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Institutode Cîencias Mateḿaticas e de Computação, Universidade de S̃ao Paulo,
13560-970 S̃aeo Carlos, S̃ao Paulo, Brazil

∗Correspondingauthor: gustavo.buscaglia@icmc.usp.br

AND

ABDELLATIF AGOUZAL

InstitutCamille Jordan, Universit́e Claude Bernard, Lyon I, 69622 Villeurbanne, France

agouzal@univ-lyon1.fr

[Received on 16 June 2010; revised on 2 November 2010]

We consider a recently proposed finite-element space that consists of piecewise affine functions with
discontinuities across a smooth given interfaceΓ (a curve in two dimensions, a surface in three di-
mensions). Contrary to existing extended finite element methodologies, the space is a variant of the
standard conformingP1 spacethat can be implemented element by element. Further, it neither in-
troduces new unknowns nor deteriorates the sparsity structure. It is proved that, foru arbitrary in
W1,p(Ω \ Γ ) ∩ W2,s(Ω \ Γ ), the interpolantIhu definedby this new space satisfies

‖u − Ihu‖Lq(Ω) 6 C

[
h1+1

q − 1
p |u|W1,p(Ω\Γ ) + h2|u|W2,s(Ω\Γ )

]
,

whereh is the mesh size,Ω ⊂ Rd is the domain,p > d, p > q, s > q and standard notation has
been adopted for the function spaces. This result proves the good approximation properties of the finite-
element space as compared to any space consisting of functions that are continuous acrossΓ , which

would yield an error in theLq(Ω)-norm of orderh
1
q − 1

p . These properties make this space especially
attractive for approximating the pressure in problems with surface tension or other immersed interfaces
that lead to discontinuities in the pressure field. Furthermore, the result still holds for interfaces that end
within the domain, as happens for example in cracked domains.

Keywords: finite element; interpolation; interface; discontinuous pressure; cracked domain; surface
tension.

1. Introduction

In Eulerian, fixed grid methods for fluid mechanics, interfaces that exist within the domain are not
followed by the mesh. This creates difficulties in the approximation of those variables that are discon-
tinuous at the interface, a typical example being the pressure in multiphase flow with different viscosities
for the phases and/or surface tension effects, or when the interface between the phases behaves as an
elastic membrane.

Let Γ be an interface (embedded in some domainΩ) at which some functionu ∈ L2(Ω) is discon-
tinuous, and letuh beits L2(Ω)-projection onto some function spaceVh thatconsists of functions that

c© Theauthor 2011. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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FINITE-ELEMENT SPACE WITH EMBEDDED DISCONTINUITIES 673

arecontinuousat Γ . Then, no matter how smoothu is outsideΓ , the approximation order is (Ganesan
et al.,2007;Gross & Reusken, 2007)

‖u − uh‖L2(Ω) ' Ch
1
2 , (1.1)

whereh is the mesh size andC, here and later, denotes a generic constant. IfΓ is not aligned with the
mesh, then all standard finite-element spaces, either continuous or discontinuous across interelement
boundaries, suffer from this poor approximation order. The reason for this is that, in this situation, the
discontinuity will pass through the element interiors at which standard finite-element interpolants are
continuous (typically polynomial).

Some attempts have been made in recent years to devise spaces with improved approximation prop-
erties.Gross & Reusken(2007) recently proposed the adoption of an extended finite element (XFEM)
(Belytschkoet al., 2001) enrichment of the pressure space, incorporating functions that are discon-
tinuous atΓ , as had also been proposed byMinev et al. (2003). They obtained improved (O(h2))
convergence order at the expense of the well-known pitfalls of the XFEM methodology, namely, the
ill-conditioning of the system matrix due to approximate linear dependence of the basis and the in-
troduction of new unknowns that depend on the location of the interface, thus requiring the code to
completely rebuild the linear system structure for each interface location.

