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We consider a recently proposed finite-element space that consists of piecewise affine functions with
discontinuities across a smooth given interfdcga curve in two dimensions, a surface in three di-
mensions). Contrary to existing extended finite element methodologies, the space is a variant of the
standard conformind, spacethat can be implemented element by element. Further, it neither in-
troduces new unknowns nor deteriorates the sparsity structure. It is proved that,afbitrary in
wlP@\ nn W2S(Q \ I), the interpolanZu definedby this new space satisfies

1411
lu—ZhullLacey < C [h T P llweoyr) + h2|u|WZ’S(Q\”} ’

whereh is the mesh sizeR c RY is the domain,p > d, p > q, s > g and standard notation has
been adopted for the function spaces. This result proves the good approximation properties of the finite-
element space as compared to any space consisting of functions that are continuoug” aeroieh

1_1 . . .
would yield an error in the.9(£2)-norm of orderhd™ p. These properties make this space especially
attractive for approximating the pressure in problems with surface tension or other immersed interfaces

that lead to discontinuities in the pressure field. Furthermore, the result still holds for interfaces that end
within the domain, as happens for example in cracked domains.

Keywords finite element; interpolation; interface; discontinuous pressure; cracked domain; surface
tension.

1. Introduction

In Eulerian, fixed grid methods for fluid mechanics, interfaces that exist within the domain are not
followed by the mesh. This creates difficulties in the approximation of those variables that are discon-
tinuous at the interface, a typical example being the pressure in multiphase flow with different viscosities
for the phases and/or surface tension effects, or when the interface between the phases behaves as an
elastic membrane.

Let I be an interface (embedded in some dom@jrat which some function e L2(Q) is discon-
tinuous, and letin, beits L2(Q)-projection onto some function spa¥g thatconsists of functions that
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arecontinuousat I". Then, no matter how smoothis outsidel”, the approximation order is (Ganesan
et al.,2007;Gross & Reusker2007)

1
lu—Uunll 20y = Ch2, (1.1)

whereh is the mesh size an@, here and later, denotes a generic constant. i not aligned with the
mesh, then all standard finite-element spaces, either continuous or discontinuous across interelement
boundaries, suffer from this poor approximation order. The reason for this is that, in this situation, the
discontinuity will pass through the element interiors at which standard finite-element interpolants are
continuous (typically polynomial).

Some attempts have been made in recent years to devise spaces with improved approximation prop=
erties.Gross & Reusker(2007) recently proposed the adoption of an extended finite element (XFEM)
(Belytschkoet al., 2001) enrichment of the pressure space, incorporating functions that are discon-
tinuous at/”, as had also been proposed lnev et al. (2003). They obtained improved (%))
convergence order at the expense of the well-known pitfalls of the XFEM methodology, namely, the
ill-conditioning of the system matrix due to approximate linear dependence of the basis and the in-
troduction of new unknowns that depend on the location of the interface, thus requiring the code to &
completely rebuild the linear system structure for each interface location.

In this article we analyse an alternative approach dukusaset al. (2010), that has the following
interesting properties: (a) it is a modification of the standard continltgumite-elementspace, with
exactly the same unknowns and connectivity; (b) the modified basis functions can be computed at the
element level, making its implementation straightforward in existing codes; (c) its approximation order
(in theL2(Q)-norm) ish? , Which is lower than that of the XFEM space but is one order higher than that
of any standard space; and (d) its approximation order is already higher than the velocity approximation
order of the minielement (Arnolet al., 1984) or of stabilized, /P; formulations(Hugheset al.,1986;

Franca & Hughesl988), both of order at mokt so that using this space for the pressure has no adverse
effect on the overall velocity—pressure approximation. In this last regard we remind the reader that the
natural error measure for Stokes or Navier—Stokes problems is the sumtét () -error for velocity

and theL?(Q)-error for pressure. The result is established here in the more gdrfii@l)-setting,
whereq > 1, because this entails no additional difficulties.

moq

pape

2. Description of the finite-element space

We first analyse the case in whi¢ghdoes not end within the domain, and later discuss the modification
required in the case in which is crack-like.

