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a b s t r a c t

Models of the friction force are assessed by direct comparison with two-dimensional Navier–Stokes
results. A three-term formula obtained from asymptotic expansion provides a reasonable estimate of the
hydrodynamic friction of rough runners even at sub-micron clearances.

Simulations of a measured honed surface are then reported using the conservative time-dependent
Elrod–Adams model with spatial resolutions as fine as 0.25 μm per cell (4000�800 mesh). Mesh con-
vergence of the numerical method is observed. Cell sizes between 0.5 μm and 1 μm appear as a rea-
sonable compromise of accuracy and cost for the simulation of honed runners. The significance of each
term of the friction formula is discussed, so as to assess the error involved in neglecting terms of the
friction formula.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Theoretical and numerical studies of lubricated devices often
represent the contacting surfaces as smooth. While this approx-
imation stands under some conditions, this is not the case when
the film thickness is comparable to the roughness amplitude, as in
heavily loaded journal bearings, seals, piston ring/cylinder liner
contacts, among others. The introduction of surface roughness into
lubrication models can be traced back to the stochastic model of
Tzeng and Saibel [1]. In their work, a probability distribution is
adopted for the surface roughness and formulas of the expected
values of pressure, friction force and load-carrying capacity are
deduced for a one-dimensional problem. A more encompassing
model was given by Christensen [2], who presented a modified
(stochastic) Reynolds equation in which the coefficients were
expected values. These results were limited to transverse or
longitudinally oriented variations in roughness.

Later, Patir and Cheng [3,4] introduced a new approach. An
average Reynolds equation for rough surfaces was defined in terms
of pressure and shear flow factors, which were empirical functions
of the non-dimensional roughness. Elrod [5] later extended this
model to account for roughness anisotropy.
eco),
mail.com (R.F. Ausas),
All of these techniques are based on the intuitive idea of
decoupling the global length scale, corresponding to the whole
bearing, from the local length scale of the roughness. Homo-
genization theory formalizes this intuition. It develops an average
equation valid throughout the domain, with its coefficients com-
puted from solutions of local problems. The homogenization
method has been studied in depth both for incompressible [6,7]
and compressible [8–10] fluids. It exhibits good accuracy when the
roughness is periodic in space and its period is much smaller than
the bearing size. Unfortunately, no rigorous homogenization
model considers general roughness shapes with cavitation effects.

A current trend is to study the hydrodynamics of lubrication
devices resolving all scales of the problem down to the roughness
scale, using the measured topography and without resorting to
averaged or stochastic models. These so-called deterministic or
measured-surface simulations [11–14] avoid ambiguities in the
definition of average coefficients at the expense of solving Rey-
nolds equation with a discretization finer than the resolution of
the measurements. A central result of the simulations is the
hydrodynamic force exerted by the fluid, defined by

F¼
Z
S
σ � �n dS; ð1Þ

of which the component parallel to the movement is the friction
force. Different formulae for the lubrication approximation of Eq.
(1) appear in the literature. Patir and Cheng [4] identify the exis-
tence of three terms in this approximation, which we denote here
as Couette term Fcou, Poiseuille term Fpoi and pressure term Fpre,
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the first two being shear forces, while the latter is the projection of
the pressure force on the surface along the movement direction.
While some authors consider all three terms [15–17], there exist
publications in which only Fcou is considered (thus not requiring
knowledge of the pressure [18–22]) and others in which Fpre is
neglected [23,24], i.e., just considering the shear stresses.

This paper, after the necessary definitions, introduces the
complete three-term formula from a formal asymptotic expansion
in Section 2. Its accuracy is confirmed in Section 3 by performing a
direct comparison against Navier–Stokes results. Section 4 then
contains deterministic simulations with measured data from a
honed surface representative of automotive cylinder liners. To our
knowledge, these are the first mesh-converged simulations that
consider the unsteadiness that results from the motion of the
rough surface through the computational domain. It is shown that
all three terms in the friction formula are significant for clearances
below 1 or 2 microns, both for conformal and non-conformal
contacts. Further discussions and the conclusions are left for
Section 5.
2. Model

