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SUMMARY

This work presents a generic and efficient black-box approach for the strong iterative coupling of dimen-
sionally heterogeneous flow models in computational hemodynamics. A heterogeneous model of the cardio-
vascular system is formed by several vascular black-box components, which are connected through coupling
equations. The associated system of equations is solved using the Broyden algorithm. In addition, a multiple
time-stepping strategy is introduced to meet different component requirements. The proposed algorithm is
employed to split a 3D–1D–0D closed-loop model of the cardiovascular system into corresponding black-
box components standing for the 3D (specific vessels), 1D (systemic arteries/peripheral vessels), and 0D
(venous/cardiac/pulmonary circulation) components. Examples of application are presented showing the
robustness and suitability of this novel approach. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, several efforts have been directed at integrating different mathematical models of
the cardiovascular system (CVS) [1–4]. Hence, the use of dimensionally heterogeneous models, also
known as multi-scale analysis [5, 6], has become customary in blood flow simulations [7–15].

In contrast to stand-alone 3D models, dimensionally heterogeneous models allow to incorporate
in a natural manner the complex effects of the vasculature present upstream and downstream of
an artificially isolated 3D region, that is, to consider the hemodynamics environment posed by the
global state of the CVS. In this sense, nonstationary conditions as those encountered when consid-
ering regulation mechanisms [11] or analyses in multiple cardiovascular scenarios [12] are clear
examples for which the dimensionally heterogeneous modeling provides a natural and consistent
approach in order to account for the dynamically evolving environment of each 3D flow model.
In these cases, stand-alone 3D models would require boundary data, which has to be somehow
provided (i) for all the artificial interfaces generated by the isolation of the 3D geometry and (ii) for
the different varying conditions. Either in cases with several 3D artificial inlets/outlets (consider,
for instance, the full aorta artery, or multiple 3D models in the same analysis) or in the nonperiodic
scenarios mentioned previously, this is nowadays unfeasible.
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The literature about mathematical models of vascular components is vast and will be referred
to in due course. Specifically, we understand the CVS as formed by the coupling of components,
each of which accounts for different levels of circulation, for example, local circulation in arterial
vessels, systemic circulation, peripheral circulation, and cardiac circulation. These components are,
most of the time, associated with black-box codes specifically developed to deal with their own
mathematical characteristics.

A black-box partitioned approach to the modeling of the CVS is desirable in view of the
following advantages:

(i) no need for full access to the computational codes;
(ii) based on simple input/output relations of well-validated codes;

(iii) impact of nonlinearities of each component bounded to each specific component; and
(iv) time discretization according to each component requirements.

It is worthwhile to exemplify the last two points listed earlier in order to understand the relevance
of the black-box approach. Consider that the most expensive component is nonlinear and takes three
to four nonlinear iterations to converge in a standard simulation (e.g., the Navier–Stokes equations
in the present context). Consider also that this component is coupled to a highly nonlinear com-
ponent, but far cheaper to be solved, which takes 10–15 iterations to converge (e.g., the 0D model
for the cardiac valves in the present context). The monolithic approach forces the 3D model to be
solved jointly with the 0D model more times than needed, making the monolithic computation more
expensive than the iterative counterpart. A similar situation occurs when choosing the time step. In
a monolithic setting, the time step is necessarily the same for all the components. This fact may
signify unnecessary expensive computations if the required time step for a 3D model to advance
in time is larger than the time step needed by the rest of the (cheaper) components. In contrast to
the monolithic approach, in a black-box setting, these restrictions on the time step, which depend
upon the time-advancing schemes chosen for each component, do not affect the time step of the
coupled problem.