Let Vi, bethe standard conforming; finite-elemenspace defined on a triangulatigp of Q. The
idea behind the space proposedAysaset al. (2010), denoted by\, from now on, is quite simple.
To begin with, in those elements that are not cut/byhe spaceM, coincideswith V, andthe basis
functions are simply those of the conformitifg finite-elementspace. In the elements that intersect
I, each edgeée (in both two dimensions and three dimensions the segments joining hodgsaoé
referredto asedge$ cut by I" is divided into two partsE™ and E~, according to the side of” on
which the part lies. The functions M/, arethen defined by their values at the original nodes of the
mesh plus the new nodes created at the intersections of the mesh edgés With functions inW,
arebi-valued at these new nodes, but their values there are not degrees of freedom that are available for
interpolation. Instead, the value on each side is defined as being the same as that of the (unique) node of
the original triangulation that lies on the same edge and on the same side. In the rest of this section we
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FIG. 1. Partition of a single element into subparts following the interf2Qe

recall the corresponding basis functions in two dimensions, stressing some properties that are essential
for our proof of the interpolation estimate. More details, together with the three-dimensional version of
the basis functions, can be foundAmisaset al. (2010).

We assume that no edge of the triangulation is cut twicd" by onsider the elemenf to be the
triangle ABC, which is cut by/™ at the pointsP and Q. The (possibly curved) segmeRtQ dividesK
into two subparts, namely, the curved triangdd® Q and the curved quadrilaterBIC Q P (see Figl).

REMARK 2.1 Though in most of the figures hereafter the piece of interfac is shown as a straight
segment for ease of interpretation, the reader should keep in mind'thas neither been assumed to

be a polygon/polyhedron nor approximated by one. The usual mapping techniques tdPgefir@
interpolants on curved elements are adopted, and it is tacitly assumed thédt is sufficiently well
behaved for the mappings to be well defined. This will always be the case if the mesh size is much
smaller than the local radius of curvature Bfn K. Hereafter, we also omit the word ‘curved’ when
referring to a piece of", calling ‘curved triangles’ simply ‘triangles’, etc.

Let us arbitrarily denote the triangleP Q as the ‘plus’ side of” and the quadrilaterdBC QP as
the ‘minus’ side. One can choose here to either aday anterpolation inBC Q P or subdivide the
guadrilateral into two triangle®8 C P andC Q P. In what follows we adopt the latter option.

Three nodal basis functionga, ¢g andec, can then be defined satisfying the following properties:

Pl ¢,(B) = 1if a = B andg,(B) = 0 otherwise, where andp can take the values, B or C;
P2 oa+9p+oc =1,
P3 at any point oK, the values ob, g andgc lie between 0 and 1;

P4 though not necessary for our interpolation result, it is also true that, when combined with the
corresponding basis functions of the neighbour elements, the resulting functions are continuous
everywhere outsidé’.

Analogous properties are satisfied by the four basis functions propostalaget al. (2010) for three-
dimensional interpolation.
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The basis functions are defined to be pieceWiséside each of the subtrianglésP Q, BC P and
C QP. It only remains to define their values at the vertices of the subtriangles, that is at the4ydits
C, P andQ, but, since they are discontinuous/attwo values (plus and minus) are given at the points
P andQ. These values are

oa(A) =1, ¢8(A) =0, ¢c(A)=0, (2.1)
¢a(B)=0, ¢s(B)=1, ¢c(B)=0, (2.2)
9a(C) =0, ¢8(C)=0, ¢c(C)=1, (2.3)
pa(PH) =1, ¢8(P*)=0, g¢c(P")=0, (2.4)
oa(P7) =0, ¢s(P7) =1, ¢c(P7)=0, (2.5)
pa(Q) =1, ¢8(Q") =0, ¢c(Q")=0, (2.6)
9a(Q7) =0, ¢(Q7)=0, ¢c(Q)=1 (2.7)