In this article we analyse an alternative approach due toAusaset al. (2010), that has the following
interesting properties: (a) it is a modification of the standard continuousP1 finite-elementspace, with
exactly the same unknowns and connectivity; (b) the modified basis functions can be computed at the
element level, making its implementation straightforward in existing codes; (c) its approximation order

(in theL2(Ω)-norm) ish
3
2 , which is lower than that of the XFEM space but is one order higher than that

of any standard space; and (d) its approximation order is already higher than the velocity approximation
order of the minielement (Arnoldet al.,1984) or of stabilizedP1/P1 formulations(Hugheset al.,1986;
Franca & Hughes,1988), both of order at mosth, so that using this space for the pressure has no adverse
effect on the overall velocity–pressure approximation. In this last regard we remind the reader that the
natural error measure for Stokes or Navier–Stokes problems is the sum of theH1(Ω)-error for velocity
and theL2(Ω)-error for pressure. The result is established here in the more generalLq(Ω)-setting,
whereq > 1, because this entails no additional difficulties.

2. Description of the finite-element space

We first analyse the case in whichΓ does not end within the domain, and later discuss the modification
required in the case in whichΓ is crack-like.

Let Vh bethe standard conformingP1 finite-elementspace defined on a triangulationTh of Ω. The
idea behind the space proposed byAusaset al. (2010), denoted byWh from now on, is quite simple.
To begin with, in those elements that are not cut byΓ the spaceWh coincideswith Vh andthe basis
functions are simply those of the conformingP1 finite-elementspace. In the elements that intersect
Γ , each edgeE (in both two dimensions and three dimensions the segments joining nodes ofTh are
referredto asedges) cut by Γ is divided into two parts,E+ and E−, according to the side ofΓ on
which the part lies. The functions inWh arethen defined by their values at the original nodes of the
mesh plus the new nodes created at the intersections of the mesh edges withΓ . The functions inWh

arebi-valued at these new nodes, but their values there are not degrees of freedom that are available for
interpolation. Instead, the value on each side is defined as being the same as that of the (unique) node of
the original triangulation that lies on the same edge and on the same side. In the rest of this section we

 at U
niversidade de SÃ

£o Paulo on A
ugust 10, 2012

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


674 G. C. BUSCAGLIA AND A. AGOUZAL

FIG. 1. Partition of a single element into subparts following the interfacePQ.

recall the corresponding basis functions in two dimensions, stressing some properties that are essential
for our proof of the interpolation estimate. More details, together with the three-dimensional version of
the basis functions, can be found inAusaset al. (2010).

We assume that no edge of the triangulation is cut twice byΓ . Consider the elementK to be the
triangleABC, which is cut byΓ at the pointsP andQ. The (possibly curved) segmentP Q dividesK
into twosubparts, namely, the curved triangleAP Qand the curved quadrilateralBC Q P (see Fig.1).

REMARK 2.1 Though in most of the figures hereafter the piece of interfaceΓ ∩ K is shown as a straight
segment for ease of interpretation, the reader should keep in mind thatΓ has neither been assumed to
be a polygon/polyhedron nor approximated by one. The usual mapping techniques to definePk or Qk

interpolants on curved elements are adopted, and it is tacitly assumed thatΓ ∩ K is sufficiently well
behaved for the mappings to be well defined. This will always be the case if the mesh size is much
smaller than the local radius of curvature ofΓ ∩ K . Hereafter, we also omit the word ‘curved’ when
referring to a piece ofΓ , calling ‘curved triangles’ simply ‘triangles’, etc.

Let us arbitrarily denote the triangleAP Q as the ‘plus’ side ofΓ and the quadrilateralBC Q P as
the ‘minus’ side. One can choose here to either adopt aQ1 interpolation inBC Q P or subdivide the
quadrilateral into two triangles,BC P andC Q P. In what follows we adopt the latter option.

Three nodal basis functions,ϕA, ϕB andϕC, can then be defined satisfying the following properties:

P1 ϕα(β) = 1 if α = β andϕα(β) = 0 otherwise, whereα andβ can take the valuesA, B or C;

P2 ϕA + ϕB + ϕC = 1;

P3 at any point ofK , the values ofϕA, ϕB andϕC lie between 0 and 1;

P4 though not necessary for our interpolation result, it is also true that, when combined with the
corresponding basis functions of the neighbour elements, the resulting functions are continuous
everywhere outsideΓ .