The iterative solution of heterogeneous coupling in computational hemodynamics has been
seldom addressed in the literature. The first approaches made use of explicit numerical schemes
in time to address the interaction between the heterogeneous models [1, 2, 6, 16]. In these
works, coupling strategies are based on explicit methods as well as on implicit Gauss–Seidel-like
methods, and eventually in the latter case, subrelaxation is considered. The common feature of
those approaches is that it is necessary to define a hierarchy in the network of components regarding
boundary data. For instance, assume that we are coupling a 1D model with a 3D model and that we
use a Gauss–Seidel method (the same holds for Jacobi or for explicit methods) to solve the problem
in an iterative manner. Further, suppose that we decide to impose the pressure as boundary data to
the 1D model. This model will give back a certain flow rate that is to be imposed as boundary data
on the 3D model, from which a certain pressure is going to be retrieved to be subsequently applied
to the 1D model, and so on. Clearly, this way of handling the problem poses restrictions on the
nature of boundary data for the different components. This is known in the domain decomposition
literature as subdomain coloring and is not a minor issue if we have to couple several components
with multiple coupling interfaces each. Besides, assuming that this issue has been somehow solved,
recall that explicit methods have poor convergence properties, and the same happens with the
Gauss–Seidel-like methods. That is, it is relatively easy to find practical situations in which these
methods fail to converge [17].

Recent developments of more sophisticated iterative strategies for the strong coupling of hetero-
geneous components have been presented in [18]. This has been applied in [9] to the decomposition
of 1D networks for the solution of the arterial blood flow and in [17] to the decomposition of
hydraulic networks in the context of incompressible fluids and rigid pipes. In the latter work,
extensive comparisons between the Gauss–Seidel, Newton–Generalized Minimal Residual method
(GMRES), and Broyden methods are presented, from which it is concluded that the Broyden method
turns out to be the best choice in terms of computational cost to solve dimensionally heterogeneous
flow models.
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In this work, we develop and test a methodology to address the solution of a dimensionally
heterogeneous closed-loop model of the CVS through the iterative solution of stand-alone compo-
nents, borrowing the ideas from [17]. Specifically, we propose an algorithm based on the Broyden
method with the possibility of setting different time steps for the different components. These
components stand for blood flow in specific vessels (3D models), wave propagation phenom-
ena in systemic arteries (1D models), and peripheral, venous, cardiac, and pulmonary circulations
(0D models) and form a 3D–1D–0D closed-loop model of the CVS.

The core idea of the strategy presented here is the following: components used in the descrip-
tion of the CVS are connected through coupling (interface) equations; the problem is rewritten
in terms of interface unknowns; an input/output reasoning is applied to define the character of the
interface unknowns for each black-box component; and an iterative method is used to solve the asso-
ciated system of nonlinear equations, the Broyden method in the current work. The performance and
robustness of the proposed methodology are assessed through several examples of application.

The work is organized as follows. In Section 2, the mathematical models are briefly described,
and in Section 3, the algorithm for the iterative solution is presented. The application to practi-
cal situations is given in Section 4, and further discussions and the final remarks are outlined in
Section 5.

2. HETEROGENEOUS MODELING

In this section, we briefly describe the main features of the components used in the composition of
the CVS and the interface equations used to couple such components.

2.1. Components in the vascular modeling

The closed-loop circulation is described in terms of three classes of components:

High-pressure (HP) component: This component is composed of the arterial network and periph-
eral beds, for which we use 1D and 0D (lumped) representations, respectively. The systemic
circulation is modeled as the flow of an incompressible fluid in compliant vessels [19–21]. At
each terminal vessel, a Windkessel element is considered to model the peripheral circulation
[20]. The topological configuration and data set (based on [22]) are taken from our previous
works [1, 9, 10, 12].

Low-pressure (LP) component: This component closes the cardiovascular circuit incorporating
venules, veins, cavas, atria, ventricles, and valves, modeled through 0D models. The venous and
pulmonary circulations are modeled using standard analog electric circuit models as in [23]. The
four cardiac chambers are introduced following also [23]. The models for the four valves are
the ones presented in [24]. The data for the different vascular regions were taken from [23, 24],
correspondingly.

Specific-vessel (SV ) component: This component stands for specific vessels of interest in which
blood flow is to be assessed in detail such as bifurcations and aneurysms, among others. The blood
flow is modeled using the Navier–Stokes equations in deforming domains [25,26]. The structural
behavior is considered through independent ring models [3]. Standard or patient-specific arterial
vessels can be considered in the model.

This three-component closed-loop description of the CVS is schematically shown in Figure 1.
Hereafter, for notational simplicity, we assume that we have just one SV component in the model.

