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Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as
applied to different kinds of second order boundary value problems. In this work we pres-
ent two Hermite finite element methods to solve viscous incompressible flows problems, in
both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz
triangle to represent the velocity field, and in the three-dimensional case an extension of
this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes
system, the pressure is approximated with continuous functions, either piecewise linear or
piecewise quadratic, according to the version of the Zienkiewicz element in use, that is,
with either incomplete or complete cubics. The methods employ both the standard
Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18],
based on the addition of a balance of force term. A priori error analyses point to optimal
convergence rates for the PG approach, and for the Galerkin formulation too, at least in
some particular cases. From the point of view of both accuracy and the global number of
degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio,
as compared to velocity Lagrange finite elements of the same order, especially if the Galer-
kin approach is employed.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years Hermite interpolation has been found to be a favorable approach to solve several kinds of field problems
modeled by second order boundary value problems in different respects. A good illustration of this fact is provided by the
isogeometric finite element method introduced by Hughes about ten years ago (see e.g. [9]). In this case the main motivation
is the best use of data supplied by CAD in a subsequent finite element analysis using high continuity requirements. Direct
representation of derivatives through Hermite interpolation is also a desired property in the simulation of phenomena,
where quantities expressed in terms of derivatives of a primal variable play an important role. This is the case for instance
of Hermite methods ensuring the continuity of fluxes in a porous medium flow (see e.g. [21]).

This work also addresses Hermite approaches to solve the Stokes system in a bounded domain of RN;N ¼ 2;3 by the finite
element method. However in contrast to isogeometric elements or Hermite analogs of mixed finite elements like the one in
[22], the main goal here is not to enforce Ck continuity of the solution with k P 1. The main interest of the present methods
relies on the particular Hermite interpolation of the velocity being used, which gives rise to rather high order methods with a
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reduced global number of degrees of freedom, as compared to standard Lagrange finite elements having equivalent approx-
imation properties. A further aim of ours was to work with particularly simple data structures. This is actually possible for
three out of the four methods to be studied, since in these cases only vertex degrees of freedom must be handled at matrix
level.

More specifically we represent the velocity by means of the Zienkiewicz triangle in two-dimensional space, and of an
extension of it to tetrahedra, still called a Zienkiewicz element, in the three-dimensional case. Two versions of the method
are proposed in each case. In the first version the velocity is represented by incomplete cubics in each element, while a stan-
dard Lagrange interpolation of the pressure is employed with continuous piecewise linear functions. This combination is de-
noted by Z2=P1. In the second version the velocity representation is performed with complete cubics, and the pressure is
approximated by means of standard continuous piecewise quadratics. This combination is denoted by Z3=P2.

Both approaches can be employed in connection with either a classical Petrov–Galerkin formulation, or the standard
Galerkin formulation of the Stokes system. In the former case the methods are convergent with optimal orders in the natural
norm of H1ðXÞ � L2ðXÞ, namely, order two for Z2=P1 and three for Z3=P2. Except for some issues related to Hermite interpo-
lations, this can be certified in accordance with well-known results (cf. [18,10]), in the case of homogeneous Dirichlet veloc-
ity boundary conditions.

As it is well-known inhomogeneous boundary conditions are very important in practical applications related to viscous
flow. However, probably because their approximation is regarded as an issue involving just a few additional technicalities, it
has been rather overlooked so far (cf. [13,4] and references therein). Indeed, introducing an arbitrary field w satisfying the
inhomogeneous boundary condition in the continuous problem, and its interpolate in the approximate problem, provided
the bilinear form is uniformly bounded and stable with respect to the norm of H1ðXÞ � L2ðXÞ in the approximation spaces,
the analysis becomes only a matter of right hand side variational crime (cf. [24]). In short, the additional term in the error
estimate is just the interpolation error of w (cf. [11]). This means that the regularity of this arbitrary field comes into play,
although it may not be ensured by a non smooth boundary. That is why it is wiser to derive error estimates involving directly
the interpolated boundary data, by properly identifying the scales involving both the mesh and the stabilizing parameter
inherent to inhomogeneous boundary conditions. Here we achieve this by carrying out a remake of previous analyses based
on a technique inspired by the classical work of Lax-Richtmyer [20]. As a by-product, on the one hand we exploit the
coercivity of the bilinear form over the discretization spaces with respect to a mesh dependent norm; on the other hand
we bypass both the unboundedness of the bilinear form as the mesh parameter decreases, and limitations on the stabilizing
parameter. This is because we also avoid discrete inf–sup inequalities employed by most authors. Instead we complete our
analysis using a celebrated result in [19].

In addition to this we supply both theoretical and numerical arguments, according to which the Z2=P1 method is opti-
mally convergent in Galerkin formulation, at least in the two-dimensional case. Our numerical results also indicate that
the Galerkin formulation performs better than the Petrov–Galerkin approach for this element, and also as compared to clas-
sical stable Lagrange methods of the same order, in Galerkin formulation as well.

The Stokes equations governing the slow flow of a viscous incompressible fluid with viscosity l in a bounded domain X,
together with pertaining notations are as follows. C being the boundary of X with unit outer normal vector n, and given a
force field f 2 L2ðXÞ, together with g 2 H1=2ðCÞ satisfying

H
Cg � n ¼ 0, we wish to find a velocity u 2 H1ðXÞ and a pressure

p 2 L2
0ðXÞ (cf. [14]) such that:
�lDuþ grad p ¼ f in X;

div u ¼ 0 in X;

u ¼ g on C:

8><>: ð1Þ
Denoting by ð�; �Þ the standard inner product of L2ðXÞ in scalar, vector or tensor version, with associated norm k � k, and by
ð�; �ÞD the standard inner product of L2ðDÞ with associated norm k � kD, for any D(X, we may rewrite problem (1) in the fol-
lowing equivalent variational formulation:
Find u 2 H1ðXÞ and p 2 L2
0ðXÞ such that;

lðgrad u; grad vÞ � ðp;div vÞ ¼ ðf;vÞ 8v 2 H1
0ðXÞ;

ðdiv u; qÞ ¼ 0 8q 2 L2
0ðXÞ;

u ¼ g on C:

8>>>><>>>>: ð2Þ
Throughout this work we use the following notations: k � kr;D is the standard norm of Sobolev space HrðDÞ for r 2 R and
j � jm;D represents the standard semi-norm of Sobolev space HmðDÞ, for m 2 N;D being a subset of X. We drop the subscript D
whenever D is X itself.

An outline of the paper is as follows. Section 2 is devoted to the description of the Hermite finite element methods in the
N- dimensional case for N ¼ 2 and N ¼ 3. In Section 3 we set up the Z2=P1 and the Z3=P2 approximation methods for solving
system (1), in both Petrov–Galerkin and standard Galerkin formulation. An a priori error analysis of the former type of for-
mulation is given in Section 4, applying to the case of inhomogeneous velocity Dirichlet boundary conditions. Next, conver-
gence results are given in Section 5 for the Galerkin formulation, restricted to the case of the two-dimensional Z2=P1 method
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on criss-cross meshes. Section 6 is aimed at illustrating the performance of the new methods from the numerical point of
view, by means of two-dimensional test-problems. We conclude in Section 7 with some remarks.

2. Finite element description

To begin with we specify the Hermite finite elements we use to represent the velocity field locally, that is in every N-sim-
plex T of a mesh, N ¼ 2;3.

Let Si be the vertices of T; i ¼ 1; . . . ;N þ 1, and G its barycenter. We denote by ki the barycentric coordinate of T associated
with Si and set
hij ¼ length ½SiSj�:
The reader is referred to Fig. 1 for an illustration of the degree of freedom structure of each kind of velocity interpolation in
use, as described hereafter.