Analogous properties are satisfied by the four basis functions proposed byAusaset al.(2010) for three-
dimensional interpolation.
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FINITE-ELEMENT SPACE WITH EMBEDDED DISCONTINUITIES 675

The basis functions are defined to be piecewiseP1 inside each of the subtrianglesAP Q, BC P and
C Q P. It only remains to define their values at the vertices of the subtriangles, that is at the pointsA, B,
C, P andQ, but, since they are discontinuous atΓ , two values (plus and minus) are given at the points
P andQ. These values are

ϕA(A) = 1, ϕB(A) = 0, ϕC(A) = 0, (2.1)

ϕA(B) = 0, ϕB(B) = 1, ϕC(B) = 0, (2.2)

ϕA(C) = 0, ϕB(C) = 0, ϕC(C) = 1, (2.3)

ϕA(P+) = 1, ϕB(P+) = 0, ϕC(P+) = 0, (2.4)

ϕA(P−) = 0, ϕB(P−) = 1, ϕC(P−) = 0, (2.5)

ϕA(Q+) = 1, ϕB(Q+) = 0, ϕC(Q+) = 0, (2.6)

ϕA(Q−) = 0, ϕB(Q−) = 0, ϕC(Q−) = 1. (2.7)

From the first three lines above we verify that property P1 is satisfied. Since the sum of the three func-
tions is 1 at all vertices, their sum is the constant function equal to 1 and property P2 is satisfied. The
interpolation being piecewiseP1, the extrema take place at the vertices and property P3 follows from
direct inspection. These basis functions are depicted in Figure2.

FIG. 2. Basis functions for the new finite-element space: (a)ϕA, (b) ϕB and (c)ϕC .
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676 G. C. BUSCAGLIA AND A. AGOUZAL

3. Interpolation estimate

Let Ω ⊂ Rd be an open bounded polygonal domain, and letΓ be a smooth curve inΩ (a smooth
surface ifd = 3) that does not end within the domain. Let us define a ‘regular’ triangulationTh of Ω to
bea partition into simplices that has no hanging nodes (conforming triangulation) and that, in addition,
satisfies the following hypotheses.

H1 Each edge (segment that adjoins two vertices) of each simplex is cut at most once byΓ .

H2 The interfaceΓ does not pass by any vertex. This is a technical assumption that is needed for the
interpolant to be defined. The interpolation estimate does not deteriorate when the distance from
Γ to one of the vertices tends to 0.

H3 For all K ∈ Th themesh sizeh satisfiesch 6 ρ(K ) 6 diam(K ) 6 h, whereρ is the radius of
the inscribed circle/sphere, and thuscdhd 6 meas(K ) 6 hd, with 0 < c < 1 being independent
of h. Note that, in particular, the triangulation needs to be quasiuniform.

H4 The triangulation is such that, for eachK and for each nodeI of K , the subpart that contains
I (as defined in Fig.1) is star-shaped with respect toI . This is equivalent to requiring ‘visi-
bility’ of Γ ∩ K from I , that is, for eachx ∈ Γ ∩ K the straight segmentxI only intersects
Γ at x.

NOTATION 3.1 From now on, for any measurable setω we will define

|ω| = meas(ω).

For u ∈ W1,p(Ω \ Γ ) (with p > d, so that functions are continuous inΩ \ Γ ) let Ihu be the
interpolant ofu in Wh, defined by

Ihu(x) =
NV∑

i =1

u(Xi )ϕi (x), (3.1)

wherex ∈ Ω, NV is the number of vertices andϕi is the basis function associated to vertex (node)
numberi , which is located atXi ∈ Rd.

Thissection is devoted to the proof of the following estimate.

THEOREM 3.2 Let p, q ands be three given real numbers satisfyingp > d, 1 6 q 6 p ands > q.
Then there exists a constantC such that, for all regular triangulationsTh of Ω, and for allu ∈ W1,p(Ω \
Γ ) ∩ W2,s(Ω \ Γ ), we have

‖u − Ihu‖Lq(Ω) 6 C
[
h1+1

q − 1
p |u|W1,p(Ω\Γ ) + h2|u|W2,s(Ω\Γ )

]
. (3.2)

For the proof we first establish some lemmata.