From the first three lines above we verify that property P1 is satisfied. Since the sum of the three func-
tions is 1 at all vertices, their sum is the constant function equal to 1 and property P2 is satisfied. The
interpolation being piecewis®;, the extrema take place at the vertices and property P3 follows from
direct inspection. These basis functions are depicted in F@ure

P

() ' )

(c)

FiG. 2. Basis functions for the new finite-element spacep(g)(b) g and (c)gc.
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3. Interpolation estimate

Let @ c RY bean open bounded polygonal domain, andlebe a smooth curve i® (a smooth
surface ifd = 3) that does not end within the domain. Let us define a ‘regular’ triangul&fiaf Q to

bea partition into simplices that has no hanging nodes (conforming triangulation) and that, in addition,
satisfies the following hypotheses.

H1 Each edge (segment that adjoins two vertices) of each simplex is cut at most ofice by

H2 The interfacd” does not pass by any vertex. This is a technical assumption that is needed for the
interpolant to be defined. The interpolation estimate does not deteriorate when the distance from
I" to one of the vertices tends to 0.
H3 For allK e 7, the mesh sizéh satisfiesch < p(K) < diam(K) < h, wherep is the radius of
the inscribed circle/sphere, and thafh? < measK) < h?, with 0 < ¢ < 1 being independent
of h. Note that, in particular, the triangulation needs to be quasiuniform.
H4 The triangulation is such that, for eahand for each nodé of K, the subpart that contains
| (as defined in Figl) is star-shaped with respect to This is equivalent to requiring ‘visi-
bility’ of 7" N K from I, that is, for eachx € I N K the straight sgmentx| only intersects
I atx.

NOTATION 3.1 From now on, for any measurable setve will define
|w] = meas(w).

Foru e WLP(Q \ I') (with p > d, so that functions are continuous & \ I) let Zhu be the
interpolant ofu in W, defined by

Ny

Tnu(x) = D~ u(Xi)gi (X), (3.1)

i=1

wherex € Q, Ny is the number of vertices ang is the basis function associated to vertex (node)
numberi, which is located aX; € RY.
This section is devoted to the proof of the following estimate.

THEOREM 3.2 Let p, g ands be three given real numbers satisfyipg> d, 1 < q < pands > q.
Then there exists a constaBisuch that, for all regular triangulatioffg of 2, and for allu ¢ WL-P(Q\
I NW23(Q \ I'), we have

1411
lu—ZhullLae) < C [h TaTR Ul ) + h2|U|w2,S(g\r)] - (3.2)

For the proof we first establish some lemmata.

LEMMA 3.3 Let w be a bounded open setRf. Let p > d andlety € @ bea point such thab is
star-shaped with respectyo Then, for allw € LP(w), we have

1 P p
/w[/o |w(y+t(x—y>)|dt} dxg(rpd) 101 (3.3)
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Proof. Note first that the integral on the left-hand side makes sense girce(x — y) € o for all
t € (0,1) becausev is star-shaped with respect yo Without loss of generality, we take = 0. Letq
be such tha% + % = 1. We multiply and divide byt*, wherea = (p;—zl)d, to obtain

/Q,[/()llw(tx)ldt}pdX:/w|:/ol|w(tX)|tat_adtj|pdx
</w(/ollw(t><)|pt"'p dt)(/olt—"‘q dt)g dx
(1_10@)5/w/ollw(tx)lp t*P dt dx

( ) /|w(z)|pt“p ddt dz
(:22) Wit

wherewe have used Blder’s inequality in one dimension and the change of variabled x, implying
that dtdz = t9 dt dx. O

LEMMA 3.4 Under the same hypotheses as Len81&we have for all 1< q < p that

1 1
o = w(y)lLaw < (prd) diam ()] P [wlywp(e) (3.4)

wheneerw € Wh-P(w).