In the case N ¼ 2 the elements are nothing but the well-known Zienkiewicz triangle in its two versions referred to here as
Z2 and Z3, that is, with either incomplete or complete cubics, as defined in [27]. For better guidance we recall below that the
nine degrees of freedom of Z2 are the function values and the first order derivatives along the edges of T at its three vertices.
For a convenient description of this Hermite finite element, the derivative along a given edge at a vertex belonging to it is
always taken in the direction leading from this vertex to the other end of the edge under consideration. Denoting the bubble
function of T by
u ¼ k1k2k3
and PmðTÞ being the space of polynomials of degree less than or equal to m defined in T, the subspace of P3ðTÞ associated with
Z2 is the one spanned by the set of nine linearly independent functions ½ffig3

i¼1 [ ffijg3
i–j¼1�, where
fi ¼ k3
i �u and fij ¼ k2

i kj þu=2:
The nine canonical basis functions corresponding to the above specified degrees of freedom are:

– For the function value at Si : ui :¼ 3k2
i � 2fi; i 2 f1;2;3g;

– For the derivative at Si in the direction of SiSj
�!

: uij :¼ hijfij, i; j 2 f1;2;3g; i – j.

In the case of Z3 the above set of degrees of freedom is augmented with the function value at G. The set of ten basis func-
tions associated with Z3 are:

– For the function value at Si : ui :¼ 3k2
i � 2fi � 9u; i 2 f1;2;3g;

– For the derivative at Si in the direction of SiSj
�!

: uij :¼ hijðfij � 3u=2Þ, i; j 2 f1;2;3g; i – j;
– For the function value at G : u123 :¼ 27u.

The extension to tetrahedra of the Zienkiewicz triangle we consider in this work is described below:
Denoting by uijk the bubble function kikjkk of face Fl of T, where the integers i; j; k; l 2 f1;2;3;4g are assumed to be distinct,

the analog of Z2 still denoted this way is spanned by the set of sixteen linearly independent functions ½ffig4
i¼1 [ ffijg4

i–j¼1�,
where
Function value 
at a vertex 

1st order derivative  
at a vertex in the  
arrow direction  

Degrees of freedom

Function value at 
a triangle centroid  

Z3  with complete cubics                    including centroid d.o.f. 

Z2  with incomplete cubics                      only vertex d.o.f.
spanned by (N+1)2 functions 

N=2 N=3

TWO VERSIONS

Fig. 1. Degrees of freedom of each velocity component in spaces Z2 and Z3.
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fi ¼ k3
i �uijk �uijl �uikl and fij ¼ k2

i kj þ ðuijk þuijlÞ=2:
The set of sixteen degrees of freedom defining Z2 in connection with the above basis are the function values at Si and the first
order derivatives at Si along the three edges converging to this point, for i ¼ 1;2;3;4. Using the same convention concerning
the sense of these derivatives as in the two-dimensional case, the set of canonical basis functions associated with such
degrees of freedom are given by:

– For the function value at Si : ui :¼ 3k2
i � 2fi; i 2 f1;2;3;4g;

– For the derivative at Si in the direction of SiSj
�!

: uij :¼ hijfij; i; j 2 f1;2;3;4g, i – j.

Using the same notation for the analog of Z3, this element is based on the space P3ðTÞ. The dimension of this space being
twenty, the set of degrees of freedom defining Z3 in connection with it are the function values at Si and at the centroid Gi of
the face Fi opposite to Si, together with the first order derivatives at Si along the three edges converging to this point, for
i ¼ 1;2;3;4. The set of canonical basis functions associated with such degrees of freedom are given by:

– For the function value at Si : ui :¼ 3k2
i � 2fi � 9ðuijk þuijl þuiklÞ;

– For the derivative at Si in the direction of SiSj
�!

: uij :¼ hij½fij � 3ðuijk þuijlÞ=2�;
– For the function value at Gi : uG

i :¼ 27ujkl.

The approximation properties of the above two- and three- dimensional elements were studied in [7,25] respectively. Let
us briefly recall them.

First of all it is an easy matter to verify that the subspaces of P3ðTÞ for elements Z2 contain the space P2ðTÞ. Therefore if u is
a function in Hlþ1ðTÞ, we can assert that the Zl-interpolate of u in T, denoted by pl

TðuÞ, satisfies for suitable constants Cl
m inde-

pendent of T and u,
ku� pl
TðuÞkm;T 6 Cl

mhlþ1�mjujlþ1;T m ¼ 0;1; . . . ; lþ 1:
Although the three-dimensional elements have been previously quoted in the literature (see e.g. [7]) one cannot say that
they are well-known. Therefore we endeavor to check here that the corresponding sets of basis functions satisfy the required
conditions to be canonical. In this aim we first note that the function values together with the first order derivatives of all the
face bubble functions vanish at the vertices of T, as does the bubble function u and grad u if T is a triangle. This means that
we can disregard terms of the above basis set involving these bubble functions.

Let us first consider the case of Z2:
As far as ui is concerned we note that uiðSjÞ ¼ dij. Moreover since kið1� kiÞ is a factor of the gradient of ui (without bub-

bles), it vanishes at all the vertices of T. It follows that ui is indeed the canonical basis function associated with the function
value at vertex Si. The function uij, in turn, vanishes at every vertex of T. Moreover since ki is a factor of grad uij (without
bubbles), its value at all the vertices of Fi vanishes. Finally the derivative of uij at Si in the direction of the edges SiSk or
SiSl is simply hij times the derivative of kj in these directions. Since kj vanishes identically along both edges, these derivatives
are equal to zero. Finally we note that the derivative of uij at Si in the direction SiSj

�!
is given by hij times the derivative of kj in

this direction, that is 1=hij and we are done.
From this point the check procedure of the basis functions for element Z3 becomes trivial. Indeed the functions added to

the basis functions of Z2 are just aimed at making them vanish at the four face centroids, and moreover the basis functions
uG

i have the same property, but at Gi where its value equals one.
To conclude this Section it is worth pointing out that the above degrees of freedom related to derivatives at a given vertex

are not suitable for computations in the framework of a finite element solution. This is because in general it is not possible to
let them coincide for all the elements intersecting at this vertex. However we may combine linearly the corresponding basis
functions in each N-simplex in order to construct canonical basis functions associated with the first order partial derivatives
in the two or three fixed directions of the cartesian axes, that is, the ones of unit vectors em, m ¼ 1; . . . ;N forming an ortho-
normal basis of RN . In doing so the assembly of the element matrices will lead to the correct global matrix referred to the
derivatives in these directions only, at all the vertices of the mesh. More concretely we supply below the expressions of the
basis functions um

i pertaining to Z2, such that ½grad um
i � en�ðSjÞ ¼ dijdmn and um

i ðSjÞ ¼ 0 for i; j 2 f1; . . . ;N þ 1g and
m;n 2 f1; . . . ;Ng: For distinct i; j and denoting by ðx1

i ; . . . ; xN
i Þ the cartesian coordinates of Si; i ¼ 1; . . . ;N þ 1,
um
i ¼

XNþ1

j¼1; j–i

uijðxm
j � xm

i Þ: ð3Þ
Naturally enough the vertex value basis functions ui do not require any modification, owing to the fact that their gradi-
ents vanish at all the vertices by construction. Moreover since the same property holds for the triangle bubble or face bubble
functions, the expression (3) also applies to the basis functions um

i in the case of the space of complete cubics.
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3. Solution with Zienkiewicz-type elements

Henceforth we assume that X is a polygon if N ¼ 2 and a polyhedron if N ¼ 3.
Before proceeding a word of clarification is in order: Using element by element inverse inequalities (cf. [7]) rather than

the global ones employed hereafter, the convergence results to be given in this paper extend to the case of shape-regular
families of meshes. Of course in this case, instead of the single parameter d introduced below, one has to use element-depen-
dent ones like in [18]. However this brings about substantially more complicated notations and expressions in the approx-
imate problems. That is why, similarly to [12], we assume here that we are using a quasi-uniform family of partitions T h of X
into triangles or tetrahedra, satisfying the compatibility conditions for finite element meshes specified in classical references
on the subject such as [7,11].

