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The method of asymptotic partial decomposition of a domain aims at
replacing a 3D or 2D problem by a hybrid problem 3D� 1D; or 2D� 1D,
where the dimension of the problem decreases in part of the domain.
The location of the junction between the heterogeneous problems is
asymptotically estimated in certain circumstances, but for numerical
simulations it is important to be able to determine the location of the
junction accurately. In this article, by reformulating the problem in a mixed
formulation context and by using an a posteriori error estimate, we propose
an indicator of the error due to a wrong position of the junction.
Minimizing this indicator allows us to determine accurately the location of
the junction. Some numerical results are presented for a toy problem.

Keywords: asymptotic partial domain decomposition; a posteriori error
estimates; error indicator

AMS Subject Classifications: 35F40; 65

1. Introduction

The method of asymptotic partial decomposition of a domain (MAPDD) originates
from the works of Panasenko [1]. The idea is to replace an original 3D or 2D
problem by a hybrid one 3D� 1D; or 2D� 1D, where the dimension of the problem
decreases in part of the domain. Effective solution methods for the resulting hybrid
problem have recently become available for several systems (linear/nonlinear, fluid/
solid, etc.) which allow for each subproblem to be computed with an independent
black-box code [2–4]. The location of the junction between the heterogeneous
problems is asymptotically estimated in the works of Panasenko [5]. MAPDD has
been designed for handling problems where a small parameter appears, and provides
a series expansion of the solution with solutions of simplified problems with respect
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to this small parameter. In the problem considered here, no small parameter exists,
but due to geometrical considerations concerning the domain � it is assumed that the
solution does not differ very much from a function which depends only on one
variable in a part of the domain. The MAPDD theory is not suited for such a
context, but if this theory is applied formally it does not provide any error estimate.
The a posteriori error estimate proved in this article, is able to measure the
discrepancy between the exact solution and the hybrid solution which corresponds to
the zero-order term in the series expansion with respect to a small parameter when
it exists.

Numerically, independently of the existence of an asymptotical estimate of the
location of the junction, it is essential to detect with accuracy the location of the
junction. Let us also mention the interest of locating with accuracy the position of
the junction in blood flows simulations [6]. Here the method proposed is to
determine the location of the junction (i.e. the location of the boundary � in the
example treated) by using optimization techniques. First it is shown that
MAPDD can be expressed with a mixed domain decomposition formulation
(as in [5,7–12]) in two different ways. Then it is proposed to use an a posteriori error
estimate for locating the best position of the junction. A posteriori error estimates
have been extensively used in optimization problems, the reader is referred to,
e.g. [8,9].

In the following, the toy problem for which the method is presented is given, and
the introduction section is ended with the mixed formulation of the domain
decomposition of the problem. Section 2 is dedicated to the two asymptotic
decompositions proposed for a given location of the interface �. One
asymptotic decomposition is based on a particular mortar subspace (the constant
functions on �), and the other one is based on coupling a partial differential equation
(PDE) with an ordinary differential equation (ODE). In Section 3, a posteriori error
estimates are given and an indicator is proposed. In Section 4, the optimal location of
the junction is found by minimizing the indicator. Numerical results are provided
showing the efficiency of the proposed method.

Let f be a regular function defined by

f ðx1, x2Þ ¼
f1ðx1, x2Þ, 05 x1 5 a,

f2ðx1Þ, a5 x5 1:

�
ð1Þ

The domain �¼ (0, 1)� (0, 1) is decomposed in two subdomains �1¼ (0, a)� (0, 1)
and �2¼ (a, 1)� (0, 1), the boundary � ¼ �1 \�2, and the boundary @� are divided
into four subparts �1¼ {0}� (0, 1) �2¼ (0, 1)� {0} �3¼ {1}� (0, 1) �4¼ (0, 1)� {1}.