LEMMA 3.3 Let ω be a bounded open set inRd. Let p > d andlet y ∈ ω be a point such thatω is
star-shaped with respect toy. Then, for allw ∈ L p(ω), we have

∫

ω

[∫ 1

0
|w(y + t (x − y))| dt

]p

dx 6
(

p

p − d

)p

‖w‖p
L p(ω). (3.3)
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FINITE-ELEMENT SPACE WITH EMBEDDED DISCONTINUITIES 677

Proof. Note first that the integral on the left-hand side makes sense sincey + t (x − y) ∈ ω for all
t ∈ (0,1) becauseω is star-shaped with respect toy. Without loss of generality, we takey = 0. Letq
be such that1p + 1

q = 1. We multiply and divide bytα, whereα = (p−1)d
p2 , to obtain

∫

ω

[∫ 1

0
|w(t x)|dt

]p

dx =
∫

ω

[∫ 1

0
|w(t x)|tαt−α dt

]p

dx

6
∫

ω

(∫ 1

0
|w(t x)|ptαp dt

)(∫ 1

0
t−αq dt

) p
q

dx

=
(

1

1 − αq

) p
q
∫

ω

∫ 1

0
|w(t x)|p tαp dt dx

=
(

p

p − d

)p−1 ∫

ω

∫ 1

0
|w(z)|ptαp−ddt dz

=
(

p

p − d

)p

‖w‖p
L p(ω),

wherewe have used Ḧolder’s inequality in one dimension and the change of variablesz = t x, implying
that dtdz = td dt dx. �

LEMMA 3.4 Under the same hypotheses as Lemma3.3we have for all 16 q 6 p that

‖w − w(y)‖Lq(ω) 6
(

p

p − d

)
diam(ω)|ω|

1
q − 1

p |w|W1,p(ω) (3.4)

wheneverw ∈ W1,p(ω).

Proof. The proof follows a density argument. Forw ∈ C1(ω) ∩ W1,p(ω) and for allx ∈ ω we have

w(x) − w(y) =
∫ 1

0
∇w(y + t (x − y)) ∙ (x − y)dt,

implying that

‖w − w(y)‖q
Lq(ω) 6

∫

ω

∣
∣
∣
∣
∣

∫ 1

0
∇w(y + t (x − y)) ∙ (x − y)dt

∣
∣
∣
∣
∣

q

dx.

FromLemma3.3 and Ḧolder’s inequality withr = p
q ands = p

p−q (if p = q thenthis is, of course,
unnecessary) we then get

∫

ω

∣
∣
∣
∣
∣

∫ 1

0
∇w(y + t (x − y)) ∙ (x − y)dt

∣
∣
∣
∣
∣

q

dx 6
(

p

p − d

)q

diam(ω)q|ω|1−q
p ‖∇w‖q

L p(ω). �
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678 G. C. BUSCAGLIA AND A. AGOUZAL

LEMMA 3.5 Let K be a simplex ofTh of vertices{Xi }i =1,...,d+1 that is crossed by the interfaceΓ . Let
w ∈ W1,p(K \ Γ ) (with p > d), and letIK w(x) =

∑d+1
i =1 w(Xi )ϕi (x) beits local interpolant. Then,

for all 16 q 6 p, we have

‖w − IK w‖Lq(K ) 6
p(d + 1)

p − d
h1+d

q − d
p |w|W1,p(K\Γ ). (3.5)

Proof. We start from the straightforward estimate

‖w − IK w‖Lq(K ) =

∥
∥
∥
∥

d+1∑

i =1

[w − w(Xi )]ϕ i

∥
∥
∥
∥

Lq(K )

6
d+1∑

i =1

‖w − w(Xi )‖Lq(Ki ),

whereKi denotesthe support ofϕi . Now note that, by the construction of the basis functions,Ki is
theconnected componentof K (connectedin the sense that it lies on one side ofΓ ) that contains the
vertex Xi , and Ki is star-shaped with respect toXi by hypothesis H4. We thus apply Lemma3.4 and
hypothesis H3 to obtain

‖w − IK w‖Lq(K ) 6
(

p

p − d

)
h1+d

q − d
p

d+1∑

i =1

|w|W1,p(Ki )
,

from which the result follows. �
We also recall the following classical estimate forP1 elementsthat holds for all elements that are

not intersected byΓ .