Let h denote the maximum edge length of the elements in T h. In all the sequel the letter C combined or not with other
symbols represents constants independent of h. Also throughout this work gh stands for piecewise cubic Hermite interpo-
lates of g on C, assuming henceforth that gjCi

belongs to H5=2ðCiÞ for i ¼ 1;2; . . . ;m, where the Ci’s are the straight edges
or the plane faces of C. More specifically if N ¼ 2 we mean the classical cubic interpolate at the vertices of T h belonging
to C, continuously differentiable along every straight portion of C provided gjCi

2 H5=2ðCiÞ. If N ¼ 3 we define gh to be the
cubic Hermite interpolate of g on every face contained in Ci of a tetrahedron of T h, using the degrees of freedom of the Zie-
nkiewicz triangle, either with complete or incomplete cubics, according to the method being studied. Assuming that
f 2 Hlþ1ðTÞ in every T 2 T h, for l equal to 1 or 2, we will also work with approximations f l

h of f in every element of T h, sat-
isfying kf � f l

hkT 6 Clh
lþ1jfjlþ1;T 8T 2 T h.

We shall consider problems to approximate (1) of the same kind as those proposed by Hughes–Franca-Balestra [18] and
Douglas–Wang [10]. However in contrast to those works, our convergence analysis will be based on the Lax Equivalence The-
orem [20] combined with Ladyzhenskaia’s condition for the divergence operator [19], for the reasons mentioned in the third
paragraph of Section 1.

The solution methods to be studied use the pressure space Ql
h, for l ¼ 1;2 respectively, defined as follows:
Q l
h :¼ fq = q 2 C0ð�XÞ \ L2

0ðXÞ; q=T 2 PlðTÞ 8T 2 T hg
We associate with Q l
h spaces Vl

h :¼ ½Vl
h�

N
for l ¼ 1;2 to represent the velocity, both being constructed upon the plate Zie-

nkiewicz element Zlþ1 for N ¼ 2 [27] or with its three-dimensional version defined in Section 2. This means that Vl
h is a space

of continuous functions of degree less than or equal to three in each element of T h, whose gradient is also continuous at their
vertices. While on the one hand V2

h consists of piecewise complete cubics in every N-simplex of T h, on the other hand in
every element T a function of V1

h belongs to the space spanned by ðN þ 1Þ2 cubic functions in T, such that it does not contain
either multiples of the triangle bubble function if N ¼ 2 or linear combinations of the four face bubble functions if N ¼ 3.

Let us denote by Vl
h0 the space Vl

h \ H1
0ðXÞ, and introduce the following broken L2ðXÞ-inner product denoted by ð�; �Þh, with

associated norm k � kh, for functions u and v defined only in the interior of the elements of T h:
ðu;vÞh ¼
X
T2T h

ðu;vÞT ; kvkh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv ;vÞh

q
:

Now given a numerical parameter d > 0 to be specified later on, we consider the following problems to approximate (2),
where l equals 1 or 2:
Find ul
h 2 Vl

h and pl
h 2 Q l

h such that 8v 2 Vl
h0 and 8q 2 Q l

h

dðlDul
h � grad pl

h;lDv � grad qÞh þ lðgrad ul
h;grad vÞ � ðpl

h;div vÞ þ ðdiv ul
h; qÞ

¼ �dðf l
h;lDv � grad qÞh þ ðf

l
h;vÞ

ul
h ¼ gh on C:

8>>>><>>>>: ð4Þ
Remark 3.1. In problem (4) we chose the Petrov–Galerkin formulation with a modification à la Douglas-Wang [10] rather
than the original one proposed in [18]. The latter is derived by changing the sign of the viscous test term lD v, and in this
case we obtain a symmetric problem. However as pointed out in [13], such a choice induces restrictions on d. As seen
hereafter this is completed avoided, in case formulation (4) is employed (see also [10] for the case of homogeneous velocity
boundary conditions). h
Proposition 3.1. Problem (4) has a unique solution.
Proof. First of all we prove the solution uniqueness. Since we are dealing with a linear problem it suffices to establish that if
we take zero data in (4), i.e. gh ¼ 0 and f l

h ¼ 0, the solution vanishes identically. In this case we may take v ¼ ul
h and q ¼ pl

h,
thereby obtaining:
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lkgrad ul
hk

2 þ dklDul
h � grad pl

hk
2
h ¼ 0:
Hence grad ul
h ¼ O, which implies that ul

h ¼ 0 in every element of T h. It follows that grad pl
h ¼ 0 in every T 2 T h too,

which implies in turn that pl
h ¼ 0.

Now the existence of a solution follows from the well-known fact that uniqueness of the solution to a linear system of M
equations having exactly M unknowns like (4), is equivalent to existence of a solution for arbitrary data. This completes the
proof. h

To conclude this Section we note that the standard Galerkin formulation of the problem solved with the elements Z2=P1 or
Z3=P2 is deduced from (4) by taking d ¼ 0. It is well-known that in this case the existence and uniqueness of a solution relies
on the validity of an inf–sup condition relating the velocity and pressure spaces (see e.g. [6]). In Section 5 we shall address
this issue more thoroughly.

4. A study of the Petrov–Galerkin approach

In this Section we study problem (4) using a technique of analysis aimed at deriving a priori error estimates in terms of
kg� ghkC, i.e. the interpolation error of inhomogeneous velocity boundary conditions. We also incorporate to our approach a
way to bypass Clément or Scott–Zhang type operators used in most studies prior to this work, since to the best of our knowl-
edge none is available for Hermite elements.

4.1. Stability results

To begin with we derive stability results for the problem under study. Without loss of essential results, like many authors
do, we assume henceforth that we are working with dimensionless lengths. In this way we may consider that h < 1. For the
purpose of our stability analysis, it is convenient to consider a system of the same form, though more general than (4),
namely:
Find ul
h 2 Vl

h and pl
h 2 Ql

h such that 8v 2 Vl
h0 and 8q 2 Q l

h

dðlDul
h � grad pl

h;lDv � grad qÞh þ lðgrad ul
h;grad vÞ � ðpl

h; div vÞ þ ðdiv ul
h; qÞ

¼ Eðgrad vÞ þ FðvÞ þ LðlDv � grad qÞ þ Pðgrad qÞ þ Rðc½q�Þ
ul

h ¼ gh on C:

8>>>><>>>>: ð5Þ
where c½v� is the trace on C of a function v 2 H1ðXÞ, and E; F;R; L; P are linear functionals satisfying:
Eðgrad vÞ 6 jEjkgrad vk 8v 2 Vl
h

FðvÞ 6 jFjkgrad vk 8v 2 Vl
h

LðlDv � grad qÞ 6 jLjklDv � grad qkh 8v 2 Vl
h and 8q 2 Q l

h

Pðgrad qÞ 6 jPjkgrad qk 8q 2 Q l
h

RðcðqÞÞ 6 jRjkgrad qk 8q 2 Q l
h:

ð6Þ
which can be seen as a definition of jEj; jFj; jRj; jLj and jPj. We note that some of these quantities may depend on h.