2 G.C. Buscaglia et al.
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Let U2H2(�) be the solution to:

�DUðx1, x2Þ ¼ f ðx1,x2Þ, in �,

@nU ¼ 0, on �2i; 1 � i � 2;

U ¼ 0, on �2i�1; 1 � i � 2:

8><
>: ð2Þ

Now let us give a formulation of the problem in the domain decomposition context

with a L2-mortar subspace. We define the following functional spaces:

0H
1ð�1Þ ¼ f’2H

1ð�1Þ, ’j�1 ¼ 0g,

0H
1ð�2Þ ¼ f’2H

1ð�2Þ, ’j�3 ¼ 0g,

V ¼0 H
1ð�1Þ �0 H

1ð�2Þ,

W ¼0 H
1ð�1Þ �0 H

1ð�2Þ \ fD2’j�2
¼ 0g,

� ¼ L2ð�Þ,

ð3Þ

equipped with the norms

jvj21 ¼
X2
i¼1

Z
�i

rvi � rvi dx1 dx2, k�k2� ¼

Z
�

�2 dx2: ð4Þ

Let us define (u1, u2, �)2V�� solution to

X2
i¼1

Z
�i

rui � rvi dx1 dx2 þ

Z
�

�ðv1 � v2Þdx2 ¼
X2
i¼1

Z
�i

fvi dx1 dx2, 8v2V

Z
�

�ðu1 � u2Þ dx2 ¼ 0, 8�2�:

8>>><
>>>:

ð5Þ

Introduce the following bilinear forms:

a :V� V�!R

u, v 7 �! aðu, vÞ ¼
X2
i¼1

Z
�i

ruirvi dx1dx2,

b : �� V�!R

�, v 7 �! bð�, vÞ ¼

Z
�

�ðv1 � v2Þdx2:

We have the following result.

LEMMA 1.1 Assume f2L2(�) then, there exists a unique (u1, u2, �)2V�� solution

to problem (5). Moreover, we have ui ¼ Uj�i
for 1� i� 2.

Proof Let K be the closed subset of space V defined by

K ¼ fv2V; v1 � v2j� 2�?g:

The existence result is a consequence of the following inf-sup condition: there exists

05� such that

inf
ðw,�Þ 2K��

sup
ðv,�Þ6¼ð0,0Þ 2V��

aðw, vÞ þ bð�, vÞ þ bð�,wÞ

k�k� þ jvj1
� �: ð6Þ

Applicable Analysis 3
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To see this, take (w, �)2K�� with jwj1þk�k�¼ 1 and choose v¼wþw1 with w1

solution to

�Dw1ðx1, x2Þ ¼ 0, in �1,

@nw1 ¼ �, on � and w1 ¼ 0, on @� n �:

�
ð7Þ

Let us decompose the space V :K
L

K? ¼ V where the orthogonality is defined with

the inner product induced by a(., .). We have (w1, 0)2K
? since assuming (w1, 0)2K

leads to w1j�¼ 0 which combined with the first equation of (7) would lead to w1¼ 0.
For all v1 2H

1ð�1Þ, v1 j@�1n�¼ 0Z
�1

rw1rv1dx ¼

Z
�

�v1dx2

and the following estimate holds true:

jw1j1 ¼ sup
v1 2H1ð�1Þ
v1 j@�1n�

¼0

Z
�1

rw1rv1dx ¼ sup
v1 2H1ð�1Þ
v1 j@�1n�

¼0

Z
�

�v1dx2,

jw1j1 � c2k�k0,�: ð8Þ

Since the space ~H
1
2ð�Þ ¼ f’2H

1
2ð�Þ the extension of which by 0 belongs to H

1
2ð@�1Þg

is densely embedded in L2(�), there exists �" 2 ~H
1
2ð�Þ: verifying:

k�� �"k0,� � ":

We choose " such that:

jw1j1 ¼ sup
v1 2H1ð�1Þ
v1 j@�1n�

¼0

Z
�

�"v1 þ v1ð�� �"Þdx2 � ðk�k0 � "Þ
2
� ðk�k0 þ "Þ" �

1

2
k�k20:

So the following quantity

I ¼ sup
ðv,�Þ6¼ð0,0Þ 2V��

aðw, vÞ þ bð�, vÞ þ bð�,wÞ

k�k� þ jvj1

with �¼� and estimate (8) verifies the following estimate

I �
1

2

jwj21 þ k�k
2
0

maxð1, c2Þ
�

1

2maxð1, c2Þ
inf

xþy¼1
x�0, y�0

½x2 þ y2� �
1

4maxð1, c2Þ
¼ �:

Now we integrate by parts in the bilinear form a(�, �). Choosing vi2D(�i), we

deduce rðui �UÞj�i
¼ 0. Thanks to Dirichlet’s conditions we have: ui �Uj�i

¼ 0.
Choose vi 2Dð�iÞ; vij�2i ¼ 0; 1� i� 2. Integrating by parts in the bilinear form

a(�, �) we have: Z
�

@n1u1v1 þ @n2u2v2 þ �ðv1 � v2Þ dx2 ¼ 0: ð9Þ

Taking v1¼ 0 we have @n2u2 ¼ � in L2(�) and for v2¼ 0 we have @n1u1 ¼ �� in L2(�).

The conditions are expressed in L2 since, ui2H
2(�i), 1� i� 2.

Since b(�, u)¼ 0 for all �2L2(�), we deduce that u1¼ u2 on �. g

4 G.C. Buscaglia et al.
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2. Asymptotic domain decomposition

In this section, we propose two approximate domain decomposition problems by

using different mortar subspaces or different spaces for the solution. Let

�0¼ span{1} and let us define (ũ1, ũ2, �0)2V��0 solution of

að ~u, vÞ þ bð�0, vÞ ¼
X2
i¼1

Z
�i

fvi dx1dx2, 8v2V,

bð�, ~uÞ ¼ 0, 8�2�0:

8><
>: ð10Þ

LEMMA 2.1 Assume f2L2(�), then, there exists a unique (ũ1, ũ2, �0)2V��0

solution to problem (10). Moreover, we have

@n1 ~u1 ¼ �@n2 ~u2, in L2ð�Þ, ~u2j� ¼
1

j�j

Z
�

~u1 dx2:

Proof The existence result is a consequence of the inf-sup condition, which is

proved in the same way as in Lemma 1.1 with w1¼ cx1, and

�?0 ¼ f’2L
2ð�Þ;

Z
�

’ðx2Þdx2 ¼ 0g ) ðw1, 0Þ 2K
?:

Integrating by parts in (10), thus, since ũi2H
2(�i), we have

@n2 ~u2j� ¼ �0 2�0:

Take v2¼ 0, whatever v1 is:

R
�ð@n1 ~u1 þ �0Þv1dx2 ¼ 0) @n1 ~u1 þ �0 ¼ 0 in ~H

1
2ð�Þ0 ) @n1 ~u1 ¼ ��0:

Now, let us prove that ũ2W. Since �0 is constant, it is easy to prove that ũ2(x1)

solution to

� ~u002ðx1Þ ¼ f2ðx1Þ, in a5 x1 5 1,

~u02ðx1Þ ¼ �0, ~u2ð1Þ ¼ 0,

�

is the unique solution ũ2 in the domain �2.
The condition b(1, ũ)¼ 0 implies ~u2 ¼

1
�

R
�

~u1 dx2: g

Remark 1 The previous result provides a justification for coupling an ODE with a

PDE in some circumstances which can also be justified with asymptotic

developments.

Now, set �2¼L2(�) as mortar subspace, and let us define (û1, û2, �2)2W��2

solution to

aðû, vÞ þ bð�2, vÞ ¼
X2
i¼1

Z
�i

fvi dx1dx2, 8v2V,

bð�, ûÞ ¼ 0, 8�2�2:

8><
>: ð11Þ
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LEMMA 2.2 Assume f2L2(�), then, there exists a unique (û1, û2, �2)2W��2

solution to problem (11). Moreover, we have

@n2 û2 ¼ �
1

j�j

Z
�

@n1 û1 dx2 û1 ¼ û2, in L2ð�Þ:

Proof The space W is a closed subspace of V thus the existence is proved in the

same way as in the previous lemma. The identity (9) with v1¼ 0 reads: for every
v22L

2(�)

Z
�

ð@n2 û2 � �2Þv2dx2 ¼ 0: ð12Þ

Since @n2 û2 � �2 2�?2 we conclude that @n2 û2 ¼ �2. Take v2¼ 0, for every v12L
2(�),

identity (9) reads: Z
�

ð@n1 û1 þ �2Þv1dx2 ¼ 0) @n1 û1 ¼ ��2, in �2: ð13Þ

Since û22W, the relation (12) reads: @n2 û2 ¼ �
1
j�j

R
� @n1 û1 dx2. The condition

b(�, û)¼ 0 for every �2�2 implies û2¼ û1. g

3. A posteriori error estimates

In this section an a posteriori error estimate is derived for the error between the exact
solution of the domain decomposition formulation of the problem, and the

approximate solution by using a mortar subspace.
Let us define the operator
T : V�L

