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Abstract

Increasing efforts exist in integrating different levels of blood circulation in mod-
els of the cardiovascular system. In this context, effective and black-box-type
decomposition strategies for one-dimensional networks are needed, so as to:
(i) employ domain decomposition strategies for large systemic models (1D-1D
coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous
representations (1D-3D coupling, among various possibilities). The strategy
proposed in this article works for both of these two scenarios, though the sev-
eral applications shown to illustrate its behavior focus on the 1D-1D coupling
case.

The network is decomposed in such a way that each coupling point connects
two (and not more) of the sub-networks. At each of the M connection points
two unknowns are defined: the flow rate and pressure. These 2M unknowns are
determined by 2M equations, since each sub-network provides one (nonlinear)
equation per coupling point. It is shown how to build the 2M × 2M nonlinear
system with arbitrary and independent choice of boundary conditions for each
of the sub-networks. The idea is then to solve this nonlinear system until con-
vergence, which guarantees strong coupling of the complete network. In other
words, if the nonlinear solver converges at each time step, the solution coincides
with what would be obtained by monolithically modelling the whole network.
The decomposition thus imposes no stability restriction on the choice of the
time step size.

Effective iterative strategies for the nonlinear system that preserve the black-
box character of the decomposition are then explored. Several variants of
matrix-free Broyden’s and Newton-GMRES algorithms are assessed as numer-
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ical solvers by comparing their performance on sub-critical wave propagation
problems which range from academic test cases to realistic cardiovascular appli-
cations. A specific variant of Broyden’s algorithm is identified and recommended
on the basis of its computer cost and reliability.

Key words: Partitioned analysis, Hemodynamics, 1D models, Domain
decomposition, Wave propagation.

1. Introduction

Modeling different physical phenomena within the cardiovascular system has
become a priority for the scientific community of computational modeling and
numerical simulation. When analyzing global quantities in the whole arterial
network and virtual scenarios of the cardiovascular system, 1D (and also 0D)
models have proven to be the most convenient in terms of the trade-off between
predictive capabilities and computational cost [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16].

Usually, these simple models involve a small number of unknowns and the
computational cost is not a barrier. However, recent contributions [10] address-
ing capillary circulation have posed the problem of setting-up block-partitioned
analyses in order to apply upscaling techniques. Moreover, the data acquisi-
tion technology employed nowadays allows to set up quite detailed topological
structures of the cardiovascular system, so that the analysis of very complex,
patient-specific networks will soon be routine both in its direct (analysis) and
inverse (parameter estimation [17, 18]) forms.

Another important problem arises when putting together heterogeneous mod-
els to simulate different components of the whole network. Models for the venous
or pulmonary circulation, models for the heart-valvular functioning, or models
for the capillary circulation, among others, are self-speaking examples. Coupling
such models may be a cumbersome task if they, for instance, are originally im-
plemented in different codes or even if they belong to different research groups.
In this sense, having a systematic approach to couple such heterogeneous mod-
els using a black-box concept will hopefully contribute to speed up research in
this area.

The aim of this article is to introduce a systematic approach to set up it-
erative strategies to decouple one-dimensional flow models into sub-networks.
This is accomplished by recasting the original problem in terms of interface vari-
ables, specifically the pressure and flow rate at each of the M coupling points,
leading to 2M unknowns. It is assumed that each point couples two (and not
more) sub-networks. Since the dynamical equations of each sub-network pro-
vide one equation per coupling point, these equations can be assembled into
a closed 2M × 2M nonlinear system. In the proposed approach the boundary
conditions can be chosen arbitrarily for each sub-network, so that a black-box
strategy can indeed be implemented. For the numerical treatment of the non-
linear system, we adopt Broyden’s and Newton-GMRES techniques, assessing
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the performance of each variant. Indeed, any Jacobian-free method could be
applied. In this stage of the research we will not focus on the gains regarding
CPU time, nor in the comparison between iterative and monolithic approaches.

The strategies developed here are envisaged for sub-critical flows, i.e., for
fluid velocities smaller than the characteristic velocity. This is fully justified in
hemodynamics, since the fluid velocity hardly exceeds one tenth of the charac-
teristic velocity. In the super-critical regime the choice of boundary conditions
for the sub-networks is severely restricted, since there may be no information
traveling upstream.

The proposed methodology stems from the ideas developed in [19] to deal
with the coupling of 3D–1D models in linear problems. In the simplest case
of two sub-networks converging to a coupling point, we arrive at the interface
problem by (a) keeping the unknowns for which some continuity condition must
be enforced (two in the present case, flow rate and pressure) and (b) writing
the corresponding (two) equations provided by each of the underlaying sub-
networks. This strategy differs from classical domain decomposition approaches,
since it makes use of the two unknowns instead of reducing the problem to a
single unknown, namely a primal approach (Steklov-Poincaré equation), or a
dual approach (FETI equation). With this not only we gain versatility in setting
boundary conditions for the different underlaying sub-networks, as stated in the
previous paragraph, but also allows for the black-box application of iterative
solvers other than the classical Dirichlet-to-Neumann iterations and its variants
[20, 21]. In fact, classical methods are shown to correspond to Gauss-Seidel
iterations of the nonlinear system built by our methodology. We explore more
sophisticated and robust solvers for systems of nonlinear equations, in particular
Broyden’s or Newton-GMRES methods, and identify a specific choice that is to
be recommended for both its computer cost and its reliability.

This work is organized as follows: Section 2 gives an account of the governing
equations and continuity conditions at the coupling points. In Section 3 the
iterative strategies are presented, while in Section 4 these strategies are tested in
academic examples. The application of the numerical methods to computational
hemodynamics is addressed in Section 5, and some additional observations are
pointed out in Section 6. Finally, the conclusions are drawn in Section 7.

2. Governing equations

2.1. Mathematical model
Blood flow in large arteries can be modeled using the condensed 1D Navier-

Stokes equations in compliant vessels, which comprises momentum and mass
conservation [22] as follows

∂Q

∂t
+

∂

∂x

(
αm

Q2

A

)
+
A

ρ

∂P

∂x
+

2πR
ρ

τo = 0, (1)

∂A

∂t
+
∂Q

∂x
= 0, (2)

3



where A is the luminal area (and R is the radius), Q is the flow rate, P is the
mean pressure, ρ is the density and τo accounts for the viscous effects since it is

τo = fr
ρU |U |

8
,

where U is the mean velocity (U = Q/A) and fr is the Darcy friction factor
corresponding to a fully-developed parabolic velocity profile. In this work the
momentum correction factor αm has been taken as equal to one. These hy-
potheses can be refined by introducing Womersley-like velocity profiles for the
friction and momentum terms (see [11]). In the authors experience the influence
of the correction factor is negligible, while the parabolic profile considered here
may yield an underestimated pressure drop due to viscous dissipation in some
cases. In any case, the conclusions of the present work should not be affected
greatly when changing such hypotheses.

