). Please find the algorithm detailed in pseudo–code form in
Table 1. In the authors’ experience, the relaxation parameters ωp and ωθ do not need fine tuning.
All applications that have been run up to now converged well with the choice ωp = ωθ = 1. If
necessary, a relaxation parameter different than 1 can easily be specified in the computational
codes provided.

3 First example: Oscillatory squeeze flow

The one–dimensional system shown in Fig. 1 is considered, consisting of two parallel plates in the
region Ω = [0, 1]. This is a well–known benchmark which has previously been considered by other
authors[13, 9]. The plate at the bottom is at rest, while the one at the top is moving vertically
(α = 0) with a prescribed function of time, i.e.

h(x1, x2, t) = H(t) = 0.125 cos(4 π t) + 0.375 (19)

The following boundary conditions are imposed

p(x1 = 0, x2, t) = p(x1 = 1, x2, t) = p0 = 0.025 (20)

and periodic conditions in x2 = 0 and x2 = B (to solve the 1D problem with the 2D code). The
initial condition (at t = 0) is that of full film (θ = 1 everywhere).



3 FIRST EXAMPLE: OSCILLATORY SQUEEZE FLOW 7

Table 1: Iterative algorithm.

do (n = 1, . . . , NT ) (Loop over time steps)
tn = n ∆t, k = 0
do (i = 1, . . . , N1, j = 1, . . . , N2)

hn
ij = h(i∆x1, j∆x2, tn), pn,0

ij = pn−1
ij , θn,0

ij = θn−1
ij

end do

do while (change > tolerance) (Relaxation)
k ← k + 1
do (i = 1, . . . , N1, j = 1, . . . , N2)

if (pn,k−1

i,j > 0 or θn,k−1

i,j == 1) then

Compute P n,k
i,j using Eq. (17)

pn,k
i,j = ωp P n,k

i,j + (1− ωp) pn,k−1

i,j

if (pn,k
i,j ≥ 0) (cavitation check)

θn,k
i,j = 1

else

pn,k
i,j = 0

end if

end if

if (pn,k
i,j ≤ 0 or θn,k

i,j < 1) then

Compute Θn,k
i,j using Eq. (18)

θn,k
i,j = ωθ Θn,k

i,j + (1− ωθ) θn,k−1

i,j

if (θn,k
i,j < 1) (cavitation check)

pn,k
i,j = 0

else

θn,k
i,j = 1

end if

end if

end do

change = ||pn,k − pn,k−1||2 + ||θn,k − θn,k−1||2
end do

do (i = 1, . . . , N1, j = 1, . . . , N2)

pn
ij = pn,k

ij , θn
ij = θn,k

ij

end do

end do (End Loop over time steps)
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Figure 1: One dimensional system considered for the squeeze–flow example.

The exact solution to this problem exhibits a cavitated region that nucleates shortly after t = 0.25
(in fact, at trup = 0.250079) at x = 0.5. Let us denote by Σ(t) the position at time t of the right
boundary of Ω0. Since the problem is symmetric with respect to x = 0.5, the left boundary is
located at 1− Σ(t). The cavitated region grows from trup to tref = 0.314826 according to

Σ(t) = 1−

[

p0 H3(t)

H ′(t)

]1/2

(21)

This can easily be obtained from the condition ∂p/∂n = 0 at Σ(t), which in this case holds for
the rupture boundary. After tref reformation starts and the cavitation boundary receeds until
the cavitated region disappears shortly before t = 0.75. This process repeats periodically, with
period T = 0.5. The exact solution for the reformation stage is more difficult to obtain than the
corresponding one for the rupture process. In this case, by using Eq. (7) one arrives at a differential
equation of the form Σ′(t) = F (p0, H(t), θ(Σ(t), t), Σ(t)). To solve this equation one stores the
time at which film rupture happened for each position, since it is needed to compute θ(Σ(t), t).
Besides this, integration is straightforward (the approach used in [9] can also be adopted). A
comparison of the exact solution with numerical results obtained with the proposed algorithm
is shown in Fig. 2. Part (a) of this figure shows the film thickness (Eq. (19)) after t = 0.25.
In part (b), a plot of the exact Σ(t) predicted by the model is shown, superimposed to that
obtained numerically with ∆x1 = 1/450 and ∆t = 6.6× 10−4. It can be seen that the numerical
results closely follow the exact solution, although with a staircase pattern since by construction
the numerical cavitation boundary is located at a mesh node.

To illustrate the crucial role of mass–conservation in this problem, part (c) of Fig. 2 shows
similar plots corresponding to the non–mass–conserving Reynolds model (i.e., boundary conditions
p = ∂p/∂n = 0 at Σ(t)). It is obvious that Reynolds model largely overestimates the speed at
which the film reforms. Regarding the computational cost for this case, the algorithm takes 5
minutes on a Pentium IV (3.0 GHz) processor to complete one cicle of the oscillatory movement.
This cost is dominated by the slow convergence of the Gauss-Seidel iterations when the active
region is large, and could be reduced by cleverly switching to some other iterative scheme in that
region.
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Figure 2: (a) Film thickness H(t) used in the oscillatory squeeze flow example. (b) Right cavitation
boundary Σ(t) for the mass–conserving Elrod–Adams model, comparing the numerical result to
the exact solution. (c) Same as part (b) for non–mass–conserving Reynolds model. Notice the
detail in (b) and (c), showing the staircased shape of the numerical cavitation boundary.