Proposition 4.1. Let wh be the unique field of Vl
h that minimizes the functional kgrad vk2 under the constraint v ¼ gh on C. Then

the following stability result holds for problem (5):
dklDul
h�grad pl

hk
2
hþlkgrad ul

hk
2
6 eCl dkDwhk2

hþ
1
d
þ 1

h2

� �
kgrad whk2þðjEjþ jFjÞ2þjLj

2

d
þðjPjþ jRjÞ2 1

d
þ 1

h2

� �" #
: ð7Þ
Proof. First we set in (5) v ¼ ul
h �wh 2 Vl

h0 and q ¼ pl
h. In doing so we come up with:
dklDul
h � grad pl

hk
2
h þ lkgrad ul

hk
2 ¼ �ðpl

h; div whÞ þ dðlDul
h � grad pl

h;lDwhÞh þ lðgrad ul
h;grad whÞh

þ Eðgrad½ul
h �wh�Þ þ Fðul

h �whÞ þ LðlD½ul
h �wh� � grad pl

hÞ þ Pðgrad pl
hÞ

þ Rðc½pl
h�Þ: ð8Þ
Letting CB be a constant fulfilling the inequality (see e.g. [5]),
kqk 6 CBkgrad qk 8q 2 H1ðXÞ \ L2
0ðXÞ; ð9Þ
from (8) straightforward calculations successively yield:
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dklDul
h � grad pl

hk
2
h þ lkgrad ul

hk
2
6 dklDwhk2

h þ lkgrad whk2 þ 2 CBkdiv whkkgrad pl
hk

�
þðjEj þ jFjÞkgrad ðul

h �whÞk þ jLjklDðul
h �whÞ � grad pl

hkh þ ðjPj þ jRjÞkgrad pl
hk
�

and;

d
2
klDul

h � grad pl
hk

2
h þ

l
2
kgrad ul

hk
2
6

3l
2
kgrad whk2 þ dl2kDwhk2

h þ
3ðjEj þ jFjÞ2

l

þ 2 ljLjkD whkh þ
jLj2

d
þ ðCB

ffiffiffiffi
N
p
kgrad whk þ jPj þ jRjÞðklDul

h � grad pl
hkh þ klD ul

hkhÞ
" #

: ð10Þ
Moreover from the classical inverse inequality [11], there exists CI such that,
hkDvkh 6 CIkgrad vk 8v 2 Vl
h: ð11Þ
Hence after simple calculations (11) together with (10) lead to,
dklDul
h � grad pl

hk
2
h þ lkgrad ul

hk
2
6 6lkgrad whk2 þ 4dl2kDwhk2

h þ
12ðjEj þ jFjÞ2

l

þ 8 ljLjkDwhkh þ
jLj2

d
þ 2 CB

ffiffiffiffi
N
p
kgrad whk þ jPj þ jRj

� 	2 1
d
þ lC2

I

h2

 !" #
ð12Þ
and inequality (7) readily follows from (12). h

As a consequence of Proposition 4.1 we have:

Theorem 4.1. The unique solution of problem (4) satisfies the following stability property for a suitable constant bCl, as long as h is
sufficiently small:
dklDul
h � grad pl

hk
2
h þ lkgrad ul

hk
2
6
bCl d

h2 þ
1
d
þ 1

h2

� �
kghk

2
1=2;C þ ð1þ dÞkf l

hk
2


 �
: ð13Þ
Proof. Let ~w be the harmonic field in H1ðXÞ whose trace on C is gh. We know that kgrad ~wk 6 CHkghk1=2;C (see e.g. [16] ).
Moreover ðgrad½ ~w�wh�;grad vÞ ¼ 0 8v 2 Vl

h0, from the definition of wh. Let also wg be a field in Vl
h whose trace on C is

gh. Setting uh :¼ wh �wg and ~u :¼ ~w�wg by Céa’s Lemma we have kgradð ~w�whÞk ¼ kgradð~u� uhÞk 6
inf

v2Vl
h0

kgradð~u� vÞk. Let fungn be a sequence in H3ðXÞ \H1
0ðXÞ that converges to ~u in H1

0ðXÞ. Setting e ¼ kgrad ~wk we take

n such that kgradðun � ~uÞk 6 e=2, and owing to the Sobolev Embedding Theorem [1] we may choose v to be the interpolate

of un in Vl
h0. Then from standard approximation results (cf. [7]), for h small enough, we have kgradðun � vÞk 6 e=2, and thus

kgradðwh � ~wÞk 6 kgrad ~wk. It follows that kgrad whk 6 2kgrad ~wk, provided h is sufficiently small, and hence in this case
there exists a constant Cg such that
kgrad whk 6 Cgkghk1=2;C; hkDwhkh 6 CgCIkghk1=2;C: ð14Þ
Next we note that problem (4) is of the form (5) with jEj ¼ jPj ¼ jRj ¼ 0 and FðzÞ ¼ ðf l
h; zÞ; LðzÞ ¼ dðf l

h; zÞ, so that jLj ¼ dkf l
hk

and jFj ¼ Cpkf l
hk;Cp being a constant satisfying the Friedrichs-Poincaré inequality kvk 6 Cpkgrad vk 8v 2 H1

0ðXÞ.
Using (14) and taking the above values of the functional norms jEj; jPj; jRj; jFj; jLj into (7) the result follows after

straightforward calculations. h
4.2. A priori error estimates

In order to prove that both methods proposed in this work converge with optimal orders in Petrov–Galerkin formulation
for sufficiently smooth inhomogeneous boundary conditions, we next establish the consistency of (4). In this aim we will
assume that u 2 Hlþ2ðXÞ and p 2 Hlþ1ðXÞ, so that we can define ~ul

h 2 Vl
h and ~pl

h 2 Q l
h as the standard Vl

h-interpolate of u
and the Q l

h-interpolate of p, respectively (cf. [7]). Then we further define the pair ð�ul
h; �pl

hÞ :¼ ð~ul
h; ~pl

hÞ � ðul
h; pl

hÞ, ðul
h; pl

hÞ being
the solution of (4).

The following preliminary result can be established for ð�ul
h; �pl

hÞ:

Proposition 4.2. The pair ð�ul
h; �pl

hÞ is the solution of a problem of the form (5) with the following functionals on the right hand side,
where I denotes the identity tensor: FðvÞ ¼ ðf � f l

h;vÞ; Eðgrad vÞ ¼ ðlgrad ½~uh � u� � ½~ph � p�I; grad vÞ, PðzÞ ¼ �ð~ul
h � u; zÞ;

LðzÞ ¼ dðlD½~ul
h � u� � grad½~pl

h � p� � f l
h þ f; zÞ, Rðc½q�Þ ¼ ð½gh � g� � n; c½q�Þ.
Proof. First we replace ðul
h; pl

hÞwith ð~ul
h; ~pl

hÞ on the left hand side of the first two equations of (4). Adding and subtracting the
exact solution ðu; pÞ on the resulting left hand side and making use of both (2) and (1) together with the identity
ðq; div vÞ � ðqI;gradvÞ and the Divergence Theorem, we obtain:
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8v 2 Vl
h0 and 8q 2 Ql

h;

dðlD~ul
h � grad ~pl

h;lDv � grad qÞh þ lðgrad ~ul
h;grad vÞ � ð~pl

h; div vÞ þ ðdiv ~ul
h; qÞ

¼ ðlgrad ½~ul
h � u� � ½~pl

h � p�I; grad vÞ þ ðf;vÞ
þdðlD½~ul

h � u� � grad½~pl
h � p� � f;lDv � grad qÞh � ð~ul

h � u; grad qÞ þ ð½gh � g� � n; c½q�Þ

8>>>><>>>>: ð15Þ
Now taking ðul
h; pl

hÞ to satisfy (4), by linearity the result immediately follows. h

In view of Proposition 4.2 we can apply the stability result (7), thereby establishing the consistency of the approximate
problem (4) according to:

Proposition 4.3. Assume that f 2 Hlþ1ðXÞ;u 2 Hlþ2ðXÞ; p 2 Hlþ1ðXÞ and g=Ci
2 Hlþ2ðCiÞ for i ¼ 1;2; . . . ;m, where the Ci’s are the

m disjoint straight edges for N ¼ 2 or plane faces for N ¼ 3, whose union is C. If f l
h is chosen such that kf � f l

hk 6 Clh
lþ1jfjlþ1, and

we take d ¼ h2, then there exist constants Cl such that
hklD�ul
h � grad �pl

hkh þ kgrad �ul
hk 6 Clhlþ1 jfjlþ1 þ jujlþ2 þ jpjlþ1 þ

Xm

i¼1

kgk2
lþ2;Ci

 !1=2
24 35: ð16Þ
Proof. Since �ul
h vanishes on C the corresponding field wh is zero. Therefore the first three terms in brackets are a conse-

quence of (7) and standard estimates, as far as the functionals E; F; L; P defined in Proposition 4.2 are concerned. On the other
hand using the Trace Theorem [1] and (9), well-known estimates for the interpolation error of g in the norm of L2ðCiÞ, in
connection with functional R also defined therein, complete the proof. h

Finally we can derive some a priori error estimates for problem (4). First of all a simple application of the triangular
inequality to (16) gives,

Theorem 4.2. If d ¼ h2, under the assumptions of Proposition 4.3 and if f l
h has the approximation property specified therein, then

the approximate velocities ul
h obtained by solving problem (4) satisfy:
kgrad½u� ul
h�k 6 Cl

Uhlþ1 jfjlþ1 þ jujlþ2 þ jpjlþ1 þ
Xm

i¼1

kgk2
lþ2;Ci

 !1=2
24 35: � ð17Þ
Next we have,
Theorem 4.3. Under the assumptions of Theorem (4.2), the approximate pressures pl
h obtained by solving problem (4) satisfy:
kgradðp� pl
hÞk 6 Cl

Phl jfjlþ1 þ jujlþ2 þ jpjlþ1 þ
Xm

i¼1

kgk2
lþ2;Ci

 !1=2
24 35: ð18Þ
Proof. First we note that kgrad �pl
hk 6 klD�ul

h � grad �pl
hkh þ lkD�ul

hkh.