Equations (1)–(2) are complemented with a constitutive relation for the
arterial wall relating the pressure with the cross sectional area. In this work the
following independent-ring viscoelastic model (see [23, 24]) was used

P = P0 +
Eh

R0

(√
A

A0
− 1
)

+
Kh

R0

1
2
√
A0A

∂A

∂t
, (3)

where index 0 refers to reference values, h is the wall thickness and E and K are
the material parameters that characterize the elastic and viscoelastic material
responses, respectively.

Recall that in the case of a pure elastic constitutive model (i.e. K = 0) a
hyperbolic system of equations is recovered with wave celerities (eigenvalues)
given by λ1,2 = U ± c, with

c =

√
A

ρ

∂P

∂A
.

Regarding the boundary conditions to system (1)–(3), as long as the flow
is subcritical (|U |< c) one boundary condition needs to be applied at each end
of the vessel. The most common practice is to impose the flow rate Q or the
pressure P independently at each end, depending on the physical setting, but
imposing combinations of both Q and P is also possible.

2.2. Coupling conditions
Consider the simplest case of a network consisting of just one vessel, which

is decomposed into two connected parts, so that each of the two sub-networks
also consists of just one vessel. Extension to multicomponent systems is quite
straightforward. Two coupling conditions arise at the coupling point C, see
Figure 1, which can be written as

Q1 = Q2, (4)
P1 = P2, (5)
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where 1 and 2 indicate the two partitions of the vessel. It is assumed that no
jump in the cross sectional area takes place at the coupling point. Therefore,
the mean velocity is also continuous (U1 = U2), as well as the total pressure;
i.e.,

T1 =
1
2
ρU2

1 + P1 =
1
2
ρU2

2 + P2 = T2,

which can substitute either (4) or (5).

Figure 1: Decomposition of a simple vessel.

Note that in the case of a simple vessel each sub-network (each partition)
has a unique coupling interface. In the case of a more complex network, as the
one shown in Figure 2, the sub-networks may consist of many vessels and have
several coupling interfaces. In any case, the decomposition is performed along
single vessels (not at bifurcations, trifurcations, etc.) and therefore we have
always two vessels arriving at each coupling interface.

Figure 2: Decomposition of a network with sub-networks containing 1, 2 and 5 coupling
interfaces (points).
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3. Black-box decomposition approach

This section deals with the basic concepts behind the strategies proposed in
the present work. They are based on our previous work [19].

3.1. Interface problem
Always referring to the simple case of Figure 1, the decomposition intro-

duced four new unknowns (Q1, Q2, P1, P2), which are linked by the coupling
equations (4)-(5), so that we are lacking two equations. These come from the
individual responses of each sub-network. For sub-network 1, for example, not
any combination of Q1 and P1 is feasible. More specifically, if some arbitrary
value of P1 is imposed as boundary condition at C, Q1 is fully determined.
Viceversa, if Q1 is arbitrarily chosen and imposed as boundary condition, P1 is
determined by the unique solution of (1)–(3) in sub-network 1. Let us denote
this dependence as F1(Q1, P1) = 0, and similarly for sub-network 2. The closed
system thus reads

Q1 = Q2,

P1 = P2,

F1(Q1, P1) = 0,
F2(Q2, P2) = 0,

which can be further simplified, denoting Q = Q1 = Q2 and P = P1 = P2, to

F1(Q,P ) = 0, (6)
F2(Q,P ) = 0. (7)

The flow rate and pressure at C correspond to a state of the system. The
functions F1 and F2 need to be defined for any such state, and the solution of
the interface problem is the unique state which makes (6)–(7) to hold. Notice
that in this discussion we have disregarded the time dependence of the variables,
since in practice the time will be discretized and the procedures described here
will be used at each time step.

Let (Q̃, P̃ ) be an arbitrary state of the system. The state uniquely deter-
mines the corresponding area Ã through the constitutive relation, as well as the
velocity Ũ = Q̃/Ã and the total pressure T̃ = ρ

2 Ũ
2 + P̃ . The situation is similar

to that of thermodynamics of gases, in which the thermodynamic state is fully
determined by any two state variables. We will however, for the sake of clarity,
only represent states as flow rate/pressure pairs. The nature of the functions
F1 and F2 depends on the way boundary conditions at the coupling point are
imposed for each sub-network:

• Assume that the flow-rate Q̃ is imposed at the coupling point for sub-
network 1. Then, by solving (6) in this sub-network, a corresponding
pressure is obtained, which can be denoted by Pq,1(Q̃), meaning that it is
the pressure obtained at point C when running subsystem 1 as a black box
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with imposed flow-rate data at C given by Q̃. In this case, the function
F1 is naturally given by

F1(Q̃, P̃ ) = P̃ − Pq,1(Q̃), (8)

and evaluated at the exact solution (Q,P ) it will be zero.

• Let us explain the procedure when pressure is imposed at C in the case
of sub-network 2. If the imposed value is P̃ , then running sub-network
2 as a black box with this boundary condition at C will yield some well-
determined flow-rate at C, which is denoted by Qp,2(P̃ ), and the function
F2 is given by

F2(Q̃, P̃ ) = Q̃−Qp,2(P̃ ),

which, combined with (8) would yield a closed system.

• It could well happen that one decides to run, say, sub-network 2 as a black
box with the total pressure T̃ imposed at C, instead of the pressure or flow
rate. This would yield both a flow rate Qt,2(T̃ ) and a pressure Pt,2(T̃ ) at
C as results. In this case the function F2 is chosen as

F2(Q̃, P̃ ) = Q̃−Qt,2(T̃ (Q̃, P̃ )).

• Another choice would be F2 = P̃ − Pt,2(T̃ ), but we prefer the former
because in the vicinity of Q̃ = 0 the variables P̃ and T̃ are linearly depen-
dent.

3.2. Time discretization
Before proceeding further, let us assume that a time discretization scheme is

applied to the system of partial differential equations. In this way, the interface
problem is formulated at each time step tn through time-discrete operators Fn1
and Fn2 which encompass the dependencies with respect to the values of the
unknowns at past time steps (Qn−1, Pn−1), (Qn−2, Pn−2), and so on. Then,
given proper initial conditions (Q0, P 0), equations (6)–(7) are replaced by the
following time-discrete equations valid for each time step n = 0, 1, 2, . . .

Fn1 (Qn, Pn) = 0, (9)
Fn2 (Qn, Pn) = 0. (10)

This is actually a system of two equations in the two unknowns (Qn, Pn) which
corresponds to the different equilibria formulated at the interface. Hence, at
each time step, system (9)–(10) is assembled with the contribution of one equa-
tion from each arriving vessel. The solution of (9)–(10) leads to a fully-coupled
(strongly coupled) strategy for advancement in time.