4 Extension to dynamical problems

4.1 The journal bearing

Now, let consider the case in which the relative position of the bearing surfaces, and thus also the
film–thickness function h(x1, x2, t), results from the dynamical interaction of the bearing with an
applied load.

To demonstrate such a problem, a journal bearing centered at the origin is considered. (X(t), Y (t))
denote the position of the shaft’s center at time t. With the geometry of the problem as defined
in Fig. 3, the film–thickness function over the domain (which is the rectangle Ω = (0, 1)× (0, B))
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is given by
h(x1, x2, t) = 1 + X(t) cos(2πx1) + Y (t) sin(2πx1) (22)

and the boundary conditions

p(x1, x2 = B, t) = pa (23)

p(x1, x2 = 0, t) = 0 (24)

with periodicity imposed on x1 = 0 and x1 = 1.

Denoting by W a
X(t) and W a

Y (t), respectively, the X and Y components of the applied load, and
by M the mass of the shaft, the dynamical equations for X(t) and Y (t) read

M
d2X

dt2
= WX(t) + W a

X(t) (25)

M
d2Y

dt2
= WY (t) + W a

Y (t) (26)

where WX(t) and WY (t) are given by

WX(t) =

∫

Ω

p(x1, x2, t) cos(2πx1) dΩ (27)

WY (t) =

∫

Ω

p(x1, x2, t) sin(2πx1) dΩ (28)

Notice the strong coupling between (25)-(26) and the lubrication problem (1)-(7) through the
pressure field p(x1, x2, t).

4.2 Algorithm

The algorithm detailed in Table 1 needs to be modified for the fully dynamical case, since the
film–thickness function h(x1, x2, t) is now an unknown of the problem, computed from X(t) and
Y (t) using (22).

The adopted method is based on the following Newmark-scheme for (25)-(26):

Xn = Xn−1 + ∆t Un−1 +
∆t2

2 M
(W n

X + W a
X(tn)) (29)

Un = Un−1 +
∆t

M
(W n

X + W a
X(tn)) (30)

Y n = Y n−1 + ∆t V n−1 +
∆t2

2 M
(W n

Y + W a
Y (tn)) (31)

V n = V n−1 +
∆t

M
(W n

Y + W a
Y (tn)) (32)

where Un (resp. V n) approximates X ′(tn) (resp. Y ′(tn)). This system is strongly nonlinear, since
W n

X and W n
Y depend on Xn and Y n. The proposed iterative strategy updates the dynamical

variables X and Y simultaneously with the pressure and fluid fraction fields, as detailed in Table
2
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Figure 3: Schematic representation of the journal bearing and the computational domain
considered.
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Table 2: Iterative algorithm for dynamics.

do (n = 1, . . . , NT ) (Loop over time steps)
tn = n ∆t, k = 0
do (i = 1, . . . , N1, j = 1, . . . , N2)

pn,0
ij = pn−1

ij , θn,0
ij = θn−1

ij

end do

do while (change > tolerance) (Relaxation)
k ← k + 1

W n,k−1

X = ∆x1 ∆x2

∑N1,N2

i,j=1
pn,k−1

ij cos(2π i ∆x1)

W n,k−1

Y = ∆x1 ∆x2

∑N1,N2

i,j=1
pn,k−1

ij sin(2π i ∆x1)

Xn,k = Xn−1 + ∆t Un−1 + ∆t2

2M
(W n,k−1

X + W a
X(tn))

Y n,k = Y n−1 + ∆t V n−1 + ∆t2

2M
(W n,k−1

Y + W a
Y (tn))

do (i = 1, . . . , N1, j = 1, . . . , N2)

hn,k
ij = 1 + Xn,k cos(2πi∆x1) + Y n,k sin(2πi∆x1)

end do

do (i = 1, . . . , N1, j = 1, . . . , N2)

if (pn,k−1

i,j > 0 or θn,k−1

i,j == 1) then

Compute P n,k
i,j using Eq. (17) with hn = hn,k

pn,k
i,j = ωp P n,k

i,j + (1− ωp) pn,k−1

i,j

if (pn,k
i,j ≥ 0) (cavitation check)

θn,k
i,j = 1

else

pn,k
i,j = 0

end if

end if

if (pn,k
i,j ≤ 0 or θn,k

i,j < 1) then

Compute Θn,k
i,j using Eq. (18) with hn = hn,k

θn,k
i,j ← ωθ Θn,k

i,j + (1− ωθ) θn,k−1

i,j

if (θn,k
i,j < 1) (cavitation check)

pn,k
i,j = 0

else

θn,k
i,j = 1

end if

end if

end do

change = ||pn,k − pn,k−1||2 + ||θn,k − θn,k−1||2 + |Xn,k −Xn,k−1|+ |Y n,k − Y n,k−1|
end do