2.1. Hydrodynamic lubrication model

We consider two surfaces in close proximity and in relative
motion with velocity V. The upper surface is assumed rigid, its
elevation with respect to the (reference) plane x1�x2 being given
by a known function hUðx1; x2Þ (Fig. 1). The lower surface, also
considered rigid, moves along the axis x1. If its elevation at time
t¼0 is given by the function hLðx1; x2Þ, also known, then the gap
between the surfaces is

hðx1; x2; tÞ ¼ hUðx1; x2Þ�hLðx1�V t; x2Þ: ð2Þ

To model starvation and cavitation effects, the lubricating fluid
is assumed to fill a fraction θðx1; x2; tÞ of the gap hðx1; x2; tÞ. In this
situation, and most especially if the gap thickness h exhibits small-
scale features, it is important to adopt a mass-conserving model
[25]. We use here the Elrod–Adams model [26], which incorpo-
rates into a single formulation the Reynolds equation and the
Jacobsson–Floberg–Olsson boundary conditions. Two scalar fields
must be solved at every point of the domain: the hydrodynamic
pressure p¼ pðx1; x2; tÞ and the saturation θ¼ θðx1; x2; tÞ. The gov-
erning equation reads

∇ � h3

12μ
∇p

 !
¼ V

2
∂ hθ
∂x1

þ∂ hθ
∂t

in Ω¼ ½x1ℓ; x1r � � ½0;B�� �
; ð3Þ

where μ is the viscosity andΩ the simulation domain. Eq. (3) must
hold under the pointwise complementarity conditions on p and θ

p40 ) θ¼ 1
θo1 ) p¼ 0
0rθr1

8><
>: : ð4Þ

The Elrod–Adams model, from which the classical Reynolds
equation is recovered by taking θ� 1, can be justified physically
under the so-called lubrication hypotheses [27], i.e.,

h
ℓ
⪡1; J∇hJ⪡1; ð5Þ

where ℓ is a length scale of the problem in the x1�x2 plane.
2.2. Lubrication approximation of the friction force

The total force exerted by an incompressible Newtonian fluid
on a surface S is given by

F¼
Z
S
σ � �n dS¼

Z
S

�pIþμ ∇uþ∇uT� �� � � �n dS; ð6Þ

where I is the identity matrix, u¼ ðu1;u2;u3Þ is the velocity field of
the fluid and ∇u its gradient, and �n is the inward normal. The
component of F along the direction of motion (i.e., the first com-
ponent) is the friction force F. Computing F on the lower surface,
since the normal is given by

�n ¼ ð�∂hL=∂x1; �∂hL=∂x2;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂hL=∂x1
� �2þ ∂hL=∂x2

� �2q ; ð7Þ

one gets

FL ¼
Z
Ω

�∂hL
∂x1

�pþ2μ
∂u1

∂x1

	 

�∂hL
∂x2

μ
∂u1

∂x2
þ∂u2

∂x1

	 

þμ

∂u1

∂x3
þ∂u3

∂x1

	 
� �
dx1dx2:

ð8Þ
Let us now consider a change of variables z¼ x3=ϵ, where ϵ is

arbitrarily small. As done in [28], assume that p and u can be
written as a power series in ϵ:

u¼ uð0Þ þϵuð1Þ þϵ2uð2Þ þ⋯ ð9aÞ

p¼ 1
ϵ2
pð0Þ þ1

ϵ
pð1Þ þpð2Þ þ⋯: ð9bÞ

Substitution into Eq. (8) produces

FL ¼
Z
Ω

ϵ�1 pð0Þ
∂hL

∂x1
þμ

∂uð0Þ
1

∂z

 !
þϵ0 pð1Þ

∂hL

∂x1
þμ

∂uð1Þ
1

∂z

 !
þϵ …ð Þþ⋯

" #
dx1dx2:

ð10Þ
Knowing that uð0Þ

1 satisfies [28]

uð0Þ
1 ¼ 1

2μ
∂pð0Þ

∂x1
zðz�hÞþ 1� z

h

 �
V ð11Þ

and going back to the original variable x3, Eq. (10) becomes

FL ¼
Z
Ω

�μV
h

�1
2
h
∂pð0Þ

∂x1
þpð0Þ

∂hL
∂x1

	 

þϵ pð1Þ

∂hL

∂x1
þμ

∂uð1Þ
1

∂x3

 !
þϵ2 …ð Þþ⋯

" #
dx1dx2:

ð12Þ
The leading order asymptotic approximation of the friction force
as computed on the lower surface is thus given by

FLðtÞC�
Z
Ω

μV
h

þ1
2
h
∂p
∂x1

�p
∂hL
∂x1

	 

dx1dx2: ð13Þ

Similarly, for the upper surface,

FUðtÞC�
Z
Ω

�μV
h

þ1
2
h
∂p
∂x1

þp
∂hU

∂x1

	 

dx1dx2: ð14Þ

The previous approximations, having started from Eq. (6) and thus
considering a single-phase incompressible fluid between the sur-
faces, do not consider cavitation effects. Friction models in cavi-
tated areas are controversial. We adopt here a slight modification
of the formulas above, in which the first term is multiplied by a
heuristic factor gðθÞ, which in this work we take as

gðθÞ ¼ θ if θ4θs ¼ 0:95
0 otherwise:

(
ð15Þ

The parameter θs is a threshold for the onset of friction, which can
be interpreted as the minimum oil fraction for shear forces to be
transmitted from one surface to the other. The results are not
qualitatively sensitive to θs, as reported in [15]. The other two
terms are left unmodified, and thus are equal to zero in the cavi-
tated region. The final heuristically modified model arising from
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the asymptotic expansion reads

FLðtÞ ¼ �
Z
Ω

μ
VgðθÞ
h

þ1
2
h
∂p
∂x1

�p
∂hL

∂x1

	 

dx1dx2; ð16aÞ

FUðtÞ ¼ �
Z
Ω

�μ
VgðθÞ
h

þ1
2
h
∂p
∂x1

þp
∂hU
∂x1

	 

dx1dx2: ð16bÞ

Three terms are identified in the previous equations. For the
lower surface they are the Couette term:

FcouL ðtÞ ¼ �
Z
Ω

μ
VgðθÞ
h

	 

dx1 dx2; ð17Þ

the Poiseuille term

FpoiL ðtÞ ¼ �
Z
Ω

1
2
h
∂p
∂x1

	 

dx1 dx2; ð18Þ

and the pressure term

FpreL ðtÞ ¼
Z
Ω

p
∂hL
∂x1

	 

dx1 dx2: ð19Þ

We consider three models for the friction force. The first model
is the one obtained from the asymptotic expansion:

FIL ¼ FcouL þFpoiL þFpreL : ð20Þ

The second one [23,24],

FIIL ¼ FcouL þFpoiL ; ð21Þ

neglects the normal contribution of the pressure, while the third
model [18–22],

FIIIL ¼ FcouL ; ð22Þ

computes the friction force with just the Couette term. Analogous
definitions can be made for FUI, FUII and FUIII.

It is to be noticed that only models FI and FIII satisfy that the
forces on the upper and lower surfaces add up to zero. For model
FIII this is obvious, while for model FI it is verified as follows:

FILðtÞþFIUðtÞ ¼ �
Z
Ωþ

h
∂p
∂x1

�p
∂hL
∂x1

þp
∂hU
∂x1

	 

dΩ ð23Þ

¼ �
Z
Ωþ

h
∂p
∂x1

þ p
∂ðhU�hLÞ

∂x1

	 

dΩ ð24Þ

¼ �
Z
Ωþ

h
∂p
∂x1

þ p
∂h
∂x1

	 

dΩ ð25Þ

¼ �
Z
Ωþ

∂ðphÞ
∂x1

dΩ¼ �
Z
∂Ωþ

ph �n � �e1dΓ ¼ 0; ð26Þ

where Ωþ is the region where p40 and ∂Ωþ its boundary.
Fig. 1. A cross-section of the domain showing t
2.3. Numerical method

The conservative finite volume method described in [29] is
used to solve problem (3)–(4). The complementarity conditions
are imposed iteratively in a Gauss–Seidel-type algorithm. Com-
putational times are alleviated through multigrid acceleration
[30,11]. This method has been validated against semi-analytic
solutions and used in technological applications such as journal
bearings and the piston-ring/liner contact [25,29,15,16].
3. Assessment of friction force formulae against single-phase
Navier-Stokes simulations

In the previous section, we have presented three models for the
calculation of the friction force from the results (p and θ) of the
Elrod–Adams model. The first one, denoted by FI, was obtained
from an asymptotic expansion, while the other two (FII and FIII)
omit terms that appear in FI and have been taken from the lit-
erature. In this section, we assess the accuracy of the three models
against accurate numerical solutions of the incompressible
Navier–Stokes equations. Similar assessments have been reported
previously [31,32], though not addressing the friction calculation.
A remark must be made here: the comparison presented in this
section neglects both inertia and cavitation effects. Neglecting
cavitation implies θ� 1, so that the Elrod–Adams result is, in fact,
the solution of the Reynolds equation. To deal with the cavitation
issue more sophisticated CFD simulations involving moving
boundaries and phase change would be necessary.