Remark 1. Since it is necessary to assemble a system of equations at each
time step, the equations contributed by each vessel may change with time.
Consider sub-vessel 1, in the first part of the simulation we could impose flow
rate and in the rest of the simulation pressure, disregarding what happens in
the complementary sub-domain.
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Let us make an account of the notation introduced so far. Consider the
following generic operator

generic notation : Xnx,a.

Then, the symbol X = Q,P, T represents the information that the operator
provides (flow rate, pressure or total pressure), index x = q, p, t denotes the
information that the operator receives (flow rate, pressure or total pressure),
index a = 1, 2 indicates the vessel which the operator is related to, and index
n = 0, 1, 2, . . . denotes the dependence of the operator in relation to the history
of the state of the system.

Remark 2. In the case of complex networks (see Figure 2) a component may
have multiple coupling interfaces. Since the choice of the boundary conditions
remains arbitrary, such multiple-coupled component may receive as boundary
information different quantities (flow rate in a subset of the coupling interfaces
and pressure in the complementary subset). Therefore, a notation like the one
introduced above is not identifiable.

3.3. Solvers for non-linear problems
Going back to our simplest example of Figure 1, we have seen how at time

step n we arrive at the two-equation system

Fn1 (Qn, Pn) = 0, (11)
Fn2 (Qn, Pn) = 0. (12)

In particular, if at the coupling point C the boundary conditions chosen are flow
rate for sub-network 1 and pressure for sub-network 2, these equations read

Pn − Pnq,1(Qn) = 0, (13)

Qn −Qnp,2(Pn) = 0. (14)

It remains to select an iterative solver for this nonlinear system, maintaining
the black-box structure of the strategy. Perhaps the easiest to implement is the
Gauss-Seidel method, which reads

Fn1 (Qn,k, Pn,k−1) =0,

Fn2 (Qn,k, Pn,k) =0,

where the iterations start at some initial guess (Qn,0, Pn,0), usually taken as
(Qn−1, Pn−1) and stop at the iterate k for which both |Fn1 (Qn,k, Pn,k)| and
|Fn2 (Qn,k, Pn,k)| are sufficiently small. For system (13)–(14) the Gauss-Seidel
method thus reads

Pn,k = Pnq,1(Qn,k−1),

Qn,k = Qnp,2(Pn,k).
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Notice that these iterations are nothing but the well-known Dirichlet-to-Neumann
strategy, very popular in the domain decomposition literature. The sub-domains
interact along the iterations in such a way that the pressure obtained at C from
sub-network 1 is imposed as boundary condition to sub-network 2, while the
flow rate obtained at C from sub-network 2 is imposed as boundary condition
to sub-network 1. In the applications we consider this is not a clever choice, as
will be illustrated in the examples. Instead, we propose to apply more sophisti-
cated solvers for non-linear equations, focusing on an orthogonalized variant of
Broyden’s method and on the Newton-GMRES method [25, 26].

Let us recall these two methods, which must be given in matrix-free form.
That is, we revisit the Broyden and Newton-GMRES applied to the particular
system of equations (11)–(12). To do this consider that at time n, iteration k−1
the interface is not at equilibrium, therefore we can evaluate two residuals

Rn,k−1
1 = Fn1 (Qn,k−1, Pn,k−1),

Rn,k−1
2 = Fn2 (Qn,k−1, Pn,k−1).

To reduce the notation we put

Rn,k−1 = (Rn,k−1
1 , Rn,k−1

2 ),

Xn,k−1 = (Qn,k−1, Pn,k−1),

Fn(Xn,k−1) = (Fn1 (Qn,k−1, Pn,k−1),Fn2 (Qn,k−1, Pn,k−1)).

Hence, the residual Rn,k−1 drives the state of the system Xn,k−1 from iteration
k − 1 to k.

We define the operator Bn which is an approximation of the Jacobian of
the interface operator given by Broyden’s algorithm at time tn. In the orthog-
onalized version of Broyden’s method the iterations evolve according to the
following algorithm for a system of m non-linear equations: at time step n,
given Xn,0 = Xn−1 and given Bn,0, compute Rn,0 = Fn(Xn,0) and do

1. For j = 0 to m

2. W j = −(Bn,j)−1Rn,j

3. V = W j

4. For i = 0 to j − 1

5. V = V − (V,W i)W i

6. Enddo

7. V = V
‖V ‖

8. Xn,j+1 = Xn,j + V j

9. Rn,j+1 = Fn(Xn,j+1)
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10. Bn,j+1 = Bn,j + Rn,j+1⊗V
(V,W j)

11. Enddo

In the previous algorithm (U, V ) and U ⊗ V denote the classical scalar and
tensorial products between two vectors U and V . The initial condition denoted
by X0 is also given. When steps 4 to 7 are carried out, the algorithm is referred
to as the orthogonalized version of Broyden’s method. If these steps are skipped,
we refer to it simply as Broyden’s method.

Remark 3. When a time step, say n, converged at iteration k, an approxi-
mation of the Jacobian, denoted by Bn,k, is available. This approximation is
then employed to initialize the approximate Jacobian at step n + 1, setting
Bn+1,0 = Bn,k. In this context Broyden’s method with initialization resembles a
preconditioned method, in contrast with the Newton-GMRES that just makes
use of the previous state to initialize the iterations, without any precondition-
ing. In the numerical tests this has proven to be a remarkable advantage of
Broyden’s methods. In what concerns the choice of the first matrix, B0,0, in the
cases treated here it has been considered as the identity matrix (case without
initialization) or a finite difference estimation of the Jacobian matrix (case with
initialization). For very long simulations, in which a large time step is used,
it is advisable to perform a restart of the initialized algorithm erasing the last
computed matrix B replacing it by a fresh finite difference approximation of the
Jacobian.

For the Newton-GMRES algorithm the iterates are obtained as follows (for
a system of m non-linear equations): at time step n, given Xn,0 = Xn−1 and
given σ, compute Rn,0 = Fn(Xn,0) and do

1. V 1 = Rn,0

‖Rn,0‖

2. For j = 1 to m

3. W j = 1
σ [Fn(Xn,0)−Fn(Xn,0 + σV j)]

4. For i = 1 to j

5. Hi,j = (W j , V i)

6. W j = W j −Hi,jV i

7. Enddo

8. Hj+1,j = ‖W j‖

9. V j+1 = W j

Hj+1,j

10. Enddo

11. Xn,m = Xn,0 + Vm(Hm)−1‖Rn,0‖E1
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In this algorithm Vm is formed by the vectors V , Hi,j are the entries of the
matrix Hm and E1 is the canonical vector for the first component. Also, the
initial condition, denoted by X0, is given.