Although we chose to name the components as HP and LP, these components are not strictly
high-pressure and low-pressure components, respectively. Indeed, in the HP component, we include
all the systemic arteries (high-pressure part) and the peripheral beds, in which the pressure drops to
the level of the venous system. Likewise, in the LP component, we have the venous system (low-
pressure part) and the cardiac chambers, in which the left ventricle raises the pressure to the level of
the arterial system. Then, the nomenclature must be understood by virtue of the main characteristic
of the components.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
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Figure 1. Representation of the CVS through heterogeneous components. The closed-loop is formed by the
LP–HP components, whereas in this case, the SV component is embedded in the HP one.

The closed-loop is formed by the LP and HP components through three coupling interfaces. The
first is placed at the aortic root right after the aortic valve (ao). The second and third interfaces cor-
respond to the upper (ub) and lower (lb) body parts. The upper and lower body part connections
(Figure 1) gather all the corresponding Windkessel terminals from the arterial network (see also [8]
for a full description of this model). In the SV component, there are C coupling interfaces shared
with the HP component, which correspond to the artificial inlets/outlets caused by the geometrical
isolation of the vessel from the rest of the system. Therefore, the total number of coupling interfaces
in the network is N D 3CC .

To end this section, recall that the dimensionally heterogeneous coupling entails dealing with
defective information for the SV component. In the present work, this defective problem has been
tackled using the variational approach presented in [1], which leads to continuity of the normal com-
ponent of the traction force between the SV and HP components at a given coupling interface, while
considering homogeneous the tangent component of the traction force for the SV at those interfaces.

2.2. Coupling equations and input–output data

At each coupling interface between two components, we define two degrees of freedom: flow rateQ
and pressure P . Mass conservation and force equilibrium hold, then Q and P are continuous quan-
tities across these interfaces. The system is fully described by the vector of interface unknowns
X D .Q, P/, where Q D

�
Qao,Qub,Qlb, fQv,ig

C
iD1

�
and P D

�
Pao,Pub,Plb, fPv,ig

C
iD1

�
.

Component-wise, we identify the following degrees of freedom

QHP D
�
Qao,Qub,Qlb, fQv,ig

C
iD1

�
, PHP D

�
Pao,Pub,Plb, fPv,ig

C
iD1

�
,

QLP D .Qao,Qub,Qlb/ PLP D .Pao,Pub,Plb/,
QSV D

�
fQv,ig

C
iD1

�
PSV D

�
fPv,ig

C
iD1

�
.

Our black-box approach relies on the following input/output reasoning for each component: From
the component interface unknowns vector XX D .QX, PX/, we define those quantities considered
as input data IX and those considered output data OX, X D HP,LP,SV. For the SV component,
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Table I. Input and output data for the different components
(see Figure 1 for notation).

Component

Input data

HP IHP D
�
Pao,Pub,Plb, fPv,i g

C
iD1

�

LP ILP D .Pao,Qub,Qlb/
SV ISV D .Pv,1,Pv,2, : : : ,Pv,C /

Output data

HP OHP D
�
Qao,Qub,Qlb, fQv,i g

C
iD1

�

LP OLP D .Qao,Pub,Plb/
SV OSV D .Qv,1,Qv,2, : : : ,Qv,C /

it is well known that the most natural choice for the input data in the present setting is to take
Neumann boundary conditions on every inlet/outlet of the domain. For the HP component, our pre-
vious experience dictates that the most convenient choice from the performance point of view is to
take the pressure as input data [9]. Finally, for the LP component, the natural choice according to
the morphology of the component (Figure 1) is to consider as input data the flow rate at the ub and
lb connecting points and the pressure at the ao connecting point. These choices are summarized in
Table I.

In abstract operator form, the governing equation for component X, X D HP,LP,SV, can be
written as Rt

X.XX/ D Rt
X.QX, PX/ D 0. Reordering the functional dependence, we can write

F tX.OX, IX/ D 0, and in explicit form, each equation reads OX D GtX.IX/. Hence, solving com-
ponent X implies obtaining the output OX from the given input data IX. The system of equations to
be solved is coupled (Figure 1 and Table I) and can be written as

OHP � GtHP.IHP/D 0,

OLP � GtLP.ILP/D 0, (1)

OSV � GtSV.ISV/D 0.