Taking into account that d ¼ h2, from inequality (11), (16) and (17) we derive,
lkD�ul
hkh 6 lCIClhl jfjlþ1 þ jujlþ2 þ jpjlþ1 þ

Xm

i¼1

kgk2
lþ2;Ci

 !1=2
24 35 and

klD�ul
h � grad �pl

hkh 6 Clhl jfjlþ1 þ jujlþ2 þ jpjlþ1 þ
Xm

i¼1

kgk2
lþ2;Ci

 !1=2
24 35:

8>>>>>><>>>>>>:
ð19Þ
(19) and a simple application of the triangle inequality, together with standard estimates lead to (18). h

Theorem 4.3 gives an optimal error estimate for the pressure error measured in the H1-norm. However an expected
Oðhlþ1Þ error estimate for this error measured in the L2-norm is lacking. Therefore to complete this study we give:

Theorem 4.4. Under the assumptions of Theorem (4.2), the approximate pressures pl
h obtained by solving problem (4) satisfy:
kp� pl
hk 6 Cl

P0hlþ1 jfjlþ1 þ jujlþ2 þ jpjlþ1 þ
Xm

i¼1

kgk2
lþ2;Ci

 !1=2
24 35: ð20Þ
Proof. First of all, using Ladyzhenskaia’s condition on the divergence operator [14], we have
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kp� pl
hk ¼ sup

q2L2
0ðXÞ; q–0

ðp� pl
h; qÞ

kqk 6 CM sup
v2H1

0ðXÞ; v–0

ðp� pl
h;div vÞ

kgrad vk : ð21Þ
On the other hand our choice of d in (4) together with (1) and (2), imply that 8vh 2 Vl
h0,
ðp� pl
h;div vhÞ ¼ �lðgrad ½ul

h � u�;grad vhÞ � h2lðlD½ul
h � u� � grad½pl

h � p�;DvhÞh þ ðf
l
h � f;vhÞ

þ lh2ðf l
h � f;DvhÞh; ð22Þ
Then from (21) and (22) we easily infer that 8vh 2 Vl
h0,
kp�pl
hk6CM sup

v2H1
0ðXÞ; v–0

jðgrad½pl
h�p�;v�vhÞjþljðgrad ½ul

h�u�;grad vhÞj
kgradvk þ½lCIhklDðul

h�uÞ�gradðpl
h�pÞkhþðlCIhþCpÞkf l

h� fk�kgrad vhk
kgrad vk

( )
:

ð23Þ
On the other hand (19) allows us to conclude that
lkD½ul
h � u�kh 6 Cl

K hl jfjlþ1 þ jujlþ2 þ jpjlþ1 þ
Xm

i¼1

kgk2
lþ2;Ci

 !1=2
24 35: ð24Þ
In order to suitably choose vh in (23), we employ a technique similar to the one in the beginning of the proof of Theorem
4.1. Let fvngn be a sequence of H3ðXÞ \H1

0ðXÞ converging to v in H1
0ðXÞ. Taking n such that jv � vnj1 6 hkgrad vk, we define

vh to be the Vl
h0-interpolate of vn. Notice that kgrad vnk 6 2kgrad vk, and necessarily kvn � vhk 6 CHhkgrad vnk and

kgrad vhk 6 C0Hkgrad vnk (see e.g. [7]). Therefore we have,
kv � vhk 6 ð1þ 2CHÞhkgrad vk and kgrad vhk 6 2C 0Hkgrad vk: ð25Þ
Recalling our assumptions on f l
h, and combining (23) with (17), (18), (24) and (25), the result follows. h

To conclude this Section we make a few remarks on the terms involving the velocity boundary datum on the right hand
side of the estimates given by Theorems 17, 18 and 20.

A first observation these estimates suggest is that the prescribed boundary velocity g is being assumed to be half a point
more regular than one would expect from the assumption u 2 Hlþ2ðXÞ. However it should be stressed that such an additional
regularity is required only away from the boundary corners, and hence it is not at all unreasonable. Nevertheless if one
wishes to stick to the assumption that g 2 Hlþ3=2ðCÞ, which is coherent with the assumed regularity of u, optimal estimates
can still be obtained, if instead of the interpolate of g;gh is the L2-projection of g onto the space of boundary traces of func-
tions in Vl

h. Indeed, according to [11] the following estimate holds for such a gh:
kg� ghk�1=2;C 6 C�hlþ2kgklþ3=2;C:
Since the term ð½g� gh� � n; c½q�ÞC can be rewritten as < ½g� gh� � n; c½q�>1=2;C where < �; �>1=2;C represents the duality product
H�1=2ðCÞ �H1=2ðCÞ we have:
< ½g� gh� � n; c½q�>1=2;C 6 CHkg� ghk�1=2;Ckgrad qk; 8q 2 Q l
h:
Then the remainder of the estimates would go in the same way as in the three theorems, but in the final estimates we would
have to replace the summation of the norms in Hlþ2ðCiÞ by kgklþ3=2;C. However it should be noted that the construction of such
a gh is not as straightforward as the one of the interpolate of g, and hence the latter should be the right choice in practice.

It is also worth commenting on the Oðh�2Þ factor before the squared norm of R in Proposition 4.1, which certainly would
not appear in any stability inequality that holds for the continuous problem. We recall that this term is related to the bound-
ary datum error estimate in Theorems 17, 18 and 20. First of all such a factor is not so unnatural, since we are neither dealing
with a coercive problem nor using any uniform stability result on the pairing Vl

h � Q l
h. Moreover it does not cause any erosion

in the method’s order of convergence as one might conjecture. This is because we required half a point more piecewise reg-
ularity of the boundary datum g, as pointed out above. Actually this is a small price to pay by our method of analysis, that
could be avoided by integrating L2-norms of boundary traces to the working norm of the velocity–pressure approximation
space, similarly to [12]. Notice however that in the latter work a bound on c such that d ¼ ch2 had to be enforced. In [13] such
terms were purged from the working norm, and instead inf–sup inequalities were employed, but in that work only the case
of homogeneous velocity boundary conditions was addressed for both the Franca-Hughes [12] and the Douglas-Wang [10]
formulations. We conjecture that by using this type of inequalities we could recover full optimality concerning the regularity
of g , without sacrificing the arbitrariness of the constant c.

5. Convergence results applying to the Galerkin formulation

In this Section we derive a priori error estimates for the two-dimensional Z2=P1 element in standard Galerkin formulation
assuming that criss-cross meshes are employed. The rather large number our numerical experiences we performed so far (cf.
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Section 6) corroborates the assertion that the Z2=P1 element provides optimally convergent sequences of approximations for
any kind of mesh. However in contrast to the Taylor–Hood combination P2=P1 that is known to have this property, it is not so
easy to give formal proofs of it, because of the crucial issue related to element’s uniform stability. The main reason is the fact
that mid-point velocity degrees of freedom, heavily used to prove the uniform stability of the Taylor–Hood element, are lack-
ing in the structure of Z2. In this respect we refer to [3] or [15].