Remark 4. Any other solver for non-linear equations in matrix-free form can
be used in the present framework.

In the previous descriptions of Broyden’s and Newton-GMRES algorithms
the stopping criterion is not detailed. In the actual implementation a (standard)
stopping criterion is of course incorporated.

3.4. Computational implementation
The time discretization of the initial-boundary value problem (1)-(3) is car-

ried out with a semi-implicit scheme. A Galerkin Least Squares formulation
with upwinding along the characteristic lines is used for the spatial discretiza-
tion. The discretization of the problem is briefly described for the pure elastic
case (K = 0 in equation (3)) in what follows.

Consider the equations (1) and (2) of the 1D model recasted in the corre-
sponding expressions along the characteristic lines

DQ

Dt
− f+DA

Dt
= g along ẋ = f−(x(t), t), (15)

DQ

Dt
− f−DA

Dt
= g along ẋ = f+(x(t), t), (16)

with

g = −A
ρ

(
∂P

∂χi

∂χi
∂x

+ fr
ρ|U |U

4R

)
, (17)

where χi are the material and geometrical parameters involved in the expression
of P , while

f± =
Q

A
±

√
A

ρ

∂P

∂A
. (18)

Now we discretize in time both equations (15) and (16) as follows

Qn+1 −Qn

∆t
+ f−

∂Q

∂x

∣∣∣∣
n+θ

− f+

(
An+1 −An

∆t
+ f−

∂A

∂x

∣∣∣∣
n+θ

)
= gn+θ,

Qn+1 −Qn

∆t
+ f+ ∂Q

∂x

∣∣∣∣
n+θ

− f−
(
An+1 −An

∆t
+ f+ ∂A

∂x

∣∣∣∣
n+θ

)
= gn+θ,

where 1
2 ≤ θ ≤ 1. Then we introduce a finite element discretization of the 1D

domain, denoted by I, with linear interpolation for the unknowns Q and A. Let
N be the set of nodes of the finite element mesh for I, then the computation of
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the two residuals reads

R±i =
Qn+1
i φi −Qni φi

∆t
+ f±

∂φi
∂x

Qi

∣∣∣∣
n+θ

− f∓
(
An+1
i φi −Ani φi

∆t
+ f±

∂φi
∂x

Ai

∣∣∣∣
n+θ

)
− gn+θ i ∈ N .

Finally, the set of equations is attained through a least squares technique, yield-
ing ∫

I

(R−i L
−
Q,j +R+

i L
+
Q,j) dx = 0 ∀φj , j ∈ N , (19)∫

I

(R−i L
−
A,j +R+

i L
+
A,j) dx = 0 ∀φj , j ∈ N , (20)

where the upwinding is taken into account within the weighting functions

L∓Q,j = φj + f∓τ∓
∂φj
∂x

, j ∈ N , (21)

L∓A,j = f±
(
φj + f∓τ∓

∂φj
∂x

)
j ∈ N . (22)

Here τ∓ are the characteristic times that play the role of the stabilization pa-
rameters, which are chosen as follows

τ∓ =
∆x

2|f∓|
. (23)

Finally, the third equation, see (3), is a node-wise pressure-area relation in the
case of a pure elastic model.

The scheme is run with θ = 0.5, and all the non-linearities in the problem are
treated with Picard iterations. This fixed point approach implies evaluating the
quantities in equations (17), (18), (21), (22) and (23) at the previous iteration.
Particularly, the characteristics f± are computed at tn+θ and are evaluated
element-wise, taking the mean value given by the contribution of the quantities
in the two nodes of the linear elements.

In case of bifurcations the conservation of flow rate and continuity of pressure
are enforced. For the implementation of the terminal elements and the heart
inflow boundary condition the reader is referred to [27] for further details.

For the viscoelastic model we split the pressure in (3) into two contributions
the elastic pressure Pe (first two terms in the right hand side of (3)) and the
viscoelastic counterpart Pv (last term in the right hand side of (3)). We add
one unknown for implementation issues, that is Pe, which is treated in the same
manner as in the pure elastic model. The viscoelastic part, which is a function
of ∂A

∂t is introduced in the equations using the mass equation. Thus the system
is written in terms of the unknowns (Q,A, Pe, P ), where P = Pe + Pv. The
interested reader is referred to [28, 29] for more details.
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3.5. Inner and outer iterations
In this kind of problems we have two levels of non-linearity. The inner

level refers to the iterations performed to assess the residual in the solution
process (step 9 in Broyden and step 3 in Newton-GMRES). At this level the
non-linear problem is solved by carrying out inner iterations, that is, iterations
of the black-box solver corresponding to each individual sub-network. In turn,
the outer level refers to the iterations of the solver (Broyden, Newton-GMRES,
etc.) of the non-linear interface problem.

In some cases, the inner iterations can be eliminated (i.e., limited to just one)
to reduce computational cost. Some results will be presented so as to assess how
the removal of inner iterations affects the convergence of the outer iterations.

For our specific sub-network solver each inner iteration corresponds to solv-
ing (19)-(20) with (18) frozen at its last computed value, so that the system
for Q and A becomes linear and is solved by Gauss elimination. This is a sim-
ple fixed-point strategy that could obviously be improved, but notice that this
would correspond to improving the black boxes that deal with each sub-network
and is thus not the point of this article. Indeed, a worst-case-scenario type of
reasoning suggests that, to assess the reliability of our coupling methodology,
the black boxes used for the sub-networks should be kept as simple as possible.

4. Numerical tests

In this section two academic examples are presented. They aim at studying
the performance of the iterative coupling algorithm based on Broyden’s method
in terms of reliability, not focusing in its convenience in terms of computing time
with respect to a monolithic approach since such comparisons would obviously
depend on the size of problem. For a given partition of the network, however, the
cost is roughly proportional to the number of inner iterations, which allows for
meaningful comparisons among the several possible variants of our algorithm.

The units used in this section are: cm for length, sec for time, and dyn/cm2

for pressure.

4.1. 1D-1D pipe decomposition
In this example a pipe is split into two identical pipes, and a flow rate wave is

imposed such that it travels from left to right across the domain. Figure 3 shows
the pipe, the boundary condition at the leftmost point and some dimensions.
The parameters that define the problem are L = 300, R0 = 1, h = 0.1, E =
200000, K = 0, ρ = 1, µ = 0 (the viscosity for the friction factor fr) and
P0 = 0, whereas the spatial discretization is given by ∆x = 0.2. For the time
integration two time steps are used ∆t1 = 0.0005 and ∆t2 = 0.005. With these
data the wave speed is c =

√
Eh

2ρR0
= 100 according to the Moens-Korteweg

approximation. The flow rate boundary condition is imposed and is of the
form Qbc(t) = Q0(1 − cos(2πt/T )), with Q0 = 2.5 and T = 0.36 for which
the wavelength resulted λ1 = 36. Although it is not relevant here, because the
wave does not reach the outflow boundary, on the rightmost point a reflecting
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boundary is considered, which is a large value of the terminal impedance when
compared with the impedance of the 1D segment.