2(�)!V0 �L
2(�)0 by

hTð ~u, �0Þ, ðv, �Þi ¼ að ~u, vÞ þ bð�0, vÞ þ bð�, ~uÞ:

Define the error e by

e ¼ ðu� ~u, �� �0Þ: ð14Þ

In what follows, an indicator for the error is proposed.
The error equation reads:

hTe, ðv, �Þi ¼ aððu� ~uÞ, vÞ þ bð�� �0, vÞ þ bð�, u� ~uÞ

¼ �

Z
�

ð@n1 ~u1v1 þ @n2 ~u2v2dx2 �

Z
�

�0ðv1 � v2Þdx2 �

Z
�

�ð ~u1 � ~u2Þ dx2

¼ L ~u, �0ðv, �Þ: ð15Þ

LEMMA 3.1 Assume f2L2(�), then, the following estimate holds true.

kL ~u, �0k�

kTkL
� kek � kL ~u, �0k�kT

�1kL, ð16Þ

6 G.C. Buscaglia et al.
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with

kL ~u, �0k� ¼ k ~u1 �
1

j�j

Z
�

~u1 dx2k0,�,

� � kTkL; kT�1kL �
1

�
:

ð17Þ

Proof We have to evaluate:

kL ~u, �0k� ¼ sup
ðv, �Þ 2V��
ðv,�Þ6¼ð0,0Þ

aðu� ~u, vÞ þ bð�� �0, vÞ þ bð�, u� ~uÞ

k�k0,� þ jvj1
:

ð18Þ

Observe that by integrating by parts in the bilinear form a(�, �), we have

aðu� ~u, vÞ ¼ �

Z
�

@n1 ~u1v1 þ @n2 ~u2v2dx2 �

Z
�

�ðv1 � v2Þdx2:

Gathering (18) with the previous inf-sup condition, we deduce

kek �
1

�
sup

ðv, �Þ 2V��
ðv,�Þ6¼ð0,0Þ

�
R

�
@n1 ~u1v1 þ @n2 ~u2v2dx2 þ bð��0, vÞ þ bð�, u� ~uÞ

k�k0,� þ jvj1
, ð19Þ

which proves the bound from above in (16). Accounting for the relation between

@n1 ~u1,@n1 ~u2 and �0 given in Lemma 2.1 we have:

kek �
1

�
sup

ðv, �Þ 2V��
ðv,�Þ6¼ð0,0Þ

�
R

� �ð ~u1 � ~u2Þ dx2

k�k0,� þ jvj1
,

and finally

kek �
1

�
k ~u1 � ~u2k0,� ¼

1

�
k ~u1 �

1

j�j

Z
�

~u1 dx2k0,�: ð20Þ

Now, let us consider the second case where f2L2(�) and the mortar subspace is

�2¼L2(�). Starting from the inequality (19) accounting for results of Lemma 2.2

arguing in the same way as before, we get the following indicator:

kek �
1

�
k@n1 û1 þ @n2 û2k0,� ¼

1

�
k@n1 û1 �

1

j�j

Z
�

@n1 û1dx2k0,�: ð21Þ

4. Optimization with respect to the location of �

Let a denote the position of the boundary �. Due to relation (20), the proposed

strategy is to minimize the functional J(a) with respect to a defined by

JðaÞ ¼ k ~u1ða, x2Þ �
1

j�aj

Z
�a

~u1ða, x2Þ dx2k
2
0,�:

Applicable Analysis 7
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The algorithm of minimization we propose is a simple descent algorithm. Let a0 and

Tol be fixed.

(1) evaluate the derivative DJ(an)
(2) if jDJ(an)j �Tol stop and if not
(3) anþ1¼ an� � DJ(an) where � is a fixed positive number.
(4) n¼ nþ 1 return to the beginning.