The number of coupling equations in (1) is 2N ,N being the number of coupling interfaces. Recall
that the number of interface unknowns is also 2N . This is because each component provides one
equation per interface corresponding to the output data defined at such interface. So two equations
are provided in total per interface. Thus, by construction, the system is always closed.

Remark 1
Operators GtX, XD HP,LP,SV, in (1), are time dependent and nonlinear, and entail dealing with ordi-
nary differential equations, 1D and 3D partial differential equations, correspondingly. Thus, to solve
each single component, it is necessary to apply both time discretization and linearization procedures
for each component. In the HP and SV components, a spatial discretization is also needed.

2.3. Numerical approximation

In all components, time discretization is accomplished using the Crank–Nicolson method, and
nonlinearities are treated using Picard iterations. For the HP component, spatial discretization is
performed using finite elements for the equations written along the characteristics [3], whereas for
the SV component, the spatial discretization is performed using linear finite elements in space with
bubble enrichment for the velocity field [1, 3].

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
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3. DECOMPOSITION STRATEGY

3.1. Broyden iterative algorithm

Our approach consists in using the Broyden-like methods to solve (1). Such methods rely on the
evaluation of the residual of the system of equations. For a nonlinear equation R.x/ D 0, the plain
Broyden method reads [27, 28]

In our context, xj D Xj D .Qj , Pj /, and the algorithm requires a sufficiently good approxima-
tion of the Jacobian matrix as initial matrix B0, after which a rank 1 update is performed at each
iteration (see step 7). The convergence criterion depends on the relative residual (tolerance ") and
on the absolute residual (tolerance "a). Step 6 (and also the initial step 2) requires the evaluation of
the residual rj , which is

rj D

0
B@
r
j
HP

r
j
LP

r
j
SV

1
CAD

0
B@

Rt
HP.x

j /

Rt
LP.x

j /

Rt
SV.x

j /

1
CAD

0
BBB@

Oj
HP � GtHP

�
IjHP
�

Oj
LP � GtLP

�
IjLP
�

Oj
SV � GtSV

�
IjSV
�

1
CCCA . (2)

As the problem is time dependent, we have to go through this algorithm at each time step. Then we
need to provide the matrix B0 at each new time step nC 1, say B0,nC1. This is called the initializa-
tion of the Broyden algorithm. The strategy followed in the present work is to take B0,nC1 D Bn,
which is equivalent to using a preconditioner for the nonlinear problem [28]. In the present work,
at the first time step, the matrix B0 is initialized with the Jacobian of the system computed by finite
differences, that is,

B0kl D
Rk

�
x0
l
C ıx0

l

�
�Rk

�
x0
l

�

ıx0
l

k, l D 1, : : : , 2N , (3)

where Rk is the kth component of the vector operator R and ıx0
l
D �x0

l
, l D 1, : : : , 2N , with �

small enough.

3.2. Inner and outer iterations

The iterations performed by the Broyden algorithm are called outer iterations (or the Broyden iter-
ations). Whenever a component is nonlinear, we need to perform the inner iterations to assess the
residual in each specific equation. For example, given the datum at iteration j , IjLP, and the output
at the same iteration j , Oj

LP, we have to iterate until we reach the corresponding fixed point in the

LP component from which we retrieve the corresponding output GtLP
�

IjLP
�

, and then we measure

the residual as in the second line of (2).

Remark 2
Evaluating the residual in a certain component is a local operation, that is, they do not depend on
the rest of the components.
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3.3. Local and global time stepping

After time discretization is performed, we introduce a global time step �tG , which determines
the time instants at which the system of equations (1) is satisfied. Independently, we introduce a
local time step �tL,X, as the result of the time discretization in each component X D HP,LP,SV.
This local time step may depend upon stability requirements of each specific component. Thus,
we can weaken the continuity equations by enforcing them at larger time steps, say �tG >

�tL,LP D �tL,HP D �tL,SV; or we can have a different time step for different components, say
�tG D�tL,SV >�tL,HP D�tL,LP.