Figure 3: Decomposition of a pipe into two vessels.

In the first part of the example the partitioned approach referred to in the
following corresponds to the imposition of pressure at both sides of the coupling
point, which means the system of non-linear equations is of the form

Qn = Qnp,1(Pn),

Qn = Qnp,2(Pn).

In this first analysis we employ Broyden’s method as the iterative solver.
The results obtained with the monolithic 1D segment are also presented and we
compare also the sensitivity to the presence of inner iterations and to the time
step.

Figure 4 shows the wave propagating throughout the domain for the case
∆t1 = 0.0005. The differences in the results obtained with monolithic and
partitioned approaches are negligible, as expected (since at all time steps the
interface system of equations converged). The converged results are also inde-
pendent on whether the inner iterations are allowed to converged or are limited
to one.

For the case ∆t1 = 0.0005, Figure 5 displays a comparison of the performance
of orthogonalized Broyden’s method with and without inner iterations. Observe
that the iterations increase when the wave traverses the coupling point. When
the inner iterations are allowed to converge, the outer iterations are significantly
reduced. Nevertheless, since the number of inner iterations to bring the residual
to zero (within tolerance) ranged between 2 and 3, it turns out to be convenient
to solve the problem without performing inner iterations. Inner iterations are
only necessary in the case of larger time steps, or in the case of more complex
sub-networks. In such cases, the absence of inner iterations led to diverging
iterative schemes, as will be shown in forthcoming sections.

Turning now to the convergence of the iterative solver when increasing the
time step from ∆t1 = 0.0005 to ∆t2 = 0.005, without inner iterations, Figure 6
shows that the increase in the time step does not significantly affect the number
of iterations needed at each time step. Nevertheless, one or two more iterations
are needed after the wave crosses the interface, which appears to arise from a
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Figure 4: Comparison between monolithic and partitioned approaches (simulation data: or-
thogonalized Broyden’s method, ∆t = 0.0005, pressure boundary conditions everywhere).

Figure 5: Performance of the iterative strategy with and without inner iterations (simulation
data: simple pipe case, orthogonalized Broyden’s method, ∆t = 0.0005, pressure boundary
conditions everywhere).
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numerical difficulty in dealing with the wake of the wave. This is related to the
time advancing scheme employed here. In spite of this, notice that a tenfold
increase in the time step changed the number of iterations only slightly. Large
time steps may require inner iterations to achieve convergence, as will be seen
in the hemodynamics regime.

Figure 6: Performance of the iterative strategy for time steps ∆t1 = 0.0005 and ∆t2 = 0.005
(simulation data: simple pipe case, orthogonalized Broyden’s method, pressure boundary
conditions everywhere, without inner iterations).

The last numerical experiment in this example is concerned with a modi-
fication in the setting of boundary conditions at the coupling point for both
partitions. A pressure–pressure, denoted now by P–P, boundary condition has
been analyzed so far. Now we will study other combinations, namely Q–Q, Q–P
and P–Q boundary conditions. Here inner iterations are not performed and the
time step is fixed at ∆t1 = 0.0005. In Figure 7 the four combinations are drawn.
The results are not conclusive, in the sense that no clear advantage of some of
the tested boundary conditions is apparent.

Finally, we compared in Figure 8 the performance of Broyden’s method
with and without orthogonalization. The number of iterations is clearly re-
duced when performing the orthogonalization procedure. In some tested cases,
this orthogonalization procedure may bring numerical instabilities to the itera-
tive algorithm. In such situations, Broyden’s method without orthogonalization
results in a more stable solver. However, whenever possible, it is recommended
to use the orthogonalized version of Broyden’s method.
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Figure 7: Iterations for different boundary conditions imposed (simulation data: simple pipe
case, orthogonalized Broyden’s method, ∆t = 0.0005, without inner iterations).

Figure 8: Performance of Broyden’s method with and without orthogonalization (simulation
data: simple pipe case, ∆t = 0.0005, without inner iterations).
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4.2. Tree-like structure
Consider the network shown in Figure 9, which is set up as follows. The flow

rate boundary condition of the previous example is imposed at the root of the
tree. All the terminal points (outflow boundaries) are reflecting ones (a large
value of the terminal impedance when compared with the impedance of the 1D
segments, in this case such impedance is 108). The geometrical characteristics
at the root (level 0) are L = 20, R0 = 1, h = 0.1R0, E0 = 200000, K = 0, ρ = 1,
µ = 0 (the viscosity for the friction factor fr) and P0 = 0. At the other levels the
lengths of the segments are maintained (equal to L), and the following alteration
of the properties is considered: Ei = E0+i∆E, ∆E = 50000, Ri = (1−i/10)R0,
i = 1, 2, 3, 4. The spatial discretization is defined by ∆x = 0.1 and the time
integration ranges from ∆t = 0.00025 to ∆t = 0.025. The tree is set up that way
so as to establish a somewhat similar structural topology concerning geometrical
and material behavior to the one encountered in the arterial tree, although it is
not strictly within the physiological regime.

Figure 9: Network structure, level-based decomposition and resulting sub-networks.

The decomposition of the network into sub-networks is done following a
level-based criterion as shown also in Figure 9 with an identification of the ten
coupling interfaces. The network is composed by five levels of vessels, from the
root to the leaves and the system is split into 11 sub-networks as seen in the afore
referred figure. The partitioned system is decomposed such that sub-networks
with different number of coupling points arise. For completeness purposes we
present the whole set of interface equations in the case of imposing pressure
boundary conditions everywhere. The (twenty) equations are ordered according
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to the interface to which they correspond, yielding