Proof. The proof follows a density argument. Fore C1(w) N W-P(w) and for allx € o we have

1
w(x) = w(y) = /0 Voly +tx— ) - (x — y)dt,

implying that
q

1
=0 < [ | [ oty -y o

FromLemma3.3and Hblder’s inequality withr = 2 ands = prq (if p = g thenthis is, of course,

unnecessary) we then get

I

q

q
dx < (p%) diam@%w Vol O

1
| v to-yy - -yt -
0
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LEMMA 3.5 Let K be a simplex off,, of vertices{X; }i=1,.. d+1 thatis crossed by the interfacg. Let

w e WLP(K \ I') (with p > d), and letZk w(x) = Zd“ w(Xj)ej (X) beits local interpolant. Then,
forall 1 < g < p, we have

d+1 d_d
lw=ZkwllLak) < %d)hnq Plwlwirkyr)- (3.5)

Proof. We start from the straightforward estimate

d+1 d+1
lw = Tk wllak) = | D fw — w(Xi)]pi <D llw = w(Xi)lLagky).
i=1 LIK) =1

whereK; denoteghe support ofp;. Now note that, by the construction of the basis functidfisis
the connected componenf K (connectedn the sense that it lies on one side 6] that contains the
vertex Xj, andK; is star-shaped with respect X by hypothesis H4. We thus apply Lemmat and
hypothesis H3 to obtain

d+1

p 1+4
lw —ZkwllLak) < (p d) hi*as IZ;lev\/lp(K),

from which the result follows. O
We also recall the following classical estimate Ry elementghat holds for all elements that are
not intersected by".

LEMMA 3.6 There existss > 0 such that, for alK € 7y andall w € W23(K), we have

o4d_d
lw = Ik wllLack) < Csh™ a7 s [wlyask).- (3.6)

We now proceed to the proof of Theoreéh?®.
Proof of TheorenB.2. We begin by decomposing the meghinto the subsefRy, of elementsnot
intersectedby 7', and the subse$}, of elementdntersectedby 7". Due to the quasiuniformity of the
mesh we know that the number of elementfip is Nz, < ch™ —d_ while the regularity of/” ensures
thatNg, < ch~ d+1 wherec does not depend dm We will esumate the two terms in

lu—TZnullaey={ > llu—Zullq,
KeTh

q q

<[ D0 lu-Zeulfay, | + [ D0 lu—Zxulfey, | - @7
KeRn KeSh
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Thefirst term consists of classic®h elementsso that from Lemm&.6we have

q d1,2q+d— % q
D llu=Tkullfa, <cSh?+4s > Ulpzs k)
KeRn KeRn

nla

q
qp2g+d—99 \1-5 s
<Csh S NRh Z |U|W2,S(K)
KeRn

-9
< Cl nghquul\qNZ‘S(_Q\F)' (38)

Turning now to the second term iB.{), we have from Lemma.5that

q p(d+D\? gia-d q
Z lu—=Zxullqk) < (W he= z Ul\wap

KeSh KeSh
%

p(d+ D\ qra—da 1-8 p

<( o-a ) " "Ns’ 2 Wlysogy )
K eSh

19 (pA+D\? gy1-8 g

<cor (ﬁ h plulwl,p(g\r)' (3.9)
Now combining B.7)—(3.9), we obtain the claimed result. O

REMARK 3.7 Note that the proof does not dependaibeing equal to two. The estimate is thus also
proved for the three-dimensional case.