To further simplify the comparison, we consider all variables
independent of x2 and solve the flow at the single instant t¼0 in
the two-dimensional domain:

fðx1; x3Þj0rx1rλ; hLðx1Þrx3rhUðx1Þg; ð27Þ
using a finite element in-house code which has been extensively
validated (see [33–35]). The unknowns are the velocity field uh

and the pressure field ph. The boundary conditions are: (a) uh ¼
ð0;0Þ on the upper surface. (b) uh ¼ ðV ;0Þ on the lower surface.
(c) periodic boundary conditions at x1 ¼ 0 and x1 ¼ λ. The pressure
is thus determined up to an additive constant, which has no effect
on the value of the friction force. Once uh and ph have been solved
for, a nodal

_
approximation of

σh ¼ �ph Iþμ ∇uhþ∇uT
h

� � ð28Þ

is built. The

_

friction force on a surface S is then computed from

FNS ¼
Z
S
ðσh � �nÞ � �e1 dS ð29Þ

assuming σh independent of x2. Above, �e1 denotes the horizontal
unit vector ð1;0;0Þ. In all simulations, it was checked that mesh
he geometrical parameters of the problem.



Fig. 2. (a) View of the honed measured surface with depth in micrometers.
(b) Abbott–Firestone curve for the surface shown in Fig. (a) and (b) fractional dis-
tribution að�Þ of the measured surface according to the norm of its gradient J∇hs J .

Fig. 3. Scheme of the geometrical setting to compare Reynolds and Navier–Stokes
results.

Fig. 4. Comparison of the pressure profiles for different values of the relative
waviness amplitude α as obtained by numerically solving the Reynolds
equation (continuous lines) and the Navier–Stokes equations (circles). In the latter
case, the pressure profile corresponds to x3 ¼ 0.

Fig. 5. Total horizontal force as a function of the relative waviness amplitude α. The
Navier–Stokes reference values FNS are plotted with circles (for α¼ 0:25, 0.5 and
0.75), and they are seen to coincide with the results of the first model FI. The other
two models fail to reproduce the dependence of the friction force with α.
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convergence of the Navier–Stokes solver had been attained, with
discretization error not larger than 1% in all relevant variables.

The numerical experiments consider sinusoidal profiles for
both the upper and lower surfaces:

hU ðx1Þ ¼ A½1þα cos ð2 πx1=λÞ�; hLðx1Þ ¼ �A½1þα cos ð4 πx1=λÞ�
ð30Þ
where 2A is the mean distance between the surfaces and αA the
waviness amplitude for both surfaces. The wavelength in the
upper surface is λ, while that of the lower surface is λ=2. A scheme
of the geometrical setting is shown in Fig. 3.

The simulations consider A¼0.3 μm, λ¼200 μm, and several
values of α between 10�3 and 0.75. From the definitions of Eq. (30)
one observes that

hmax

λ
¼ 2ð1þαÞA

λ
and J∇hJmax ¼

17:2 α A
λ

:

For our values A=λ¼ 1:5� 10�3, so that conditions (5) are satisfied
and good agreement between the Navier–Stokes solution and the
Reynolds solution is expected.

The Navier–Stokes solver was run on a very fine mesh con-
sisting of 160,000 linear triangular elements. Its results were
compared with those of the Reynolds solver run on a mesh of
2000 one-dimensional cells. Fig. 4 shows that both models predict
exactly the same pressure field.

Let us now compare the three friction models FI, FII and FIII, as
computed from the Reynolds pressure solution, with the force FNS

obtained from the Navier–Stokes solution. This is plotted in Fig. 5.
One observes that model FI agrees with FNS in the whole range of
the relative amplitude α. The other two models, though coincident
with FNS when α¼ 0 (parallel bearing), completely fail to repro-
duce the dependence of the friction force with α.

In simulations of measured surfaces, however, the lubrication
hypotheses (5) are close to their limit of validity, specially the
second one. Fig. 2 illustrates a specific topography, corresponding
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to a honed cylinder, which is an example of the kind of measured
data for the function hL. Part (c) of the figure shows the fractional
distribution aðJ∇hL J Þ on the surface. For any number s, the value a
(s) is the fraction of the surface which has J∇hL J4s. The gradient
is computed by discrete differentiation of the matrix of measured
points. By direct inspection of Fig. 2(c), one observes that there are
points where the hypothesis J∇hL J⪡1 is not satisfied.

It is thus also interesting to use our two-dimensional toy
example to evaluate the accuracy of lubrication models against
Navier–Stokes predictions for values of J∇hL J of order unity,
focusing on the accuracy of friction predictions.