LEMMA 3.6 There existscs > 0 such that, for allK ∈ Th andall w ∈ W2,s(K ), we have

‖w − IK w‖Lq(K ) 6 csh
2+d

q − d
s |w|W2,s(K ). (3.6)

We now proceed to the proof of Theorem3.2.
Proof of Theorem3.2. We begin by decomposing the meshTh into the subsetRh of elementsnot
intersectedby Γ , and the subsetSh of elementsintersectedby Γ . Due to the quasiuniformity of the
mesh we know that the number of elements inRh is NRh 6 ch−d, while the regularity ofΓ ensures
that NSh 6 ch−d+1, wherec does not depend onh. We will estimate the two terms in

‖u − Ihu‖Lq(Ω) =




∑

K∈Th

‖u − IK u‖q
Lq(K )





1
q

6




∑

K∈Rh

‖u − IK u‖q
Lq(K )





1
q

+




∑

K∈Sh

‖u − IK u‖q
Lq(K )





1
q

. (3.7)
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FINITE-ELEMENT SPACE WITH EMBEDDED DISCONTINUITIES 679

Thefirst term consists of classicalP1 elements,so that from Lemma3.6we have

∑

K∈Rh

‖u − IK u‖q
Lq(K ) 6 cq

s h2q+d− dq
s
∑

K∈Rh

|u|q
W2,s(K )

6 cq
s h2q+d− dq

s N
1−q

s
Rh




∑

K∈Rh

|u|sW2,s(K )





q
s

6 c1−q
s cq

s h2q|u|q
W2,s(Ω\Γ )

. (3.8)

Turning now to the second term in (3.7), we have from Lemma3.5that

∑

K∈Sh

‖u − IK u‖q
Lq(K ) 6

(
p(d + 1)

p − d

)q

hq+d− dq
p
∑

K∈Sh

|u|q
W1,p(K\Γ )

6
(

p(d + 1)

p − d

)q

hq+d− dq
p N

1−q
p

Sh




∑

K∈Sh

|u|p
W1,p(K\Γ )





q
p

6 c1−q
p

(
p(d + 1)

p − d

)q

hq+1−q
p |u|q

W1,p(Ω\Γ )
. (3.9)

Now combining (3.7)–(3.9), we obtain the claimed result. �

REMARK 3.7 Note that the proof does not depend ond being equal to two. The estimate is thus also
proved for the three-dimensional case.

4. Cracked domains

In the case of an interfaceΓ that ends within the domain we have yet to define the interpolant for those
elements that contain endpoints of the interface. Consider the triangleABC as shown in Fig.3. The
interface ends at pointT , but pointQ can still be defined by suitably continuating the segmentPT, and
the subdivision of the element is identical to the case of a fully-cut triangle. The simplest possibility is
to adopt the same basis functions as in the fully cut case, in which case Theorem3.2 applies without
any modification to the proof.

However, if the basis functions of the fully cut element are used, then property P4 does not hold.
The interpolantIhu is discontinuous not only atΓ but also along the edgeAC, sinceϕA andϕC are
different as seen from the two elements that share the edgeAC. For some formulations, such as those
that make use of the pressure Poisson equation, it is usual to haveWh ∈ H1(Ω \ Γ ). This will not
hold with the interpolant proposed above because of the discontinuities at the partially cut elements just
discussed. A special treatment for the partially cut elements is thus needed.