For the sake of simplicity, and without loss of essential results, we assume that g ¼ 0. Furthermore we confine our con-
vergence analysis to a particular kind of triangulations of X. More specifically we assume that the meshes are of the criss-
cross type. This means that the partition T h is generated by subdividing into four triangles each element Q of a first partition
Qh of X into convex quadrilaterals, by means of the two diagonals of Q, as illustrated in Fig. 2.

Notice that, since the final partitions T h are assumed to form a quasi-uniform family, this must also be the case of the
corresponding family of partitions Qh (cf. [7]).

It is well-known that problem (4) has a unique solution for d ¼ 0 if and only if the following inf–sup condition holds (see
e.g. [6]):
9bl
h > 0 such that 8q 2 Q l

h;

sup
v2Vl

h0 ; v–0

ðdiv v;qÞ
kgrad vk P bl

hkqk:

8><>: ð26Þ
According to the celebrated theory due to Stenberg [23], condition (26) holds with a constant bl
h independent of h if a

certain macro-element condition is satisfied. This condition is stated in general terms in [23]. For better guidance we recall
it here, restricting ourselves to l ¼ 1 and to the specific case where the macro-elements into which X is partitioned are quad-
rilaterals Q 2 Qh.

Theorem 5.1 (adapted from [23]). Assume that the quadrilaterals in Qh are equivalent to a reference unit square bQ in the sense
that 8Q 2 Qh there is a mapping FQ : bQ�!Q such that,

(i) FQ is continuous and one-to-one;
(ii) FQ ð bQ Þ ¼ Q;

(iii) The triangles Ti in Q satisfy FQ ðbT iÞ ¼ Ti, for i ¼ 1;2;3;4;
(iv) FQ ¼ F Ti

� F�1bT i

; i ¼ 1;2;3;4, where FbT i
and F Ti

are the affine mappings from the reference triangle with vertices

ð0;0Þ; ð1;0Þ; ð0;1Þ onto bT i and Ti, respectively, i ¼ 1;2;3;4.

Denoting by ð�; �ÞQ the inner product of L2ðQÞ, for each Q 2 Qh further assume that the space

NQ :¼ fp 2 PQ j ðdiv v; pÞQ ¼ 0 8v 2 VQg consists of functions that are constant in Q, with PQ :¼ fp 2 C0ðQÞ j pjTi
2

P1; i ¼ 1;2;3;4g;VQ being the space of restrictions vQ to Q of fields in V1
h such that vQ 2 ½H1

0ðQÞ�
2
. Then the condition (26)

holds for l ¼ 1 with b1
h independent of h. h

Since the four geometric conditions enumerated in Theorem 5.1 are clearly satisfied, all that is left to do is proving that NQ

satisfies the other condition stated therein. Let then Q 2 Qh and VQ be the space of restrictions of functions in V1
h that vanish

on the boundary of Q. We recall that PQ is the space of continuous functions in Q that are linear in each triangle of T h
S5

T1  

Quadrilateral Q = S1S2S3S4

l4

S1  

T3

T4

S3  

S2  

d1

S4

l2  

T2  

h2

h3

h1

h4

l1  l3  

d2

Fig. 2. Assembly of four triangles of T h into a convex quadrilateral Q and pertaining lengths.
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contained in Q, referred to as T0; T1; T2; T3; T4; T5, with T5 ¼ T1 and T0 ¼ T4, as indicated in Fig. 2. Let also li be the length of
segment SiS5 for i ¼ 1;2;3;4 and hi (resp. hiþ2) be the height of triangles Ti and Tiþ1 (resp. Tiþ2 and Tiþ3) with respect to the
direction of SiS5, for i ¼ 1;2, with h0 ¼ h4.

Referring to Fig. 2 we note that every q 2 PQ is a function of the form
P5

i¼1qigi, where gi is the function in PQ satisfying

giðSjÞ ¼ dij, that is, qi ¼ qðSiÞ; i ¼ 1; . . . ;5. As for VQ , let us denote by d
!

1 and d
!

2 the unit vectors of edges S1S3 and S2S4

respectively oriented as indicated, by /Q the function in VQ whose gradient vanishes at S5 and by /j
Q the function in VQ such

that /j
Q ðS5Þ ¼ 0, and

@/j
Q

@dk
ðS5Þ ¼ djk for j; k 2 f1;2g, the meaning of the partial derivative being obvious. Notice that VQ is

spanned by six basis fields vi
Q ; i ¼ 1;2, and vjk

Q ; j; k 2 f1;2g, where:

– vi
Q ¼ /Q d

!
i; i ¼ 1;2;

– vjk
Q ¼ /j

Q d
!

k; j; k 2 f1;2g.

Next we prove

Proposition 5.1. If q 2 PQ and ðdiv v; qÞQ ¼ 0 8v 2 VQ then q is constant in Q.
Proof. First we note that ðdiv v; qÞQ ¼ �ðv;grad qÞQ 8v 2 VQ and 8q 2 PQ .
Let q 2 PQ and ðv;grad qÞQ ¼ 0 8v 2 VQ . From ðvi

Q ;grad qÞ
Q
¼ 0 (i ¼ 1;2) one gets
q5 � qi

li

Z
Ti[Ti�1

/Q dx1dx2 þ
qiþ2 � q5

liþ2

Z
Tiþ2[Tiþ1

/Q dx1dx2 ¼ 0:
Noticing that in every triangle Tm;/Q is a function of the form ui defined in Section 2, well-known integration formulae in a
triangle (cf. [27]) yield

R
Tm

/Q dx1dx2 ¼ areaðTmÞ=3;m ¼ 1;2;3;4 (cf. [27]). Then, since areaðTiÞ ¼ lihi=2 ¼ liþ1hi�1=2, after
straightforward calculations we obtain,
ðhi þ hiþ2Þðqiþ2 � qiÞ ¼ 0; for i ¼ 1;2; that is; q1 ¼ q3 and q2 ¼ q4: ð27Þ
Considering now the function /1
Q , we note that ðv11

Q ;grad qÞ
Q
¼ 0 implies that
q5 � q1

l1

Z
T1[T4

/1
Q dx1dx2 þ

q3 � q5

l3

Z
T2[T3

/1
Q dx1dx2 ¼ 0: ð28Þ
Notice that the restriction of /1
Q to each triangle Tm is a function of the type fij defined in Section 2 multiplied by either�l1 for

T1 and T4 or by l3 for T2 and T3. Hence its integral in T1 and T4 is equal to �l1 area ðTmÞ=24 for m ¼ 1 and m ¼ 4, and to
l3 area ðTmÞ=24 for m ¼ 2 and m ¼ 3. It follows that (28) yields,
ðq1 � q5Þarea ðT1 [ T4Þ þ ðq3 � q5Þarea ðT2 [ T3Þ ¼ 0: ð29Þ
Then from (29) and (27) it immediately follows that q5 ¼ q3 ¼ q1.
Now using symmetry we derive from ðv22

Q ;grad qÞ
Q
¼ 0 the relation
ðq2 � q5Þarea ðT1 [ T2Þ þ ðq4 � q5Þarea ðT3 [ T4Þ ¼ 0: ð30Þ
Finally combining (30) with (27), we derive q5 ¼ q4 ¼ q2, and the result follows. h
Remark 5.1. It can be easily checked that the relations ðv12
Q ;grad qÞ