4. Cracked domains

In the case of an interfack that ends within the domain we have yet to define the interpolant for those
elements that contain endpoints of the interface. Consider the trig&g(@ as shown in Fig3. The
interface ends at poirit, but pointQ can still be defined by suitably continuating the segneht and

the subdivision of the element is identical to the case of a fully-cut triangle. The simplest possibility is
to adopt the same basis functions as in the fully cut case, in which case Thadapplies without

any modification to the proof.

However, if the basis functions of the fully cut element are used, then property P4 does not hold.
The interpolantZiu is discontinuous not only af” but also along the edgAC, sincepa andgc are
different as seen from the two elements that share the A@gd-or some formulations, such as those
that make use of the pressure Poisson equation, it is usual toiave HL(Q \ I"). This will not
hold with the interpolant proposed above because of the discontinuities at the partially cut elements just
discussed. A special treatment for the partially cut elements is thus needed.

As explained byAusaset al.(2010), continuity everywhere outsidecan easily be recovered in both
two and three dimensions without deteriorating the accuracy of the interpolation. The basis functions
needed for this fix, which are piecewiBe insideeach of the subtriangleAP Q, BCP andC QP as
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B

A

FiG. 3. Scheme of an element (the triangi® C) containing an endpoirt of the interface, which is represented by the segment
PT.

before, are defined to be continuous along the edlgeas follows. Let

_cQ|
4= Jacr
and then we have
pa(A) =1, ¢(A) =0, ¢c(A) =0, (4.1)
pa(C) =0, ¢8(C)=0, ¢c(C)=1z (4.3)
pa(PH)y =1, ¢s(PT)=0,¢c(P*) =0, (4.4)
pa(P7) =0, ¢g(P7)=1,0c(P7)=0, (4.5)
pa(Q)=a, ¢g(Q)=0,pc(Q)=1-a (4.6)

The corresponding functions are plotted in FigNote thatyc is simply the standari; basis function
since the interface does not intersect any edge containing the@oint

Itis easily checked that this basis satisfies properties P1-P4 above. A three-dimensional version, also
satisfying the same properties, has also been introdwagshéet al.,2010). The rest of this section is
devoted to extending the interpolation estimate to this case. There exist now the following three subsets
of elementsR;, contains those elementst intersectedy 7I”, Sy contains those elemenrfislly cut by
I, and 2y contains those elementartially cutby 77 in which the new basis has been adopted.

This last subset is the only novelty with respect to the proof of LerirBaln particular, from the
guasiuniformity of the mesh and the regularity I0f we assume that the number of element£inis
Nz, < c;h~9+2, In particular, in two dimensions, the number of endpointg'd$ assumed to be finite.

Our purpose is to prove that Theorer® still holds if I” ends within the domain and the basis
defined by (4.1)—(4.6) is adopted in the partially cut elements.
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P

(c)

FIG. 4. Basis functions for a ‘cracked’ element: (g, (b) pg and (c)oc.

We begin, as in the proof of Lemn®&6, by decomposing as follows:

q

Iu—Znullage) < | D Iu—TZeulae, | + [ D Iu—Zkulla,
KeRn KeSh

QR

Q-

+{ D lu=Zullay, | - (4.7)
KeZp

Since the bounds for the two first terms have already been established, it only remains to show that ther
exists a constar@ such that

1411
Z lu —IKU”qu(K) < Ch'*a PUlwLp(o\r)- (4.8)
KeZh

The difficulty lies in that Lemma&.5 does not hold for this new interpolant because it is based on
applying LemméB.4to the open set

{x € K\ I'lpa(x) # 0},

which, with the new basis, is not star-shaped with respeét.tds depicted in Fig3, pointsx exist
with g A(X) # 0 and such that the straightgsaentx Aintersectd”, making the argument of Lemn5

ofPsnbny uo ojred 03'S ap apepseAIuN e /BI0'sfeunolpiojxoeufew //:dny wouy papeojumod
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invalid. We explain here how to tackle this difficulty in the case of a straight interfadei¢ a straight
segment). Its extension to the curved case is not difficult, but requires some technicalities.