3.4. Generic algorithm

According to the previous sections, we set up a generic version of the decomposition strategy
discriminating outer and inner iterations as well as global and local time steps.

This algorithm is complemented by the following procedure for the evaluation of the resid-
ual using substepping and inner nonlinear iterations. Thus, the full assembling of the system
of equations is performed through the assembling of the equations corresponding to the local
components.

For outer iterations, the convergence tolerance is "O ; and for inner iterations, the convergence
tolerance is "I ,X, XD HP,LP,SV.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
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Figure 2 displays the flow chart for the iterative algorithm featuring the global (coupling) time
step, the local (component) time steps, the outer (coupling) iterations, and the inner (component)
iterations. In that figure, we considered a hypothetical situation with three components.

A more complex version of the iterative algorithm is achieved by incorporating interpolation
between global time steps, that is, replacing Algorithm 3 by the following

In step 5 of Algorithm 4, function fL,aX provides an estimate of intermediate boundary conditions
xj ,nCmX for the components as a function of xn and xj ,nC1. With this modification, it is expected
to have a progressive variation of the datum for the intermediate local time steps (see step 5 in
Algorithm 3).

3.5. Computational efficiency

Unlike classical domain decomposition methods, in this kind of problems, we deal with a distinc-
tive feature: the number of interface unknowns in the problem is relatively small (two interface
unknowns per coupling interface). Hence, the computational cost expended in carrying out the steps
in Algorithm 2 and in Algorithm 2 is negligible (but for step 7 in Algorithm 3), when compared
with the evaluation of the component residuals (step 7 in Algorithm 3). Also, the message passage
cost is negligible, because the amount of data to be passed to and retrieved from the components is
small. Under these considerations, there is almost no overhead, and the computational cost can be
expressed only in terms of component iterations. More precisely, the cost of assessing the residual
of the most expensive component (step 7 in Algorithm 3) is equivalent to the computational cost
of a single outer iteration of the entire problem (steps 6–9 in Algorithm 2 including the message
passage). This is why in the examples presented in the next section, we can understand the number
of iterations as a measure of the performance of the methodology.

Let us analyze three common examples. Firstly, consider a simulation involving just the HP–LP
components for the model of the CVS. In this case, the cost is driven by the HP component, whereas
the cost of the LP component and of the subsidiary steps in Algorithm 2 are negligible. Secondly,
consider the previous case coupled with a single SV component. Clearly, using the arguments as
before, it is found that the computational cost is driven by the SV component. In these two scenar-
ios, no load balancing problems arise. Finally, consider that we have more than one SV component
coupled to the HP–LP system. In this situation, some overhead may occur depending upon the size
of the different SV components and its relation to the computational resources allocated to each of
them. Load balancing may be an issue when performing simulations involving multiple expensive
SV components, and in a black-box setting, it has to be mitigated at the pre-processing stage when

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
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Figure 2. Iterative algorithm featuring global/local time steps and outer/inner iterations.
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partitioning the network into the basic components and allocating the corresponding computational
resources. This essential point is being a matter of current research.

4. HEMODYNAMICS SIMULATIONS

In all the simulations, we use Algorithm 2. Unless stated otherwise, four cardiac cycles were sim-
ulated. The convergence tolerances are "O D 1 � 10�6, "I ,X D 1 � 10�7, X D HP,LP,SV, and
"a D 1 � 10�14. Simulations are characterized by the global time step �tG and the local ratios aX,
X D HP,LP,SV. In all cases, the cardiac period is T D 1s. The number of degrees of freedom in
the HP component is 16, 776, and in the LP component 46. For the HP and LP components, a direct
solver is used to solve the algebraic system of equations, and for the SV component, a GMRES algo-
rithm is used. Recall that the focus of the following applications is the analysis of the performance
of Algorithm 2.