Q
¼ 0 and ðv21

Q ;grad qÞ
Q
¼ 0 do not bring about any addi-

tional information. For instance taking v12
Q we derive ðq5 � q2Þðl3h2 � l1h4Þ þ ðq4 � q5Þðl3h2 � l1h4Þ ¼ 0, which is trivially ful-

filled taking into account (27). h

As a consequence of Proposition 5.1 we can state,

Theorem 5.2. Let X be a polygonal domain. If the triangulation T h is of the criss-cross type, there exist a unique velocity field

u1
h 2 V1

h \ ½H
1
0ðXÞ�

2
and a unique pressure p1

h 2 Q1
h that solve (4) with d ¼ 0. Furthermore, provided u 2 H3ðXÞ and p 2 H2ðXÞ,

these fields satisfy for a suitable constant CG,
kgrad ðu� u1
hÞk þ kp� p1

hk 6 CGh2 juj3 þ jpj2
� 


: ð31Þ
Proof. This Theorem is an immediate consequence of the validity of (26) with b1
h bounded away from zero by a constant b� > 0

for every T h, thanks to Proposition 5.1 and to the macro-element criterion [23], together with standard results in [7,6]. h
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Remark 5.2. It seems difficult to extend the above analysis to the case of other types of triangulations. Nevertheless, using
arguments similar to [2], it is rather easy to prove that the method is stable for any triangulation, provided the space Z2 is
replaced by Z3 in all the triangles, whose closure has a non empty intersection with C. Actually, even if Z2 is maintained for
such triangles, there are several ways of obtaining theoretically stable versions of the two-dimensional Z2=P1 method in
Galerkin formulation for arbitrary triangular meshes. For instance this can be achieved by performing minor modifications
in the definition of V1

h in the neighborhood of C. However as we will see in the next Section, all this seems unnecessary, since
this finite element method in Galerkin formulation behaves like a stable and convergent one, irrespective of the type of
meshes being used. h
6. Assessment of the Zienkiewicz triangle to represent the velocity in Stokes flow

We performed several numerical experiments with the two-dimensional elements. Most of the corresponding results are
reported below.

6.1. The Z2=P1 element

A stabilized (Galerkin-Least-Squares) formulation with the Z2=P1 elements and a stabilization parameter d ¼ Ch2, of the
Stokes problem with arbitrarily prescribed velocities on the boundary, has been proved in Section 4 to be convergent to the
exact solution with optimal order and no restriction on C other than C > 0. In Section 5 it has also been demonstrated that
the same property holds for the standard Galerkin formulation, if families of meshes of the criss-cross type are employed.
Our first goal here is to assess the performance of the Z2=P1 element as compared to the classical P2=P1 known as the
Taylor–Hood element, in terms of accuracy (though their asymptotical orders, being optimal, must coincide). Our second
goal is to study the dependence of the numerical solution on the parameter d and, perhaps more interestingly, to numerically
assess whether the plain Galerkin formulation is convergent for the Z2=P1 element for other kinds of mesh families too. In
fact, our results suggest that this element uniformly satisfies the inf–sup condition (26) for any regular family of meshes,
though a mathematical proof of such a property is unavailable.

A manufactured solution was used for the numerical tests. It is defined by the stream function:
Table 1
Informa

Mes

M1
M2
M3
M4
wðx1; x2Þ ¼ x2
1ð1� x1Þ2x2

2ð1� x2Þ2 ¼ gðx1Þgðx2Þ; ð32Þ
where gðnÞ ¼ n2ð1� nÞ2. The corresponding velocity field is
u1ðx1; x2Þ ¼ gðx1Þg0ðx2Þ; u2ðx1; x2Þ ¼ �g0ðx1Þgðx2Þ; ð33Þ
which vanishes on the boundary of the domain X ¼ ð0;1Þ � ð0;1Þ. Choosing the viscosity l ¼ 100 and pressure field as
pðx1; x2Þ ¼ x1 � x2
1; ð34Þ
one can compute the force field f that makes ðu; pÞ a solution of the Stokes flow inside X, with rigid-wall boundary conditions
(u ¼ 0 on @X), from
f ¼ �lDuþ gradp: ð35Þ
Four uniform criss-cross meshes and four quasi-uniform unstructured meshes were built for the assessment. The criss-
cross meshes consist of 3� 3;6� 6, 12� 12 and 24� 24 squares, each divided into four triangles. The corresponding mesh
sizes are h ¼ 0:333, 0:166;0:083 and 0:041, respectively. In turn, the data corresponding to the unstructured meshes are
shown in Table 1. The mesh size h corresponds to the largest edge length in the mesh.

The stabilization parameter d is written as
d ¼ cd
h2

10l
and we consider cd ¼ 0 (Galerkin formulation) and cd ¼ 1 (stabilized formulation). Also incorporated in the comparison is a
plain-vanilla P2=P1 Galerkin finite element code, with the meshes obtained by inserting additional nodes at the midpoints of
each edge of the Zienkiewicz elements.
tion on the unstructured meshes used.

h # Triangles # Vertices h # Unknowns

P2=P1 Z2=P1

40 29 0.290 223 203
180 107 0.150 893 749
690 378 0.077 3268 2646
2610 1370 0.039 12068 9590
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Table 1 reports the number of unknowns for each mesh and for both the Z2=P1 and P2=P1 elements. The former is more
economical, with asymptotically 7=9 the unknown count of the latter.

The computed errors are ku� uhkL2ðXÞ (Fig. 3(a)), kp� phkL2ðXÞ (Fig. 3(b)), kgradu� graduhkL2ðXÞ (Fig. 4(a)),

kgradp� gradphkL2ðXÞ (Fig. 4(b)), kdivu� divuhkL2ðXÞ (Fig. 5)) and kD2u� D2uhkh (Fig. 5(b)). The figures plot the errors as
functions of h for the Z2=P1 element in criss-cross meshes for cd ¼ 0 and in unstructured meshes for both cd ¼ 0 and
cd ¼ 1, together with similar plots for the P2=P1 element for cd ¼ 0.

In each figure an additional line is drawn indicating the optimal order of convergence. It can be seen that all the schemes,
even the Galerkin method with the proposed Z2=P1 element in unstructured meshes, are optimally convergent. Further, this latter
element turns out to be the most accurate of the three, without any sign of instability as h ! 0.

The last test performed investigates the best choice for the stabilization constant cd, which has been taken as either zero
or one up to now. For this purpose, we adopt a norm that combines the velocity and pressure fields in a unit-consistent way,
i.e.,
kðu;pÞkl ¼
def lkgraduk2

L2ðXÞ þ
1
l
kpk2

L2ðXÞ

� �1
2

: ð36Þ
In Fig. 6 we plot the error (i.e., kðu; pÞ � ðuh; phÞkl) as a function of cd, for the four unstructured meshes M1-M4. One observes
that there is no change of behavior of the method as cd approaches zero, thus strongly suggesting that the Z2=P1 element is
stable in the Galerkin formulation (i.e.; suggesting that it satisfies the inf–sup condition in general meshes). As a function of
cd, the error is essentially constant from cd ¼ 0 up to cd ’ 1, at which point the effect of the stabilization becomes significant.
For values cd 	 1 an important loss of accuracy is observed, thus justifying the choice cd ¼ 1 adopted previously. However,
from a practical viewpoint it is the Galerkin formulation that should be favored (cd ¼ 0), since it involves less computations
without any loss in accuracy.

6.2. A failed attempt at further reducing the number of degrees of freedom

Since an advantage of the Z2=P1 element is the smaller number of unknowns, a natural question that arises is whether this
number can be further reduced without loosing approximation capabilities. The nature of the nodal unknowns provides fur-
ther motivation: The velocity unknowns correspond to the value of uh and of graduh at each node, totalling six unknowns.
Since the trace of gradu (i.e.; div u) vanishes identically, the linear combination of unknowns that determines div uh at the
nodes does not contribute to the interpolation accuracy. Let us define the subspace of Z2 consisting of vector fields with zero
divergence at the nodes,
Zdiv
2 ¼ fwh 2 Z2jdiv whðSÞ ¼ 0; 8S node of T hg: ð37Þ
The Zdiv
2 =P1 element has five velocity unknowns per node, thus leading to 6=7 times the number of unknowns of the Z2=P1

element and (asymptotically) 2=3 times that of the P2=P1 element. Unfortunately, the Zdiv
2 =P1 element does not converge in

the Galerkin formulation. Stabilizing it by taking cd ¼ 1 convergence is attained, as shown in Fig. 7 where for comparison
purposes the error of the stabilized Z2=P1 element is also plotted. Though the figure shows evidence of correct convergence
orders and small differences in the velocity error, the Zdiv

2 =P1 element exhibits much larger pressure errors than the Z2=P1

element and thus its convenience is questionable.
Fig. 3. Comparison of errors of (a) uh and of (b) ph in L2ðXÞ.