FnI1,1(Qn,Pn) = QnI1 −Qnp,I1,C1(PnI1, P
n
I2),

FnI1,2(Qn,Pn) = QnI1 −Qnp,I1,C2(PnI1, P
n
I3, P

n
I4, P

n
I5, P

n
I6),

FnI2,1(Qn,Pn) = QnI2 −Qnp,I2,C1(PnI1, P
n
I2),

FnI2,2(Qn,Pn) = QnI2 −Qnp,I2,C3(PnI2, P
n
I7, P

n
I8, P

n
I9, P

n
I10),

FnI3,1(Qn,Pn) = QnI3 −Qnp,I3,C2(PnI1, P
n
I3, P

n
I4, P

n
I5, P

n
I6),

FnI3,2(Qn,Pn) = QnI3 −Qnp,I3,C4(PnI3),

FnI4,1(Qn,Pn) = QnI4 −Qnp,I4,C2(PnI1, P
n
I3, P

n
I4, P

n
I5, P

n
I6),

FnI4,2(Qn,Pn) = QnI4 −Qnp,I4,C5(PnI4),

FnI5,1(Qn,Pn) = QnI5 −Qnp,I5,C2(PnI1, P
n
I3, P

n
I4, P

n
I5, P

n
I6),

FnI5,2(Qn,Pn) = QnI5 −Qnp,I5,C6(PnI5),

FnI6,1(Qn,Pn) = QnI6 −Qnp,I6,C2(PnI1, P
n
I3, P

n
I4, P

n
I5, P

n
I6),

FnI6,2(Qn,Pn) = QnI6 −Qnp,I6,C7(PnI6),

FnI7,1(Qn,Pn) = QnI7 −Qnp,I7,C3(PnI2, P
n
I7, P

n
I8, P

n
I9, P

n
I10),

FnI7,2(Qn,Pn) = QnI7 −Qnp,I7,C8(PnI7),

FnI8,1(Qn,Pn) = QnI8 −Qnp,I8,C3(PnI2, P
n
I7, P

n
I8, P

n
I9, P

n
I10),

FnI8,2(Qn,Pn) = QnI8 −Qnp,I8,C9(PnI8),

FnI9,1(Qn,Pn) = QnI9 −Qnp,I9,C3(PnI2, P
n
I7, P

n
I8, P

n
I9, P

n
I10),

FnI9,2(Qn,Pn) = QnI9 −Qnp,I9,C10(PnI9),

FnI10,1(Qn,Pn) = QnI10 −Qnp,I10,C3(PnI2, P
n
I7, P

n
I8, P

n
I9, P

n
I10),

FnI10,2(Qn,Pn) = QnI10 −Qnp,I10,C11(PnI10),

where Qn = (QnI1, . . . , Q
n
I10) and Pn = (PnI1, . . . , P

n
I10).

The results obtained with the partitioned structure using Broyden’s algo-
rithm, for ∆t = 0.0025, are shown in Figure 10, and coincide with those obtained
with the monolithic system. In this case the presence of reflections determines
a far more complex pattern of forward and backward travelling waves, imposing
the need for more advanced iterative algorithms. These results correspond to
imposing pressure boundary information to all sub-networks at each coupling
interface.

We first compare the performance as a function of the time step ∆t. In
Figure 11 the number of iterations throughout the simulation for ∆t1 = 0.00025,
∆t2 = 0.0025 and ∆t3 = 0.025 is shown, when the inner iterations are performed
until convergence. In this example, convergence of the inner iterations for the
larger time steps, ∆t = 0.0025 and ∆t = 0.025, is necessary for the algorithm
not to diverge. On the other hand, for ∆t = 0.00025 the number of iterations at
each time step is almost insensitive to the existence or not of inner iterations.

A last test is carried out in this example. Remember that all the results
so far in this section were obtained imposing a pressure boundary condition
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Figure 10: Results at coupling interfaces (simulation data: Broyden’s method, ∆t = 0.0025,
pressure boundary conditions everywhere).

Figure 11: Iterations until convergence for different time steps (simulation data: tree-like case,
Broyden’s method, pressure boundary conditions everywhere, with inner iterations).
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at both sides of each coupling points (at the two arriving sub-networks). Now
we change this to a flow rate boundary condition. In Figure 12 the results are
presented. From the larger number of iterations, we conclude that the case
with flow rate boundary conditions corresponds to a worse conditioned system
of non-linear equations. This case was set up allowing for inner iterations and
with ∆t = 0.0025. Further increase of the time step -of the order of ∆t = 0.025-
combined with a flow rate boundary condition did not result in convergent
iterative schemes.

Figure 12: Comparison between pressure and flow rate boundary conditions (simulation data:
tree-like case, Broyden’s method, ∆t = 0.0025, with inner iterations).

5. Application in hemodynamics

This section is devoted to the application of the iterative strategies devel-
oped in the previous sections to specific situations found in the modeling of the
cardiovascular system.

5.1. Vasculature network
Consider the 1D network shown in Figure 13, containing 150 vessels and

based on the arterial tree presented in [2]. The material and geometrical pa-
rameters are also set according to [2], and a viscoelastic model (not provided for
brevity) is adopted for the arterial wall. The outflow boundary conditions are
given by means of 0D Windkessel models calibrated to meet the main charac-
teristics of the vascular tree: flow distribution and equivalent compliances of the
different components of the system. The calibration of the 0D lumped models
is carried out based on the guidelines and data given in [15, 30]. The inflow
boundary condition at the heart was taken from [31] and re-scaled so as to have
mean flow rate Q = 5.6 lt/min and period T = 1.2 sec (see also Figure 13). This
regime implies that the system is at-rest, with 50 beats per minute. Though
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some details have been skipped for brevity, this network allows for an assessment
of the proposed methodology on an extensive systemic network.

5.2. Hierarchical decomposition
The whole arterial system is decomposed into 7 sub-networks as shown in

Figure 13. The decomposition follows a hierarchical approach in order to divide
the systemic circulation into the 6 larger sub-systems corresponding to the main
levels of circulation in the arterial network. Namely, the circulation through:
the Aorta artery, both Subclavian arteries, both Carotid arteries and both Iliac
arteries.

Figure 13: Arterial tree and hierarchical decomposition.

In Table 1 the number of degrees of freedom for each component after per-
forming the discretization is detailed. Recall that the condition number in this
kind of problems depends on the number of interface unknowns, and as said
above the interface problem just consists of 12 unknowns. As a consequence, it
is evident that, although we increase the number of unknowns in each compo-
nent, the number of iterations to reach the convergence is almost insensitive to
the refinement of the spatial discretizations of the sub-networks.

5.3. Numerical simulation
Here we focus on the comparison of different options for the situation corre-

sponding to the at-rest regime as commented above. Concerning the comparison
between the partitioned and the monolithic approaches, all the alternative iter-
ative methods proposed here lead to the same solution up to the precision given
by the convergence of the non-linear iterations among sub-systems (outer iter-
ations). Figure 14 presents the results, flow rate and pressure, of the iterative
(Newton-GMRES method in that figure) strategy for the six coupling points.
These results correspond to pressure boundary conditions at all coupling points
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Sub-component Degrees of freedom
Aorta 999
Right carotid 576
Left carotid 570
Right subclavian 1179
Left subclavian 1215
Right iliac 1143
Left carotid 1140

Interface problem 12

Table 1: Discretization of each component of the arterial network.

for all the sub-systems and to a time step ∆t = 0.0025, which is a reasonable
value for implicit methods in computational hemodynamics.