The idea is to construct a path that avoids crosdingd-or this purpose, let us denote bt the
triangle AP Q, by 4, the quadrilateralBC Q P, and let us define a third convex ség (in Fig. 3 it
corresponds to the triang@N M) that overlaps with the other two. Further, we defime= 41 N 43
andwy = 42 N 43. Our path from the poink to A will consist of three segments, nameky, with
y € wp, thenyz, with z € w1, andfinally zA. With these definitions, Lemm@&.6 is adapted to the
partially cut element as follows.

LEMMA 4.1 Let K be a partially cut element and létbe a vertex. Then, fop > d and 1< q < pwe
have

2p | 42| i . 1_1
||w—w(A)||Lq(K)<m 1+ m dlam(K)|K|q p|w|W1,p(K\r). (49)

Proof. We begin by decomposing as follows:

lw —w(A)lLak) < llw —w(A)lLacay + lw — w(A)lILa(4y)- (4.10)

Since 41 is convex andA € 41, Lemma3.4 immediately provides a suitable bound for the first

term, that is,
p . 1_1
lw — ll)(A)”LCI(Al) < mdlam(dlﬂﬁllq p |w|W1,p(A1). (411)
We thus now turn to the second term
1
0= 0oy = [ 1000 —wmdx=—— [ [ [ oo - w)+wm) - w@
Ao ICD1||CL)2| w1 Jwy J A
+w(2) — w(A)|9dxdydz.

Defining B = 42 x wy x w1 andwith F1(X,y,2) = w(X) — w(y), F2(X, Yy, 2) = w(y) — w(z) and
F3(X, Y, 2) = w(2) — w(A), we arrive at

1
lw = w(A)lLay = ——IF1+ F2+ FallLas)
(loa|ewz]) @
1
S — 1 (IFllcas) + IF2llLam) + [IFsliLa).- (4.12)
(|| |2]) @

Now we establish bounds for each term. In particular, since kathdy belong to4,, we have from
Lemma3.4that

IFlegy= [ [ [ w60 = wydxaydz
w1 JwrJ An

< |yl |wzlchdiam( )% A2/~ (4.13)

B ]
WLp(43)°
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wherewe have definedp = p/(p — d). Similarly,

Falfay = [ [ [ w0 - w@edxdydz
w1 Jwr J Ap

< | Azl enlcddiam( )| Aol ™ wldp (4.14)
and
IF3lYas, =/ / / lw(2) — w(A)|9 dx dy dz
w1 Jap J 4,
<1 allelchdiam ()@ | 411 Pl (4.15)
Inserting(4.12)—(4.15) and4.11) into @.10), the claim is proved. O

To complete the proof of4(8) we proceed as in Lemmasb and3.6, adding up the contributions
of all elements inZ, to get

q

q +3-3%
D lu=TZkullag, | < AMMTT P Ulyipo ), (4.16)
KeZh
where
1
2¢,p(d + 1 Ap(K)a\ 1 1
Aty = 22PEED o 14 420017 24 (4.17)
—dKeE ey

whichimplies (4.8) under theechnicalassumption that the family of triangulatiofig is such that there
exists a constar@ such that

A(h)<C Yh>o0.

This technical assumption in practice requires that the interface does not end exactly at an edge (a face i
three dimensions), and we have never observed any pathological behaviour in the interpolation when th

endpoint lies very close to an edge. Note ﬂh]%if% tendsto O with h, so that the ratip42(K)|/|w1(K)|
mayeven diverge without harming the convergence order if the divergence is mild enough.