Now we evaluate numerically the derivative with respect to the location of the

boundary �. To compute DJ(an) define:

Iða,x2Þ ¼ ~u1ða, x2Þ �

Z 1

0

~u1ða, x2Þdx2:

Observe that

JðaÞ ¼ ðIða,x2Þ, Iða, x2ÞÞL2ð�Þ,

its derivative DJðaÞ ¼ 2
�
@Iða,x2Þ
@a

�
, Iða,x2ÞL2ð�Þ where:

@I

@a
ða,x2Þ ¼

@ ~u1
@a
ða, x2Þ �

Z 1

0

@ ~u1
@a
ða, x2Þdx2:

To compute the derivative of ũ1 with respect to 05 a5 1, the location of �a we use

the following change of geometry which consists in mapping the domain � with a

moving boundary �a onto a domain with a fixed boundary �1/2. Thus the change of

geometry will yield a change in coefficients of PDEs. Define the transformation T by

½0, 1� � ½0, 1� ! ½0, 1� � ½0, 1�,

ðz, x2Þ ! ðx1, x2Þ ¼ ðTðz, aÞ ¼ ð2� 4aÞz2 þ ð4a� 1Þz, x2Þ,

thus the segment �1
2
is mapped to �a. The unknown  is defined by  ¼U 	T.

Equation (2) becomes:

�DzT:D
2
zz � ðDzTÞ

3:D2
x2x2

 þD2
zzT:Dz ¼ ðDzTÞ

3:f ðT, x2Þ,

@n ¼ 0 on �2i; 1 � i � 2,

 ¼ 0 on �2i�1; 1 � i � 2:

8><
>: ð22Þ

A variational formulation for the decomposed domain problem corresponding

to the problem (22) with a mortar subspace �0 is: �1 ¼ ð0,
1
2Þ � ð0, 1Þ and

�2 ¼ ð
1
2 , 1Þ � ð0, 1Þ;

X2
i¼1

Z
�i

cðzÞ:r ~ i:rvi dx1dx2 þ 2
X2
i¼1

Z
�i

D2
zzT:Dz

~ i:vi dx1dx2

þ

Z
�a

�ðv1 � v2Þ dx2 ¼
X2
i¼1

Z
�i

ðDzTÞ
3:fiðT, x2Þ:vi dx1dx2, 8v2V

Z
�

�ð ~ 1 � ~ 2Þ dx2 ¼ 0, 8�2�0,

8>>>>>>>>><
>>>>>>>>>:

ð23Þ

8 G.C. Buscaglia et al.
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where c is 2� 2 diagonal matrix such as c11¼DzT and c22¼ (DzT)
3. Now we

calculate the derivative of the indicator J(a) with respect to a with function ~ :

DJðaÞ ¼ 2

Z 1

0

~u1ða, x2Þ �

Z 1

0

~u1ða, x2Þ dx2

� �
@I

@a
ða, x2Þ dx2,

therefore,

DJðaÞ ¼ 2

Z 1

0

�
~�1 �

Z 1

0

~�1dx2

�
�

�
~�1a �

Z 1

0

~�1adx2

�
dx2,

where ~�ia denotes the derivative with respect to a of function ~�i for 1� i� 2. In the

case where f2L2(�) and �2¼L2(�) we use the indicator given in (21), we have:

JðaÞ ¼

Z 1

0

ð@n1 û1ða, x2Þ �

Z 1

0

@n1 û1ða, x2Þdx2Þ
2dx2, ð24Þ

DJðaÞ ¼ 2

Z 1

0

�
@x1�̂1 �

Z 1

0

@x1�̂1dx2Þ

��
@x1�̂1a �

Z 1

0

@x1�̂1adx2Þ

�
dx2, ð25Þ

where �̂ia is the derivative of �̂i with respect to the variable a. Taking the derivative

of the first equation of (22) with respect to the variable a we have:

�DzT �D
3
azz��ðDzTÞ

3
�D3

ax2x2
�þD2

zzT �D
2
az�¼D2

azT �D
2
zz�þ3D2

az � ðDzTÞ
2
�D2

x2x2
�

�D3
azzT �Dz�þ3D2

azT � ðDzTÞ
2
� fðT,x2ÞþDaTðDzTÞ

3
�Dx1 fðT,x2Þ: ð26Þ

Defining �a¼Da� Equation (26) becomes:

�DzT �Dzz�a�ðDzTÞ
3
�D2

x2x2
�aþD2

zzT �Dz�a¼D2
azT �D

2
zz�þ3D2

azT � ðDzTÞ
2
�D2

x2x2
�

�D3
azzT �Dz�þ3D2

azT � ðDzTÞ
2
� f ðT,x2ÞþDaTðDzTÞ

3
�Dx1 fðT,x2Þ,

@n�a¼ 0, on �2i; 1� i� 2,

�a¼ 0, on �2i�1; 1� i� 2:

8>>>><
>>>>:

ð27Þ

A variational formulation for problem (27) in decomposed domain setting is:

X2
i¼1

Z
�i

ðcðzÞr ~ iarvi þ 2D2
zzTDz

~ iaviÞdx1dx2 þ

Z
�a

�ðv1 � v2Þdx2

¼
X2
i¼1

Z
�i

ð�caðzÞr ~ irvi � 2D3
azzTDz

~ iviÞdx1dx2

þ
X2
i¼1

Z
�i

½3D2
azTðDzTÞ

2
þDaTðDzTÞ

3Dx1 � fiðT, x2Þ:vidx1dx2, 8v2V,

Z
�

�ð ~ 1a � ~ 2aÞ dx2 ¼ 0, 8�2�0,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð28Þ

where ca is a 2� 2 diagonal matrix such as ca11 ¼ �D
2
azT and ca22 ¼ �3D

2
azTðDzTÞ

2.
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Now this section is ended with some numerical examples. Let U be defined by

Uðx1, x2Þ ¼
x1

��
x1 �

1

2

�3

� ðx2 � x22Þ
2
þ ð1� x1Þ

2

�
, 0 � x1 �

1

2
,

x1ð1� x1Þ
2,

1

2
� x1 � 1,

8>><
>>:

ð29Þ

and function f by

f ðx1, x2Þ ¼

ð12t� 2Þx41 þ ð�18tþ 3Þx31 þ

�
�3

2
þ 9t� 12t2

�
x21 þ

�
9t2 �

3

2
t�

23

4

�
x1

�
3

2
t2 þ 4, 05 x1 5

1

2
,

�6x1 þ 4,
1

2
5 x1 5 1,

8>>>>>><
>>>>>>:

ð30Þ

with t ¼ ðx2 � x22Þ
2: It is straightforward to check that U solves

�DUðx1, x2Þ ¼ f ðx1, x2Þ, in �,

@nU ¼ 0, on �2i, 1 � i � 2,

U ¼ 0, on �2i�1, 1 � i � 2:

8><
>: ð31Þ

Observe that U solves a domain decomposition formulation with an interface �

located at a ¼ 1
2.

Let us define Vh (respectively,Wh) as the space that approximates V (respectively,

W) with a triangular Lagrange finite element method of order one. The maximum

size of triangle’s diameter is h¼ 10�1. The space �2h consists of the traces of space Vh

on the interface �a. Let ðuh, �hÞÞ 2Vh ��2h be the solution to

X2
i¼1

Z
�i

ruihrvih dx1dx2 þ

Z
�

�hðv1h � v2hÞ dx2 ¼
X2
i¼1

Z
�i

fvih dx1dx2, 8vh 2Vh,

Z
�

�hðu1h � u2hÞ dx2 ¼ 0, 8�h 2�2h :

8>>><
>>>:

ð32Þ

Figure 1 shows the error between U and uh.
The discontinuity of the error through � is due to the discontinuity of the

approximate solution through �.
Now let us define (ũh, �0))2Vh� {Cst} be solution to

X2
i¼1

Z
�i

r ~uihrvih dx1dx2 þ

Z
�

�0ðv1h � v2h Þ dx2 ¼
X2
i¼1

Z
�i

fvih dx1dx2, 8vh 2VhZ
�

�ð ~u1h � ~u2hÞ dx2 ¼ 0, 8�2 fCstg:

8>>><
>>>:

ð33Þ

Figure 2 shows the error between the exact solution and the solution to the domain

decomposition problem (33) for four locations of �a.