In all the examples, we fix the spatial discretization of the components (specifically of the HP and
SV components) and perform sensitivity analyses with respect to the global and local time steps.
Notice that, unlike classical domain decomposition methods, the number of interface unknowns
in the system of equations (2) does not depend on the spatial discretization in the components.
As a consequence, the proposed iterative method is insensitive to the number of internal degrees
of freedom of each component. A mathematical proof of this result for linear problems is given
in [29].

In the present work, we make use of implicit numerical methods for solving the time-advancing
equations in the different component. Therefore, there is no CFL-like constraints over the local
time steps.

4.1. 1D–0D blood flow modeling in the entire cardiovascular system

The first example is used to explore the iterative strategy for the closed-loop HP–LP system (no SV
component is included in the present analysis).

In Tables II and III, the results of the simulations are summarized by combining Algorithms 2 and
3. We have included the case in which we solve the HP–LP system in a monolithic manner (consid-
ering �t D�tG and tolerance "D "O ). Notation .�/.L/ indicates that a single Picard inner iteration
was performed. This is equivalent to considering the component as a linear one. Observe that this
is related to the inner iterations, which are independent from the outer iterations that drive the con-
vergence of the entire system (1). Running the HP component as a linear component is possible; on
the contrary, running the LP component as a linear one makes the iterative method to diverge in all
tested cases. This phenomenon is caused by the nondifferentiable behavior of cardiac valves around
the opening/closing phases. Lack of convergence of the fixed point iterations in valve dynamics
turns the LP component unstable, from which the iterative method for the coupled problem fails
to converge.

Per cardiac beat, we have Nci as the total number of coupling iterations between the two compo-
nents, Nss,X the number of times component X is solved, and Nss,HP–LP the number of times that the
monolithic HP–LP system is solved. A crashed simulation is indicated by ‘–’ (LP inner iterations
did not converge in all these cases). Analogously, notation�.L/ indicates that the simulation crashed
as a consequence of the lack of convergence of the LP component, which is also the same in the
case of running the HP component as a linear one..

The main outcomes from Tables II and III are summarized here:

� The coupling iterations per global time step, that is, Nci
N�tG

, are almost insensitive to �tG ,

whereas they are sensitive to the nonlinear/linear character of the HP component.
� There is no relation between the number of times the HP and LP components are solved.

The nonlinearities of the latter component are bounded to that component. Furthermore, it
is possible to run the HP component as a linear component and reduce computational cost.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2012)
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Table II. Iterative and monolithic solution of the HP–LP system for several combinations
of global and local time steps (�tG , aHP, and aLP specified in each case; in the monolithic

case �t D�tG).

Time stepping Iterative solution Monolithic solution

�tG Œs� aHP aLP Nci

�
Nci
N�tG

�
Nss,HP Nss,LP Nss,HP–LP

0.0005 1 1 8238 (4.12) 21,313 25,707 11,564
1 1 10,414 (5.21) 10,414.L/ 30,581

0.0010 1 1 4160 (4.16) 11,779 14,082 6519
1 1 5912 (5.91) 5912.L/ 18,271
1 2 4071 (4.07) 11,336 46,952
1 2 5333 (5.33) 5333.L/ 62,011
2 2 3766 (3.77) 30,954 43,829

0.0020 1 1 2307 (4.61) 7368 7987 3750
1 1 3034 (6.07) 3034.L/ 9585
1 2 2409 (4.82) 7324 31,194
1 2 3052 (6.10) 3052.L/ 39,755
2 2 2057 (4.11) 18,217 26,689
1 4 2338 (4.68) 7186 53,960
1 4 2985 (5.97) 2985.L/ 69,337
2 4 2062 (4.12) 18,268 47,788
4 4 2063 (4.13) 33,928 47,830

Per cardiac beat,Nci denotes the total number of coupling iterations among components,N�tG is

the number of global time steps
�
T
�tG

�
, Nss,X is the number of times component X was solved,

and Nss,HP–LP is the number of times the coupled HP–LP system was solved. Notation .�/.L/

implies that the HP component was run as a linear component regarding the inner iterations (in
such case aHP D 1 always). The symbol ‘–’ denotes lack of convergence, and notation .�/.�/

indicates that the solution is far from the actual solution (because of the time-stepping strategy).
For each �tG , the cheapest simulation is highlighted in bold.