As explained byAusaset al.(2010), continuity everywhere outsideΓ can easily be recovered in both
two and three dimensions without deteriorating the accuracy of the interpolation. The basis functions
needed for this fix, which are piecewiseP1 insideeach of the subtrianglesAP Q, BC P andC Q P as
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680 G. C. BUSCAGLIA AND A. AGOUZAL

FIG. 3. Scheme of an element (the triangleABC) containing an endpointT of the interface, which is represented by the segment
PT.

before, are defined to be continuous along the edgeAC as follows. Let

a =
|C Q|

|AC|
,

and then we have

ϕA(A) = 1, ϕB(A) = 0, ϕC(A) = 0, (4.1)

ϕA(B) = 0, ϕC(B) = 0, (4.2)

ϕA(C) = 0, ϕB(C) = 0, ϕC(C) = 1z, (4.3)

ϕA(P+) = 1, ϕB(P+) = 0, ϕC(P+) = 0, (4.4)

ϕA(P−) = 0, ϕB(P−) = 1, ϕC(P−) = 0, (4.5)

ϕA(Q) = a, ϕB(Q) = 0, ϕC(Q) = 1 − a. (4.6)

The corresponding functions are plotted in Fig.4. Note thatϕC is simply the standardP1 basis function
since the interface does not intersect any edge containing the pointC.

It is easily checked that this basis satisfies properties P1–P4 above. A three-dimensional version, also
satisfying the same properties, has also been introduced (Ausaset al.,2010). The rest of this section is
devoted to extending the interpolation estimate to this case. There exist now the following three subsets
of elements:Rh contains those elementsnot intersectedby Γ , Sh contains those elementsfully cut by
Γ , andZh contains those elementspartially cutby Γ in which the new basis has been adopted.

This last subset is the only novelty with respect to the proof of Lemma3.6. In particular, from the
quasiuniformity of the mesh and the regularity ofΓ , we assume that the number of elements inZh is
NZh 6 czh−d+2. In particular, in two dimensions, the number of endpoints ofΓ is assumed to be finite.

Our purpose is to prove that Theorem3.2 still holds if Γ ends within the domain and the basis
defined by (4.1)–(4.6) is adopted in the partially cut elements.
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FINITE-ELEMENT SPACE WITH EMBEDDED DISCONTINUITIES 681

FIG. 4. Basis functions for a ‘cracked’ element: (a)ϕA, (b) ϕB and (c)ϕC .

We begin, as in the proof of Lemma3.6, by decomposing as follows:

‖u − Ihu‖Lq(Ω) 6




∑

K∈Rh

‖u − IK u‖q
Lq(K )





1
q

+




∑

K∈Sh

‖u − IK u‖q
Lq(K )





1
q

+




∑

K∈Zh

‖u − IK u‖q
Lq(K )





1
q

. (4.7)

Since the bounds for the two first terms have already been established, it only remains to show that there
exists a constantC such that




∑

K∈Zh

‖u − IK u‖q
Lq(K )





1
q

6 Ch1+1
q − 1

p |u|W1,p(Ω\Γ ). (4.8)

The difficulty lies in that Lemma3.5 does not hold for this new interpolant because it is based on
applying Lemma3.4to the open set

{x ∈ K \ Γ |ϕA(x) 6= 0},

which, with the new basis, is not star-shaped with respect toA. As depicted in Fig.3, pointsx exist
with ϕA(x) 6= 0 and such that the straight segmentx A intersectsΓ , making the argument of Lemma3.5
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682 G. C. BUSCAGLIA AND A. AGOUZAL

invalid. We explain here how to tackle this difficulty in the case of a straight interface (PT is a straight
segment). Its extension to the curved case is not difficult, but requires some technicalities.

The idea is to construct a path that avoids crossingΓ . For this purpose, let us denote byΔ1 the
triangle AP Q, by Δ2 the quadrilateralBC Q P, and let us define a third convex setΔ3 (in Fig. 3 it
corresponds to the triangleC N M) that overlaps with the other two. Further, we defineω1 = Δ1 ∩ Δ3
andω2 = Δ2 ∩ Δ3. Our path from the pointx to A will consist of three segments, namely, xy, with
y ∈ ω2, then yz, with z ∈ ω1, andfinally zA. With these definitions, Lemma3.6 is adapted to the
partially cut element as follows.