Xn = Xn,k, Y n = Y n,k

Un = Un−1 + ∆t
M

(W n,k−1

X + W a
X(tn))

V n = V n−1 + ∆t
M

(W n,k−1

Y + W a
Y (tn))

do (i = 1, . . . , N1, j = 1, . . . , N2)

pn
ij = pn,k

ij , θn
ij = θn,k

ij , hn
ij = hn,k

ij

end do

end do (End Loop over time steps)
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5 Second example: Journal bearing under dynamic

loading

An essential test for a dynamical cavitation algorithm is that of transient loads typical of car
engines, which essentially consist of two sharp impulses with a time interval of a quarter of a
period. For this example, the non–dimensional period of the load is set to T = 1 and an analytical
load given by (for 0 ≤ t ≤ 1)

W a
X(t) = 0.01

[

exp(−400(t− 0.25)2) + 0.95534 exp(−400(t− 0.5)2)
]

(33)

W a
Y (t) = 0.29552× 10−2 exp(−400(t− 0.5)2) (34)

is choosen. The feeding pressure is set to pa = 0.0075, the bearing width to B = 0.1, the journal
mass to M = 10−6 and the initial conditions to

θ(x1, x2, t = 0) = 1, X(t = 0) = Y (t = 0) = 0.5, U(t = 0) = V (t = 0) = 0

The numerical parameters are chosen as

∆x1 = ∆x2 = 5× 10−3, ∆t = 10−3, ωp = ωθ = 1, tolerance = 10−6

Under these conditions, the obtained evolution of the journal’s center with time is as shown in
Fig. 4, where the components of the applied load W a

X , W a
Y and those of the load capacity WX

and WY (changing its sign to ease the comparison with W a
X and W a

Y ) are plotted as well. In Fig.
5 a detail of these loads is also shown. It can be seen that after one revolution of the shaft the
system becomes periodic. The first impulse of the cycle suddenly brings the shaft, which was
evolving freely (since no load is applied in the second half of the cycle), to the bottom center of
the bush (near X = 1 and Y = 0). The inertia of the shaft creates a spike in the load (WX and
WY ) at times 1.21, 2.21, etc. The second impulse takes it to another position (near X = 0.86 and
Y = 0.5) and then the applied load becomes zero again until the first impulse of the next cycle.

A convergence study for this problem has been performed, running it on meshes of 100 × 10,
200× 20, 400× 40 and 800× 80 cells. Two variables have been selected to illustrate this study:
the maximum pressure pmax(t) and the eccentricity e(t) = [X(t)2 + Y (t)2]1/2. In Fig. 6 pmax(t)
is plotted between t = 2 and t = 3 . Good agreement is found among all meshes, so that
details of four subintervals are included (2.10 ≤ t ≤ 2.15, 2.21 ≤ t ≤ 2.22, 2.25 ≤ t ≤ 2.27 and
2.48 ≤ t ≤ 2.52) in which the differences are visible. The error seems to behave linearly with the
cell size (roughly speaking, the error reduces by half each time the cell size is halved), implying
that the scheme is first-order accurate, which is a consequence of the upwind scheme used. It
is also interesting to look at a plot of e(t) between t = 2 and t = 3, which is shown in Fig. 7.
The eccentricity attains its maximum value of 0.94 at t = 2.56 and then it remains practically
constant until the next cycle. Notice however that this is not reproduced when the mesh is coarse
(e.g., 100 × 10, in which case at t = 3 the eccentricity has fallen below 0.91). In this variable,
again, the first-order-accurate behavior of the method is quite evident. For a resolution of 200×20
grid points, the computational cost of the algorithm was 12 minutes on a Pentium IV (3.0 GHz)
processor to complete the three periods of time shown in the figures.
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Figure 4: Evolution with time of the journal’s center, applied loads W a
X , W a

Y and load capacity
WX and WY (changing its sign to ease the comparison W a

X and W a
Y ).
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Figure 6: Convergence study: evolution with time of the maximum value of the pressure.
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Figure 7: Convergence study: evolution with time of the eccentricity.

6 Summary

The aim of this article has been to introduce a simple, robust and freely available methodology to
numerically solve dynamical lubrication problems modeled with a mass-conserving formulation.
This was done first in the case in which the gap-thickness is a known function of time, and then
in the fully-dynamical case. Each case was illustrated with a detailed example, and the reader is
invited to download the code and get the full set of numerical results. In many fields of science the
availability of open source codes has proved useful in vaious ways: making it easier for students
to start their research, setting standards with which to compare new techniques, and enabling
engineers that do not specialize in numerics to carry out simulations without buying expensive
commercial codes, among others. This article is aimed at making a contribution in this direction.
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729.

[13] Boedo, S. and Booker, J., 1995, “Cavitation in normal separation of square and circular
plates,” ASME Journal of Tribology, 117, pp. 403–409.