Remark 5. All the computations performed here were obtained taking into ac-
count inner iterations to evaluate the residuals in each vasculature sub-network.
Without inner iterations, as in the example treated in Section 4.2, the non-linear
solvers did not converge. In the present case, even with ∆t = 0.000025, it was
not possible to avoid the inner iterations in the computations.

Three cardiac cycles were simulated, and just the results of the last period
are plotted in Figure 14. Since the differences with the solution obtained with
the monolithic approach are negligible, these are not displayed. Notice from the
figure that each sub-network has a quite complex response. The main differences
in the solution can be appreciated at each pair of coupling points. This is the
result of the traveling and reflection of waves throughout the tree. Despite this,
the partitioned approach performs quite well for the flow regimes encountered
in hemodynamics as will be seen next.

Figure 15 compares the number of iterations used by Broyden’s method
(with initialization) with those of Newton-GMRES for the three cardiac cycles
simulated. The lack of preconditioning in Newton-GMRES leads to a larger
number of iterations until convergence. For Broyden’s method note the higher
number of iterations during the three systolic phases. In turn, Figure 16 shows a
comparison between the iterations performed by Broyden’s method for different
combinations of boundary conditions, namely: (i) pressure everywhere, (ii) flow
rate everywhere, (iii) flow rate to the aorta and pressure on the remaining part
of the tree and (iv) pressure to the aorta and flow rate on the remaining part of
the tree. The last two options are two representative cases of mixed boundary
conditions. Other combinations were tested, and the results were qualitative
and quantitative equivalent. We observe that the best performance is obtained
when setting pressure boundary conditions everywhere.

With the previous numerical evidences we can conclude that for the cardio-
vascular regimes the best combination solver–boundary condition is Broyden’s
method with pressure boundary conditions for all the coupling points.
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Figure 14: Results at coupling interfaces given by the partitioned approach (simulation data:
Broyden’s method, ∆t = 0.0025, pressure boundary conditions everywhere, with inner itera-
tions).

Figure 15: Iterations until convergence Broyden’s and Newton-GMRES methods (simulation
data: arterial network case, ∆t = 0.0025, pressure boundary conditions everywhere, with
inner iterations).
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Figure 16: Comparison for different boundary conditions imposed throughout the three cardiac
beats (simulation data: arterial network case, Broyden’s method, ∆t = 0.0025, with inner
iterations).
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Remark 6. In this case, the initialization of the matrix B in Broyden’s method
through the computation of the Jacobian, as commented in Remark 3, is manda-
tory for achieving convergence.

The use of a larger time step in Broyden’s method (∆t = 0.005) required, for
the cases analyzed here, a restart operation (see Remark 3) at the begining of
each cardiac cycle in order to get convergence. Also notice in Figure 17 that the
Newton-GMRES method converges even for larger time steps (∆t = 0.005 and
∆t = 0.01). These results are obtained when the sub-networks at each coupling
point receive pressure boundary conditions.

Figure 17: Broyden with restart of matrix B at each cardiac cycle and Newton-GMRES
for larger time steps (simulation data: arterial network case, pressure boundary condition
everywhere, with inner iterations).

For the sake of completeness we also tested the Gauss-Seidel method in this
problem. In the case analyzed, flow rate boundary conditions were imposed at
the aorta component, while the rest of the components received the pressure as
boundary conditions. This is a particular example in which we combine flow
rate and pressure boundary conditions. The time step used in the simulations
was ∆t = 0.0025.

In Figure 18 we plot the number of iterations needed by the Gauss-Seidel
method with relaxation to converge for several relaxation parameters from which
the optimal value can be inferred (0.6 < ς < 0.7). The performance of Broy-
den’s method in the same problem is clearly superior, as shown in the figure for
comparison purposes. Also, for ς close to 1, the Gauss-Seidel method presents
a much higher sensitivity with respect to the state of the heart ejection (con-
traction or expansion) than Broyden’s and Newton-GMRES methods.

6. Further comments

The iterative strategy presented in the previous sections accounts for the
partitioned -parallel- approach (except for the Gauss-Seidel method seen in the
last case of analysis in Section 5). In this sense, at each iteration it was seen
that it is possible to advance in time the different components in a completely
separated fashion. Consequently, we can think of the following alternatives that
go beyond the results featured in the present work
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Figure 18: Gauss-Seidel with relaxation and Broyden’s methods (simulation data: arterial
network case, flow rate boundary conditions for the aorta and pressure boundary condition
for the rest of the components, with inner iterations).

(i) setting different time marching schemes for the different components in
the system;

(ii) setting different time steps (if we consider the same time marching scheme
for all the sub-components);

(iii) setting different levels of time stepping (internal and external time-stepping).

Let us clarify the points (ii) and (iii) raised above with the example analyzed
in Section 4.1. Let us consider the simple case of a vessel divided into two sub-
networks for which we prescribe pressure boundary conditions at both sides of
the coupling point.

6.1. Setting different time steps for different sub-networks
Two different time steps will be considered ∆tL and ∆tR for the left and

right sub-networks, respectively. Two possibilities are tested: ∆tL > ∆tR and
∆tL < ∆tR, that is for M ∈ N, ∆tL = M∆tR and ∆tR = M∆tL. In this case we
can identify one global time discretization (max{∆tL,∆tR}), which is the time
step, owned by one of the sub-networks, used to interchange information among
them, and one local time discretization (min{∆tL,∆tR}) which is the time step
that the other sub-network will use to advance form n− 1 to n. Therefore, for
instance, if we take ∆tR = M∆tL the procedure at one single iteration is the
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following: given Pn,k the right sub-network computes Qnp,2(Pn,k) by perform-
ing one single time step given by ∆tR, whereas the left sub-network computes
Qnp,1(Pn,k) by marching along M time steps of length ∆tL. So, both compo-
nents communicate with each other through the outer iterations, updating the
values of the boundary conditions, according to the outer iterations which are
ruled by operators discretized in time with ∆tR. For the example we analyze
both cases of heterogeneous time stepping: (i) ∆tL = 0.005, ∆tR = 0.0005 and
(ii) ∆tL = 0.0005 and ∆tR = 0.005, as compared to the standard case (iii), in
which ∆tL = ∆tR = ∆t = 0.005.

Figure 19 shows the comparison of the iterations and flow rate among these
three situations. Observe that the number of iterations diminishes slightly when
we reduce the time step in one of the two components. As well, we observe that
the solution is almost the same, but for the differences appearing as a result of
the specific time-stepping used for the different sub-networks.

Figure 19: Solution at the coupling point. Comparison between the standard case (case (iii))
with cases using different time steps for the left and right sub-networks (simulation data:
Broyden’s method, ∆t = 0.005, pressure boundary conditions everywhere, without inner
iterations).