LEMMA 4.1 Let K be a partially cut element and letA be a vertex. Then, forp > d and 16 q 6 p we
have

‖w − w(A)‖Lq(K ) 6
2p

p − d

[

1 +
(

|Δ2|

|ω1|

) 1
q
]

diam(K )|K |
1
q − 1

p |w|W1,p(K\Γ ). (4.9)

Proof. We begin by decomposing as follows:

‖w − w(A)‖Lq(K ) 6 ‖w − w(A)‖Lq(Δ1) + ‖w − w(A)‖Lq(Δ2). (4.10)

SinceΔ1 is convex andA ∈ Δ1, Lemma3.4 immediately provides a suitable bound for the first
term, that is,

‖w − w(A)‖Lq(Δ1) 6
p

p − d
diam(Δ1)|Δ1|

1
q − 1

p |w|W1,p(Δ1)
. (4.11)

We thus now turn to the second term

‖w − w(A)‖q
Lq(Δ2)

=
∫

Δ2

|w(x) − w(A)|q dx =
1

|ω1||ω2|

∫

ω1

∫

ω2

∫

Δ2

|w(x) − w(y) + w(y) − w(z)

+ w(z) − w(A)|q dx dy dz.

DefiningB = Δ2 × ω2 × ω1 andwith F1(x, y, z) = w(x) − w(y), F2(x, y, z) = w(y) − w(z) and
F3(x, y, z) = w(z) − w(A), we arrive at

‖w − w(A)‖Lq(Δ2) =
1

(|ω1||ω2|)
1
q

‖F1 + F2 + F3‖Lq(B)

6
1

(|ω1| |ω2|)
1
q

(‖F1‖Lq(B) + ‖F2‖Lq(B) + ‖F3‖Lq(B)). (4.12)

Now we establish bounds for each term. In particular, since bothx andy belong toΔ2, we have from
Lemma3.4that

‖F1‖
q
Lq(B) =

∫

ω1

∫

ω2

∫

Δ2

|w(x) − w(y)|q dx dy dz

6 |ω1||ω2|c
q
pdiam(Δ2)

q|Δ2|
1−q

p |w|q
W1,p(Δ2)

, (4.13)
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wherewe have definedcp = p/(p − d). Similarly,

‖F2‖
q
Lq(B) =

∫

ω1

∫

ω2

∫

Δ2

|w(y) − w(z)|q dx dy dz

6 |Δ2||ω2|c
q
pdiam(Δ3)

q|Δ3|
1−q

p |w|q
W1,p(Δ3)

(4.14)

and

‖F3‖
q
Lq(B) =

∫

ω1

∫

ω2

∫

Δ2

|w(z) − w(A)|q dx dy dz

6 |Δ2||ω2|c
q
pdiam(Δ1)

q |Δ1|
1−q

p |w|q
W1,p(Δ1)

. (4.15)

Inserting(4.12)–(4.15) and (4.11) into (4.10), the claim is proved. �
To complete the proof of (4.8) we proceed as in Lemmata3.5 and3.6, adding up the contributions

of all elements inZh, to get




∑

K∈Zh

‖u − IK u‖q
Lq(K )





1
q

6 A(h)h1+1
q − 1

p |u|W1,p(Ω\Γ ), (4.16)

where

A(h) =
2czp(d + 1)

p − d
max
K∈Zh



1 +
|Δ2(K )|

1
q

|ω1(K )|
1
q



 h
1
q − 1

p , (4.17)

which implies (4.8) under thetechnicalassumption that the family of triangulationsTh is such that there
exists a constantC such that

A(h) 6 C ∀ h > 0.

This technical assumption in practice requires that the interface does not end exactly at an edge (a face in
three dimensions), and we have never observed any pathological behaviour in the interpolation when the

endpoint lies very close to an edge. Note thath
1
q − 1

p tendsto 0 withh, so that the ratio|Δ2(K )|/|ω1(K )|
mayeven diverge without harming the convergence order if the divergence is mild enough.

5. Numerical experiments

As a complement to the numerical experiments shown inAusaset al. (2010), let us consider the inter-
polation of the function

u(r, θ) = r 2 e−4r sin

(
θ

4

)
, (5.1)

wherer is the distance from a pointz chosen randomly in(−0.25,0.25)× (−0.25,0.25) andθ is the
angle measured from some randomly chosenθ0 ∈ [0, 2π). The domainΩ is taken as(−2,2)× (−2,2).
An example of the interpolated function for an unstructured mesh withh = 0.1, z = (0.1,0.2) and
θ0 = π

3 is shown in Fig.5. Note how the function becomes rough near the discontinuity lineΓ because
the interpolant is constant along the edges on each side ofΓ .
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FIG. 5. (a) Unstructured mesh withh = 0.1 and (b) the discontinuous functionu interpolated on it with the proposed interpolant.