Fixing A¼0.3 μm and α¼ 0:75, simulations with smaller
values of λ were performed, as shown in Table 1. For λ¼2 μm
Table 1
Comparison of the friction lubrication models FL

I, FLII and FLIII with the Navier–
Stokes result FLNS for short waviness wavelengths. For all cases μ¼0.01 Pa-s,
V¼10 m/s, A¼300 μm and α¼0.75. The second column is maxx1 j ∂h=∂x1 j . The
friction force per unit width (along x2), integrated over one wavelength λ in x1, is
given in Newton/meter. Between parentheses the relative error of each model as
compared to FLNS. Analogous results are obtained if the integration is performed on
the upper surface.

λ (μm) J∇hJmax FNSL FLI FLII FLIII

2 1.935 �0.890 �0.603 (32%) �0.337 (62%) �0.378 (57%)
10 0.387 �3.198 �3.016 (5.7%) �1.687 (47%) �1.891 (41%)
20 0.193 �6.148 �6.032 (1.9%) �3.374 (45%) �3.782 (38%)
200 0.019 �60.36 �60.32 (o0:1%) �33.74 (44%) �37.81 (37%)

Fig. 6. Contours of pressure (p, top line) and velocity components (u1, u3, middle and bot
10 (center column) and 20 μm (right column).
the maximum J∇hL J is 1.935, in clear violation of Eq. (5) and
one observes that all lubrication friction formulas provide
poor predictions. The pressure and velocity fields produced by
the Navier–Stokes solver are shown in Fig. 6. Vertical gradients
of the pressure field are evident, a clear sign that the lubri-
cation approximation does not hold. For λZ10 μm, which
corresponds to J∇hL Jmaxr0:387, Table 1 shows that the
lubrication approximation with friction model FI predicts the
reference value FNS with good accuracy, while models FII and
FIII fail.

Going back to our surface of interest with honed finishing, one
observes in Fig. 2(c) that 99.9% of its area has J∇hL Jo0:387.
Though with some caveats, this suggests also that using model FI

the lubrication approximation may provide a reasonable estimate
for the friction in a measured honed surface.

On the basis of these results, we conclude that the friction force
model FI, which can be obtained from an asymptotic expansion, is
the best formula for approximating the friction force in lubrication
models based on the Reynolds equation. This model, which con-
sists of three terms (Couette, Poiseuille and Pressure terms),
exhibits good accuracy when applied to surfaces with character-
istics similar to those of honed surfaces and will be considered
hereafter as correct. In the following section, we solve the Elrod–
Adams model using the measured honed surface data so as to
estimate the importance of each term in the friction formula under
realistic conditions.
tom lines) corresponding to the Navier–Stokes simulations with λ¼ 2 (left column),



Table 2
Surface-finish parameters for the surface of Fig. 2(a).

Parameter Value

Sa 0.15 μm
Sq 0.25 μm
Ssk �6.56
Sku 81.8
Rpk 0.18 μm
Rk 0.2 μm
Rvk 6.47 μm
Mr1 6.6%
Mr2 24.1%
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4. Numerical simulations of measured honed surfaces

We consider as upper surface a single barrel-shaped pad,
inspired in the shape of compression piston rings of car engines.
Its shape corresponds to an arc of circumference of radius R. Its
height hU with respect to the reference plane is:

hU ðx1; x2Þ ¼ ZþR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� x1�

L
2

	 
2
s

if arx1rb

e otherwise

8><
>: ð31Þ

The parameter Z is the minimal distance between the surface
and the x1�x2 plane and e is a constant much larger than Z. This
pad slides with constant velocity �V over the measured topo-
graphy of a cross-hatched finished plane (honed runner). This
finish is typical of cylinder liners of car engines. The measured
surface is the one shown in Fig. 2(a). A proper way to characterize
a honed surface is by means of its Abbott–Firestone curve [36].
This is given in Fig. 2(b) for the surface under study. Its related
roughness parameters Rk (plateau height), Rpk (reduced peak
height), Rvk (reduced valley height), Mr1 (percentage of Rpk peaks)
and Mr2 (percentage of Rvk valleys) are shown in Table 2, along
with the more conventional parameters Sa (roughness average), Sq
(root mean square roughness), Ssk (skewness) and Sku (kurtosis).