Fig. 4. Comparison of errors of (a) graduh and of (b) gradph in L2ðXÞ.

Fig. 5. Comparison of errors of (a) divuh in L2ðXÞ and of (b) D2 uh in the norm k � kh ¼
P

Tk � k
2
L2 ðTÞ

� 	1
2
.

Fig. 6. Error kðu; pÞ � ðuh;phÞkl as a function of cd for the four unstructured meshes considered in the study. Also plotted is the curve corresponding to the
Zdiv

2 =P1 element (cf. Section 6.2) and and to the Z3=P2 element (cf. Section 6.3), both computed on mesh M3.
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Fig. 7. Convergence behavior of the Zdiv
2 =P1 element in the stabilized formulation, as compared to the Z2=P1 one. The results correspond to criss-cross

meshes.
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Since the unsatisfactory behavior of the element Zdiv
2 =P1 could come from an inadequate choice of the stabilization con-

stant, in Fig. 6 we plot the error obtained on mesh M3 as a function of cd. One observes that the minimum error roughly cor-
responds to cd ¼ 1 but, contrary to what occurs with the Z2=P1 element, the error grows significantly as cd is reduced. For
cd ¼ 10�3, for example, the error is three times that obtained with cd ¼ 1. This is seen as an empirical evidence of Galerkin
formulation’s lack of stability.

Remark 6.1. The space Zdiv
2 is remarkable in that any field wh 2 Zdiv

2 , though not being divergence-free everywhere inside X,
is divergence-free at the nodes. If a finite element space consists of divergence-free functions the pressure can be eliminated
as unknown and an elliptic, strongly coercive variational problem solved for the velocity field alone. To see whether the
space Zdiv

2 could serve as an ‘‘approximately divergence-free space’’, we implemented the pressure-free formulation ‘‘Find
zh 2 Zdiv

2 such that for all v 2 Zdiv
2 (with the appropriate boundary conditions)
dðlDzh;lDvÞ þ l ðgradzh; gradvÞ ¼ �dðfh;lDvÞ þ ðfh;vÞ: ð38Þ
Unfortunately, the field zh obtained from this formulation does not converge to the exact solution. h
6.3. The Z3=P2 element

The same manufactured solution of the previous section was used to assess the convergence of the Z3=P2 element on the
unstructured meshes M1-M4 of Table 1. A stable behavior was observed for any choice of the stabilization parameter cd, sug-
gesting that the Z3=P2 element satisfies the inf–sup condition. In Fig. 6 we have plotted the error (in the norm k � kl) obtained
on mesh M3 as a function of cd. The error-minimizing value in this norm appears to be cd ’ 10�2 instead of 1, but as happens
for the Z2=P1 element the gain in accuracy with respect to the Galerkin formulation (cd ¼ 0) is only marginal. Another con-
sideration to favor the Galerkin formulation is the steep growth of the error when cd is very large (about 100 for mesh M3),
since the meaning of ‘‘very large’’ can be mesh or problem dependent. Notice also that the Z3=P2 element on mesh M3, with
just 3713 unknowns, yields a smaller error than both the Z2=P1 and the P2=P1 elements on mesh M4, involving 9590 and
12068 unknowns, respectively.

The Galerkin formulation of the Z3=P2 element is of course not covered by the theoretical results of the previous sections
and a convergence assessment is in order. Numerical results of the velocity error in the H1ðXÞ-norm and of the pressure error
in the L2ðXÞ-norm are plotted in Fig. 8. Optimal (Oðh3Þ) accuracy is observed, which suggests that the inf–sup constant of this
element is indeed independent of h (uniform div-stability).

6.4. Problems with limited regularity

The previous numerical experiments have all considered the analytical streamfunction (32). It is however important to
evaluate the performance of the proposed elements in problems with limited regularity, as they are most frequent in
applications.

For this purpose, consider the following streamfunction
wðx1; x2Þ ¼ xs
1 ð1� x1Þs xs

2 ð1� x2Þs; ð39Þ



Fig. 8. Convergence behavior of the Z3=P2 element in the Galerkin formulation. The results correspond to the unstructured meshes M1-M4.

Fig. 9. Errors in the norm k � kl of the P2=P1; Z2=P1 and Z3=P2 elements, all in the Galerkin formulation, for the limited-regularity problem defined by the
streamfunction (39). Shown are two cases, corresponding to exponents s ¼ 2:7 and s ¼ 3:7.
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from which the exact velocity field can be obtained. The force field f is obtained as before, taking l ¼ 100 and
pðx1; x2Þ ¼ x1 � x3
1 þ x2 � x3

2:
When s is not a natural number the resulting velocity field has only a finite number of bounded derivatives in
X ¼ ð0;1Þ � ð0;1Þ. In fact, it is easily shown that for u to belong to HmðXÞ the exponent s must be greater than mþ 1=2.

Numerical experiments were carried out to compare the performance of the P2=P1; Z2=P1 and Z3=P2 elements in this prob-
lem. The error was measured in the norm k � kl for the unstructured meshes M1-M4, taking s ¼ 2:7 and 3:7 (and thus u
belonging to H2ðXÞ and H3ðXÞ, respectively, but not more).

The results are shown in Fig. 9. For the case s ¼ 2:7 the expected convergence rate is OðhpÞ with p < 2, since u R H3ðXÞ.
This is confirmed by the results obtained with all three elements, which exhibit p ’ 1:7. On the other hand here again one
observes that Z2=P1 and Z3=P2 are more accurate than the P2=P1 element.

For the case s ¼ 3:7 the expected convergence rate is p ¼ 2 for P2=P1 and Z2=P1, since u 2 H3ðXÞ, and p < 3 for Z3=P2, be-
cause u R H4ðXÞ. These orders are confirmed by the experimental results, with the Z3=P2 almost achieving third order and
the Z2=P1 again exhibiting more accuracy than the P2=P1 element.

7. Miscellaneous remarks

It seems important to stress some merits of the Hermite elements studied in this paper. First of all we can state that they
have an a priori advantage over Lagrange elements of the same order in terms of cost. More specifically, one may compare
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second order method Z2=P1 with the Taylor–Hood element P2=P1 [17] based on a classical Lagrange quadratic representation
of the velocity and a continuous piecewise linear representation of the pressure, which is also a second order element in the
H1 � L2-norm. A simple count shows that in the two-dimensional case, on the same mesh, the ratio between the number of
velocity degrees of freedom of our second order element and the one of the Taylor–Hood element is roughly 7=9. In the
three-dimensional case this ratio becomes even more favorable, for it is reduced to about one half. Concerning the third or-
der element Z3=P2, a fair comparison is to be made with the P3=P2 element, i.e., Lagrange cubics for the velocity and quadrat-
ics for the pressure. In this case the above specified ratios are ca. 0:6 in both two- and three-dimensions. Notice however that
in the two-dimensional case we may use inner node static condensation for both third order elements being compared, and
in this case the velocity degree of freedom ratio is reduced to a little more than 0:4.

It is interesting to point out that the Zienkiewicz triangle had been used by other authors too, in order to simulate viscous
incompressible flow problems (cf. [8]). It turns out that the numerical results they showed are as encouraging as ours.

Another feature of Hermite pseudo-C1 elements like those we studied here, is the fact that second order derivatives can be
computed element by element with acceptable accuracy, directly from the numerical velocity field. This can be achieved by
first interpolating the velocity gradients continuously at the vertices of the mesh, using continuous piecewise linear func-
tions, which can be differentiated in each element. Actually the authors intend to further exploit these Hermite methods
in the near future, in the simulation of flow on curved manifolds [26], in which an accurate determination of velocity deriv-
atives is a must.
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