We investigate here two issues. The first is the robustness of the interpolation with respect to the
exact position ofΓ in the mesh. For this purpose, we randomly generate 10,000 functions by varying
z andθ0. The distribution of the interpolation error

e0 = ‖u − Ihu‖L2(Ω) (5.2)

is shown in Fig.6 for the mesh shown in Fig.5 (h = 0.1) and a refined mesh obtained by dividing each
triangle into four (h = 0.05). The meanL2(Ω)-errors for each mesh are 4.74× 10−4 and 1.46× 10−4.
This corresponds to a behavior of the mean of the error ash1.7, consistent with the one predicted by the
theoretical estimate of the previous sections (O(h1.5)).

The ratios of the maximum to minimum errors are observed to be rather small, namely, 3.44 for
the first mesh and 2.80 for the second. The interpolation accuracy depends, of course, on the way the
triangles are cut, but no configuration leads to a ‘disastrous’ interpolant.

The second issue investigated here is the approximation properties inH1(Ω). For this purpose, we
choose the same function as above, withz = (0.1,0.2) andθ0 = π

3 , and perform a mesh refinement
study measuring

e1 = ‖∇u − ∇(Ihu)‖L2(Ω̃), (5.3)
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FIG. 6. Histograms of the distributions of the interpolationL2(Ω)-errors, for two meshes, after 10,000 random realizations.

FIG. 7. Plots of the interpolation errorse0 ande1 as functions ofh.

whereΩ̃ is the subset ofΩ and whereIhu is continuous. The results are shown in Fig.7 and show

evidence of an interpolation order ofh
1
2 , which is quite logical since, in the interior of the cut elements,

∇u is not approximated at all.

6. Concluding remarks

A new finite-element spaceWh has been analysed that has the same unknowns as theP1-conforming
space but consists of functions that are discontinuous across a given interfaceΓ , which is assumed to
not be aligned with the mesh.

The interpolation estimate yields a convergence rate inL2(Ω) of orderh
3
2 for functions that are

smooth outsideΓ . This rate, which is sharp as shown by numerical experiments inAusaset al. (2010)

and Section 5, is a significant improvement with respect to the accuracy of continuous spaces
(
of O

(
h

1
2
))

but is still suboptimal. However, such a convergence rate implies that the spaceWh, when taken as
a pressure space, willnot limit the accuracy of a (Navier–)Stokes calculation neither in equal-order
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velocity–pressure approximations nor in the minielement approximation. In fact, in both cases the global
accuracy is limited by theH1(Ω)-accuracy of the velocity space, which is at most O(h).

In the provided estimates the interfaceΓ is assumed to be exact. In finite-element applications of
the space, however, the exact interface is someΓ̂ , andΓ is a suitable approximation thereof that renders
the integrals computable. Let us assume that bothΓ̂ andΓ are sufficiently smooth and that the distance
between them satisfies

δ := dist(Γ̂ , Γ ) 6 Chr . (6.1)

For example, ifΓ is piecewise affine, then we expect thatr = 2. Given a function̂u that is discontinuous
at Γ̂ and belongs toW1,p(Ω \ Γ̂ ), it must be approximated by some functionu ∈ W1,p(Ω \ Γ )
before applying the interpolation estimate of Theorem3.2. This introduces an additional error that,
under suitable assumptions, is of the order

‖û − u‖Lq(Ω) 6 C‖û‖W1,q(Ω\Γ̂ )δ
1
q 6 Ch

r
q .

Note that, for piecewise affineΓ , this error, in theL2-norm, is O(h). For the interpolation estimate

O
(
h

3
2
)
, obtained for the exact interface case, to remain true in the case of an approximate interface,

it must be guaranteed thatr > 3 in (6.1), which can be achieved, for example, with a piecewise
parabolicΓ .
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