5. Numerical experiments

As a complement to the numerical experiments showfilisaset al. (2010), let us consider the inter-
polation of the function

uer, ) =r2e™ sin(%), (5.1)

wherer is the distance from a poirt chosen randomly ii—0.25,0.25) x (—0.25,0.25) and@ is the
angle measured from some randomly cha&ea [0, 27). The domain® is taken ag—2, 2) x (-2, 2).
An example of the interpolated function for an unstructured mesh lwith 0.1, z = (0.1,0.2) and
0o = % is shown in Fig.5. Note how the function becomes rough near the discontinuity/lit@cause
the interpolant is constant along the edges on each side of
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FiG. 5. (a) Unstructured mesh with= 0.1 and (b) the discontinuous functierinterpolated on it with the proposed interpolant.

We investigate here two issues. The first is the robustness of the interpolation with respect to the
exact position of/” in the mesh. For this purpose, we randomly generat@d®functions by varying
z anddp. The distribution of the interpolation error

€ = [lu— Znull 20y (5.2)

is shown in Fig6 for the mesh shown in Fidh (h = 0.1) and a refined mesh obtained by dividing each
triangle into four b = 0.05). The mear.?(Q)-errors for each mesh are74 x 10~* and 146 x 107,
This corresponds to a behavior of the mean of the errbtdsconsistent with the one predicted by the
theoretical estimate of the previous sectionsi(&%)).

The ratios of the maximum to minimum errors are observed to be rather small, namely, 3.44 for
the first mesh and 2.80 for the second. The interpolation accuracy depends, of course, on the way the
triangles are cut, but no configuration leads to a ‘disastrous’ interpolant.

The second issue investigated here is the approximation properti&(i@). For this purpose, we
choose the same function as above, wite (0.1,0.2) andfp = 7%, and perform a mesh refinement
study measuring

e = [[VU = V(ZhWll 25 (5.3)
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FiG. 6. Histograms of the distributions of the interpolatio%(!))-errors, for two meshes, after 10,000 random realizations.

001 / .
z he

0.001

Interpolation error

T

0.0001 £

0.001 0.01

FIG. 7. Plots of the interpolation erroeg ande; as functions oh.

where Q is the subset of2 and whereZ,u is continuous. The results are shown in Figand show

evidence of an interpolation orderb%, which is quite logical since, in the interior of the cut elements,
Vu is not approximated at all.

6. Concluding remarks

A new finite-element spacé/, has been analysed that has the same unknowns &5 tbenforming
space but consists of functions that are discontinuous across a given intErfatgch is assumed to
not be aligned with the mesh.

The interpolation estimate yields a convergence rate%R) of orderh? for functions that are
smooth outsidd". This rate, which is sharp as shown by numerical experimemsigaset al. (2010)
and Section 5, is a significant improvement with respect to the accuracy of continuous(sﬁfméﬁs%))

but is still suboptimal. However, such a convergence rate implies that the ¥#acshen taken as
a pressure space, witlot limit the accuracy of a (Navier—)Stokes calculation neither in equal-order
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velocity—pressure approximations nor in the minielement approximation. In fact, in both cases the global
accuracy is limited by thél1(£2)-accuracy of the velocity space, which is at mosh(

In the provided estimates the interfafeis assumed to be exact. In finite-element applications of
the space, however, the exact interface is sdimend!” is a suitable approximation thereof that renders
the integrals computable. Let us assume that bodnd I” are sufficiently smooth and that the distance
between them satisfies

9 :=dist(/", I') < CH'. (6.1)
For example, ifl” is piecewise affine, then we expect that 2. Given a functionil that is discontinuous
at I' and belongs toN-P(Q \ I'), it must be approximated by some functiane WLHP(Q \ I
before applying the interpolation estimate of Theorgrd. This introduces an additional error that,
under suitable assumptions, is of the order

1 r
10— UllLae) < Cllallyiacoy 707 < Ch.

Note that, for piecewise affing, this error, in theL2-norm, is O(h). For the interpolation estimate
O(h%), obtained for the exact interface case, to remain true in the case of an approximate interface,
it must be guaranteed that > 3 in (6.1), which can be achieved, for example, with a piecewise
parabolicl”.
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