The measured surface dimensions are Ls � Ls with Ls ¼ 1:8 mm,
sampled each 2 μm in both directions. In order to decrease the
computational effort, instead of solving the problem on the whole
surface, it is solved on three strips S1, S2 and S3 of width
B¼0.2 mm, as indicated in the same figure. The measured points
provide a function x3 ¼ hsðx1; x2Þ. The reference plane (x1�x2) is
defined as the average height of the measured points, so thatZ Ls

0

Z B

0
hsðx1; x2Þ dx1 dx2 ¼ 0: ð32Þ

The domain of this function along x1 is just the interval ½0; Ls�,
which is too small to conduct simulations. We extended it peri-
odically to tackle this difficulty. Incorporating also the movement
of the runner with respect to the simulation frame of reference
(fixed to the pad) one gets the function hLðx1; x2; tÞ as follows: Let n
be an integer (negative in general) such that 2nLsrx1�V t
o2ðnþ1ÞLs, then

hLðx1; x2; tÞ ¼
hsðx1�Vt�2nLs; x2Þ if 0rx1�Vt�2nLsoLs
hsð2Ls�ðx1�Vt�2nLsÞ; x2Þ if Lsrx1�Vt�2nLsr2Ls

(
:

ð33Þ
The resulting function hL is depicted at the top of Fig. 7, in which
the sector covered by the computational domain at time
t ¼ 1:6� 10�4 s is indicated. The remaining physical parameters
defining the domain size, pad dimensions, fluid viscosity and
surface velocity are given in Table 3. Reflection boundary condi-
tions (corresponding to zero normal derivative of the pressure) are
imposed at x2 ¼ 0 and x2 ¼ B. A constant film height d is assumed
at the entrance, which amounts to enforce θ¼ d=h at x1 ¼ x1ℓ. The
chosen d value ensured fully-flooded conditions for all the simu-
lations performed. The pressure at x1 ¼ 0 is zero, since the film is
incomplete, while outflow boundary conditions are set at x1 ¼ L.

4.1. Mesh convergence study

The complex topography of the runner surface compels the use
of a fine mesh, but it is unclear how fine it should be as compared
to the spacing of the measured points (which is 2 μm in our case).
A mesh convergence study is reported here to determine the level
of discretization required to decrease the error in the solution to
acceptable levels.

The study was performed on the strip S1 with parameters
Z¼2 μm and R¼128 mm. A typical snapshot of the solution is
shown in Fig. 7. Part (a) shows the pressure over the computa-
tional domain, while part (b) shows a cross-section along x2 ¼ B=2.
Parts (c) and (d) show the saturation field θ, in which regions with
θo1 identify cavitated zones. Finally, parts (e) and (f) show the
friction force density f, defined as

f ¼ μ
V
h
gðθÞþ1

2
h
∂p
∂x1

�p
∂hL
∂x1

; ð34Þ

which is observed to be highly oscillatory in both space and time.
The computational domain Ω was discretized using 500�100,

1000�200, 2000�400 and 4000�800 finite volumes. This cor-
responds to Δx1 ¼Δx2 ¼ 2, 1, 0.5 and 0.25 μm, respectively. A
recent measured surface simulation by Bouassida [11] used Δx1 ¼
Δx2 ¼ 0:78 μm and a mesh of 1400�512 cells. The time step was
taken such that the Courant number C ¼ ðV=2ÞðΔt=Δx1Þ equals
unity for all meshes, that is Δt ¼ 0:4, 0.2, 0.1 and 0.05 μs corre-
sponding to 1500, 3000, 6000 and 12,000 time steps for each
mesh, respectively.

Convergence was numerically verified for all variables. Fig. 8
(a) and (b) show the hydrodynamic lift,

LðtÞ ¼
Z b

a

Z B

0
pðx1; x2; tÞ dx1 dx2; ð35Þ

and the friction force FILðtÞ as functions of time for the four meshes.
Clearly, the difference between the two finest meshes is negligible
for practical purposes.

Part (c) of the figure contains a cross-section of p along x2 ¼ B=2
at an arbitrary instant (t¼1), showing that pointwise convergence
is also (almost) verified with the same refinement.

This study suggests that the 2000�400 mesh, with mesh
spacing taken as one fourth of the measurement spacing, is
practically converged and correctly represents the exact solution
between the pad and the measured topography. This mesh is thus
adopted in all results that follow.

4.2. Term-by-term contribution to friction

Results were obtained for the three strips S1, S2 and S3, two
different curvature radii R¼8 and 128 mm, and for four separa-
tions between the pad and the runner: Z¼0.5, 1.0, 2.0 and 4.0 μm,
totaling 24 runs of the code. Each run takes about 3.0 h on a six-
cored Intel i7-4930 K desktop computer with a 3.4 GHz clock rate.
In the simulated conditions there is no contact between the sur-
faces, since minðx1 ;x2ÞAΩhðx1; x2; tÞ ¼ 0:13 μm for all t.