When we look at the solution in the left sub-network, say the middle point
(see Figure 20), we note that some spurious reflections arise at the coupling
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interface when we employ heterogeneous time stepping. These reflections are
not present in the case with homogeneous time-step, that is case (iii), while
they are more evident, about 2% of the incoming flow rate wave, in the case
(ii). Such reflections are due to a difference in the stiffnesses of the sub-networks.
As displayed in the details of the plots in Figure 20, when ∆tL > ∆tR (case
(i)) the right sub-network is stiffer than the left one and then a negative flow
rate spurious wave appears travelling backwards. Contrariwise, when ∆tR >
∆tL (case (ii)) the left sub-network is stiffer than the right one, and a positive
spurious wave takes place.

Figure 20: Spurious reflections travelling backwards in the left sub-network and comparison
of solutions at the middle point of the left sub-network (simulation data: Broyden’s method,
∆t = 0.005, pressure boundary conditions everywhere, without inner iterations).

6.2. Setting different levels of time-stepping
Another issue that turns out to be interesting when using this independent

time-marching schemes is that of performing communications not at every time
step, but at a certain number of time steps. For instance, we can have that
the time step used to advance the sub-networks from n − 1 to n is ∆tI (an
internal time step), while the time step at which the residuals are evaluated, in
the Broyden’s method, is ∆tE � ∆tI (an external time step). This proves to
be another capability of the decomposition strategy, motivated by the fact that
the internal time step may be restricted by numerical instabilities intrinsic to
the discretization method employed inside each black box, whereas the external
time step is such that it ensures convergence of the coupling iterative algorithm.

We tested this internal/external time-marching scheme for the simple case
studied in the previous section. The time steps used in the numerical tests
are ∆tI = 0.0005 and ∆tE = 0.005. Note that ∆tI is such that no numerical
oscillations appeared (see Figure 6), and this is the motivation for using this as
the internal time step. Nonetheless, the numerical scheme with time step ∆tE
proved to be convergent throughout the iterations (see again Figure 6), so this
is used as the external time step.
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Figure 21 shows a comparison of the solution at the coupling point (i) when
using a unique time step ∆t = 0.0005 and (ii) when using the internal/external
time steps combination. Notice that the solution does not exhibit the oscillations
seen in Figure 6 in the wake of the wave. Then, as expected, the internal time
step ∆tI remedied this numerical issue. Moreover, the external time step ∆tE
proved to be convergent in this case, as can be seen in the number of iterations
performed (and its comparison with the unique time step case) also presented
in Figure 21.

Figure 21: Solution at the coupling point. Comparison between the standard case when using
a single time step (case (i)) and the internal/external combined time steps scheme (case (ii))
(simulation data: Broyden’s method, ∆t = 0.0005, ∆tE = 0.005, ∆tI = 0.0005, pressure
boundary conditions everywhere, without inner iterations).

7. Conclusions

In this work a partitioned approach originally conceived to couple dimensionally-
heterogeneous models was developed and successfully tested in the context of
coupling black-box dimensionally-homogeneous (1D) blood flow models. This
procedure exhibited high flexibility in relation to the arbitrariness in the set-
ting of boundary conditions for the different partitions when compared with
Gauss-Seidel-based methods, for which a hierarchy in the setting of boundary
conditions should be established a priori. In addition, the results showed that
the iterative strategies proposed here are suitable for the simulation of wave
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propagation in compliant vessels with particular emphasis on its application to
computational hemodynamics.

Comparisons of the performance of the iterative algorithms when considering
different types of boundary information at the coupling interfaces and when
modifying the time step were also presented. Moreover, the methodologies were
applied to solve an extensive systemic network and to test the performance in
a situation consisting of a physiological cardiovascular regime, for which the
approach proved to perform effectively.

The results reported here suggest that the best choice for iterative coupling
of 1D blood flow models, in terms of solver–boundary condition combination,
consists of orthogonalized Broyden’s method (with initialization) with pressure
boundary conditions at all coupling points. If the simulation becomes unstable,
the simple cure is to reduce the time step. In very extreme cases some additional
stability can be gained by skipping the orthogonalization at the expense of slower
convergence.
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[1] J. Alastruey, K. Parker, J. Peiró, S. Byrd, S. Sherwin, Modelling the circle
of willis to assess the effects of anatomical variations and occlusions on
cerebral flows, J. Biomech. 40 (2007) 1794–1805.

[2] A. Avolio, Multi–branched model of the human arterial system, Med. Biol.
Engrg. Comp. 18 (1980) 709–718.

[3] P. Bruinsma, T. Arts, J. Dankelman, J. Spaan, Model of the coronary circu-
lation based on pressure dependence of coronary resistance and compliance,
Basic Res. Cardiol. 83 (1988) 510–524.

[4] L. Formaggia, D. Lamponi, A. Quarteroni, One-dimensional models for
blood flow in arteries, J. Eng. Math. 47 (2003) 251–276.

[5] L. Formaggia, A. Quarteroni, A. Veneziani, Cardiovascular Mathematics,
volume 1 of Modeling and simulation of the circulatory system (chapter
10), Springer, Milano, 2009.

[6] Y. Huo, G. Kassab, A hybrid one-dimensional/womersley model of pulsatile
blood flow in the entire coronary arterial tree, Am. J. Physiol. Heart. Circ.
Physiol. 292 (2007) H2623–H2633.

[7] R. Kufahl, M. Clark, A circle of Willis simulation using distensible vessels
and pulsatile flow, J. Biomech. Engrg. 107 (1985) 112–122.

31



[8] M. Olufsen, Structured tree outflow condition for blood flow in larger sys-
temic arteries, Am. J. Physiol. 276 (1999) H257–H268.

[9] M. Olufsen, C. Peskin, W. Kim, E. Pedersen, A. Nadim, J. Larsen, Numer-
ical simulation and experimental validation of blood flow in arteries with
structured-tree outflow conditions 28 (2000) 1281–1299.

[10] J. Reichold, M. Stampanoni, A. Keller, A. Buck, P. Jenny, B. Weber, Vas-
cular graph model to simulate the cerebral blood flow in realistic vascular
networks, J. Cereb. Blood Flow Metab. 29 (2009) 1429–1443.

[11] P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, N. Stergiopulos, Val-
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dimensional) haemodynamic model of the human arterial system, in: Pro-
ceedings of the European Congress on Computational Methods in Applied
Sciences and Engineering (ECCOMAS 2000), Barcelona, Dordrecht, 2000,
pp. 1–13.

[29] S. Urquiza, Hemodinámica computacional del sistema arterial humano (in
spanish), Ph.D. thesis, Instituto Balseiro, Centro Atómico Bariloche, Bar-
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