10 G.C. Buscaglia et al.
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Figure 1. Error function.

Figure 2. Error distribution for four locations of �a.
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Define the indicator by

JðaÞ ¼ k ~u1hða, x2Þ �
1

j�aj

Z
�a

~u1hða, x2Þ dx2k
2
0,�:

Problem (28) is approximated in Vh� {Cst}, then J(a) is computable whatever a is.

In Figure 3, the curve a � J(a) is presented.
Algorithm (1)–(4) has been implemented, and the derivative DJ(an) has been

computed by solving problem (28) approximated with a triangular Lagrange finite

element method of order one. Figures 4 and 5 show convergence curves for starting

points a0¼ 0.35 and a0¼ 0.65 with a mortar subspace �0.
Let f2L2(�) and ððûh, �2Þ 2Wh ��2h be solution to

X2
i¼1

Z
�i

rûihrvih dx1dx2 þ

Z
�

�2ðv1h � v2hÞ dx2 ¼
X2
i¼1

Z
�i

fvih dx1dx2, 8vh 2Wh,Z
�

�ðû1h � û2hÞ dx2 ¼ 0, 8�2�2h :

8>>><
>>>:

ð34Þ

Figure 6 shows the error between the exact solution and the approached solution.
Define the indicator by

JðaÞ ¼

Z 1

0

@n1 û1hða,x2Þ �

Z 1

0

@n1 û1h ða, x2Þdx2

� �2

dx2: ð35Þ

Figure 7 shows this indicator plotted as function of the location of the interface.

Figure 3. Indicator for mortar subspace �0.
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Figure 5. Indicator as function of location of the interface (left) and location as function of
iterations (right).

Figure 4. Indicator as function of location of the interface (left) and position of the interface
as function of iterations (right).

Figure 6. Error with a mortar subspace �2.
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Proceeding in the same way as before, Figure 8 shows the indicator
represented as function of the position of the interface for a starting posi-
tion a0¼ 0.35, and the location of the interface is described as function of the
iterations.

Figure 7. Error evaluation in case �2.

Figure 8. Indicator as function of location (left) and position of the interface as function of
iterations (right).
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Let us conclude this article with some computational considerations.

. The proposed indicator is computed only with uh1 , the approximate solution
in domain �1.

. When dealing with a 2D or 3D domain �1 linked to 1D domains, that is to
say when considering a PDE linked with ODEs, one can increase the
accuracy by either expanding the PDE domain (inherently more accurate
than the 1D domains, in general) or by refining the mesh in �1. A crucial
question is which of these alternatives is most cost effective. The answer is
quite simple. By using your favourite indicator of the mesh error, compare it
with the indicators of the location error proposed in this article. Then you
are able to decide whether you should refine the mesh or you should move
the interfaces. Assume for example that for problem 33 an accuracy of 10�2

is required. Let us start with an interface located at a¼ 0.35 and with a
size of mesh of 10�1. Computing the indicator of the location error we

Table 1. Location indicator and mesh error indicator for two meshes.

h a
Location
indicator

Minimum error
indicator mesh

Maximum error
indicator mesh

10�1 0.45 0.0064 0.0064 0.0308
0.40 0.0139 0.0051 0.0243
0.35 0.0258 0.0021 0.0254

5� 10�2 0.45 0.0064 0.0013 0.0082
0.40 0.0140 0.0012 0.0065
0.35 0.0265 0.00041539 0.0069

Figure 9. Mesh of domain �1.
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get 0.0258, and the indicator of the mesh error is valued between 0.0034 and
0.024 (Table 1). Thus the interface is moved to a¼ 0.4 in order to enlarge the
size of the domain �1. The indicator of the location error becomes 0.0139,
and the indicator of the mesh error is valued between 0.0051 and 0.0243.
The mesh is then refined in the domain �1 with a mesh size of 5� 10�2 and
the indicator of the mesh error is valued between 0.0012 and 0.0065. The
interface is now moved to a¼ 0.45, the indicator of the location error
becomes 0.0064. Figure 9 shows the mesh of domain �1. The mesh
refinement strategy is quite crude (Figure 10), since the mesh is uniformly
refined.

. Observe that whatever the values of the indicator of the mesh error is, it is
possible to reach the optimal location of the interface.
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