The relative contribution of each of the three terms of the
friction force (model FIL) are calculated as

FcouL ðtÞ
FILðtÞ

;
FpoiL ðtÞ
FILðtÞ

and
FpreL ðtÞ
FILðtÞ

: ð36Þ

Notice that the sign of each term is kept, so that though the
relative contributions add up to one the individual terms can take
any sign. They are shown as functions of time for strip S1 in Fig. 9.



Fig. 7. Fields (a) p, (c) θ and (e) f at t ¼ 1:6� 10�4 s for strip S1. This solution corresponds to parameters Z¼2.0 and R¼128. The right column shows cross-sections of the
fields along x2 ¼ B=2.
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Parts (a) and (b) correspond to the Couette term for R¼8 and
128 mm, respectively. The general trend is that the Couette term
becomes increasingly dominant as Z is increased, and also less
oscillatory in time due to the higher average clearance. For the
higher curvature pad, R¼8 mm, the time-averaged contribution of
the Couette term is 68% for Z¼0.5 μm, growing to 89% for
Z¼4 μm. For the lower curvature pad, R¼128 μm, it is 89% for
Z¼0.5 μm and 99% for Z¼4 μm.

Parts (c) and (d) of Fig. 9 correspond to the Poiseuille term. Its
contribution to the total friction force diminishes as Z increases,
opposite to the trend seen with the Couette term. This term's
relative contribution changes significantly with time at low Z.
Interestingly, it is positive for the higher curvature pad and
negative for the lower curvature one, which can be considered a
conformal contact. For the rough surface chosen for this study, the
Poiseuille term is thus seen to compensate to some extent the
Couette term in conformal contacts at low clearance, reducing the
friction force computed by the model.

The pressure term, on the other hand, is mostly positive (see
parts (e) and (f) of the figure), as explained in [15]. Furthermore, it



Table 3
Physical parameters defining the problem.

Parameter Value Units Description

μ 0.01 Pa.s Fluid viscosity
a 0.2 mm Leftmost position of pad in x1
b 0.8 mm Rightmost position of pad in x1
d 20 μm Fluid film height at the entrance x1 ¼ x1ℓ
e 500 μm Clearance for x1oa and x14b
V 10 m/s Sliding velocity
x1ℓ 0 mm Left boundary of computational domain
x1r 1.0 mm Right boundary of computational domain
B 0.2 mm Width of computational domain
L 1.0 mm Length of computational domain
R 8, 128 mm Radii of pad
Z 0.5, 1.0, 2.0,

4.0
μm Distance from pad to the reference plane

x1�x2

Fig. 8. (a) Hydrodynamic lift, (b) friction force, and (c) pressure at t¼1.0 in x2¼0.1
computed with the four meshes of the convergence study.
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is consistently larger than the Poiseuille term for the low curvature
pad, at all values of Z, while for the R¼8 pad it is much smaller.
The net effect of FpoiL þFpreL is a positive contribution to the friction,
which can be confirmed by noticing that the curves of FcouL =FIL
never exceed unity. Results of the term-by-term analysis of strips
S2 and S3 showed the same general trends as S1.
From the relative contribution of each term one can quantify
the error resulting from adopting models FII or FIII:

eII ¼ FII�FI

FI
; ð37aÞ

eIII ¼ FIII�FI

FI
: ð37bÞ

The average values of these errors for the twenty-four condi-
tions considered are shown in Table 4. Results for the three strips
are quite similar.

The error of FII for the results computed with R¼8 (first col-
umn) are the lowest in the table, which can be explained by the
small pressure terms, as seen in Fig. 9(e). The second lowest are
the FIII errors for the results computed with R¼128 (last column).
This can be explained by: (a) the aforementioned cancellation of
the Poiseuille and pressure terms for R¼128 and (b) lower average
Poiseuille and pressure terms (Fig. 9(d) and (f)) at low Z values. For
the same model, the errors computed for R¼8 are the largest in
the table. While the pressure term drops rapidly with Z (Fig. 9(e))
the Poiseuille term remains relatively high (approximately 10% for
Z¼4.0), thus making eIII of about the same order as the Poiseuille
term for high Z values.

The error eII represents the omission of the pressure term in FI.
The contribution of the pressure term decreases with increasing Z,
the errors are below 4% and also comparable in size for both R
values and ZZ2:0. Larger errors are observed for lower Z values.

In general, omitting terms in the friction force has a significant
impact on friction evaluation, especially at low clearances. For
Z¼0.5 the errors are of about 10% or as large as 30%.

If Z is large enough compared with the surface's roughness, it is
expected that the problem solution will be governed by the length
scale of the bearing. Thus, it is interesting to compute the differ-
ence between the results of the average friction force FI and
hydrodynamic lift L(t) extracted from the fully deterministic
simulations FIuntext and Luntext, computed neglecting the surface
roughness ðhLðx1; x2; tÞ � 0Þ:

eF
I

untext ¼
FIuntext�FI

FI
; ð38Þ

eLuntext ¼
Luntext�L

L
: ð39Þ

This is shown in Table 5. For Z¼0.5, eF
I

untext is above 10% and as
high as 30%. However, for ZZ 2.0 the errors in friction are lower or
equal to 7%. The latter results are remarkable due to the low errors
attained and to the fact that a computationally inexpensive pro-
blem is being solved instead of a complex measured-surface
simulation. However, the results for the hydrodynamic lift error
euntext

L are more ambiguous. For R¼8 and Zr2:0 they are lower
than 3% and fast decreasing with Z. For the lower curvature pad,
the errors for Z¼4 are higher than 8%, which is considerable. This
was already pointed out by Bouassida [11] while comparing results
of deterministic simulations of various honed surfaces with one-
dimensional untextured-runner simulations.
5. Conclusions

In this work we have discussed two important issues in lubri-
cation analysis: (i) models for the friction force for non-planar
surfaces, and (ii) high-resolution simulations of measured
surfaces.

The first issue was addressed by direct comparisons of lubri-
cation models with two-dimensional Navier–Stokes results (iner-
tia and cavitation effects were neglected). It was found that the



Fig. 9. Friction force terms FcouL , FpoiL and FpreL relative to the friction force FL for strip S1, R¼8 (figures (a), (c), (e)) and R¼128 (figures (b), (d), (f)).

Table 4
Percentage errors eII and eIII, averaged in time over a passing of the honed runner.

Strip Z % eII (R¼8) %eII (R¼128) % eIII (R¼8) % eIII (R¼128)

S1 4.0 1.1 0.72 10.97 0.7
2.0 1.8 3.1 18.6 1.9
1.0 3.4 6.8 26.2 4.7
0.5 7.2 14.6 32.2 10.8

S2 4.0 0.43 0.60 10.6 0.42
2.0 1.2 1.9 18.6 1.5
1.0 2.0 5.2 26.1 4.1
0.5 6.2 12.6 32.3 10.3

S3 4.0 1.1 0.7 10.8 0.7
2.0 1.2 1.9 19.0 1.5
1.0 2.4 4.8 26.0 3.9
0.5 5.6 11.6 32.2 9.9

Table 5

Percentage errors eF
I

untext and euntext
L committed by neglecting the surface roughness.

Strip R eF
I

untext (%) euntext
L (%)

Z¼0.5 1.0 2.0 4.0 0.5 1.0 2.0 4.0

S1 8 �10.5 �4.7 �2.3 �1.2 �5.6 �1.3 �0.1 0.1
128 �23.1 �12.4 �5.3 1.1 �10.1 �3.5 �4.4 �8.0

S2 8 �11.2 �5.0 �2.3 �1.2 �8.4 �3.5 �1.7 �0.9
128 �23.9 �13.1 �6.0 0.2 �20.0 �11.9 �9.0 �8.6

S3 8 �11.5 �5.33 �2.9 �1.3 �9.3 �4.2 �2.1 �1.2
128 �24.3 �13.4 �6.4 �0.16 �21.4 �12.9 �9.4 �8.5
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three-term formulas (16a) and (16b) are the most accurate ones,
providing a reasonable estimate of the hydrodynamic friction of
rough surfaces at sub-micron clearances, even when the lubrica-
tion hypotheses (5) are not being met.
Regarding the second issue, simulations of a measured honed
surface were reported using the conservative time-dependent
Elrod–Adams model with spatial resolutions as fine as 0.25 μm
per cell (4000�800 mesh). This allowed us to confirm the mesh
convergence of the numerical method for the challenging topo-
graphies of measured data, and suggested cell sizes of a quarter or
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even half of the measurement resolution (here 0.5 μm and 1 μm
respectively) as a reasonable compromise of accuracy and cost for
the simulation of honed runners. It was also seen that for large
clearances, good accuracy can be achieved by performing low-cost
simulations in which the surface roughness is neglected.

In the measured-surface simulations, the significance of each
term of the friction formula (16a) was computed, so as to assess
the error introduced by some incomplete models found in the
literature. It was observed that, for clearances much larger than
the roughness amplitude, the Couette term of the friction force is
dominant and can be taken as an acceptable approximation. For
high loads (small clearances), only the complete formulas (16a)
and (16b) yield accurate results.
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