� The nonlinearities of the LP are responsible for the lack of convergence of the monolithic sys-
tem at large time steps. Substepping allows to circumvent this issue by setting adequate time
steps according to each component requirements.
� Cheaper simulations are obtained using the largest possible time step for the most expensive

component (in this case, the HP component), whereas the time step should be reduced in the
rest of the components (in this case, the LP component).
� A measure of the computational cost for the solution of the coupled system is given, in this

case, by the number of iterations Nss,HP. The physics captured by the different simulations are,
roughly speaking, equivalent and independent of the time step. The lack of convergence of the
monolithic strategy, which limits the time step to 0.0020 s, is thus just a numerical artifact.
The proposed iterative method already reduces the cost from Nss,HP D 3750 to Nss,HP D 2962
for �tG D 0.0020 s (21% reduction, with interpolation; see succeeding discussions), but by
exhibiting convergence up to �tG D 0.0080 s, it allows for further reduction of the cost to
Nss,HP D 1054 (72% reduction, with interpolation; see succeeding discussions).

For the sake of completeness, we report in Table IV the wall time spent in solving four cardiac
cycles by some representative cases taken from Tables II and III. The components run in parallel
and communicate through Message Passing Interface (MPI) protocol. Each component was solved
sequentially in an Intel(R) Core(TM) i7 Extreme 975 Processor running at 3.33 GHz. For each
global time step, it is possible to accelerate the solution of the HP–LP system through the use of
the iterative approach without deteriorating the quality of the solution. In Figure 3, a comparison
between the iterative and monolithic solutions is performed. Several representative cases are dis-
played: with equal and different global and local time steps, and also with different time steps and
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Table III. (Continuation of Table II) Iterative and monolithic solution of the HP–LP system
for several combinations of global and local time steps (�tG , aHP, and aLP specified in each

case; in the monolithic case �t D�tG).

Time stepping Iterative solution Monolithic solution

�tG Œs� aHP aLP Nci

�
Nci
N�tG

�
Nss,HP Nss,LP Nss,HP–LP

0.0040 1 1 – – – –
1 2 1398 (5.59) 5154 20,528
1 2 1802 (7.21) 1802.L/ 26,679
2 2 1104 (4.41) 12,154 16,358
1 4 1418 (5.67) 5215 36,669
1 4 – –.L/ –
2 4 1080 (4.32) 11,886 28,145
4 4 1094 (4.38) 19,507 28,611
1 8 1415.�/ (5.66) 5174 65,301
1 8 1783.�/ (7.13) 1783.L/ 82,664
2 8 1078 (4.31) 11,873 50,257
4 8 1083 (4.33) 19,295 50,475
8 8 1093 (4.37) 36,017 51,025

0.0080 1 1 – – – –
2 2 – – –
1 4 788 (6.30) 3900 23,210
1 4 1156 (9.25) 1156.L/ 34,078
2 4 594 (4.75) 8132 17,769
4 4 590 (4.72) 13,008 17,640
1 8 794 (6.35) 3893 41,270
1 8 1157.�/ (9.26) 1157.L/ 60,083
2 8 594 (4.75) 8150 31,377
4 8 595 (4.76) 13,129 31,447
8 8 595 (4.76) 21,234 31,352

See notation in Table II.

eliminating the inner iterations for the assessment of the residual in the HP component. Observe that
even for quite large time steps, the model predicts the same behavior.

The counterpart to Tables II and III, now considering Algorithm 4, instead of Algorithm 3, with
linear interpolation between global time steps, that is, xj ,nCmX D �xnC.1��/xj ,nC1, � D 1�mX,
is presented in Tables V and VI for the cases in which aX > 1, XD HP or XD LP.

Notice that all the numbers in the tables presented here are slightly smaller than the numbers
reported in Tables II and III. Therefore, we conclude that there is room for gain by exploiting inter-
polation when performing multiple time-stepping strategies. In average, a reduction up to 10%
was obtained in the computational cost when using interpolation. In terms of results, the solu-
tion obtained with Algorithms 2–4 is closer to the monolithic solution than the one obtained with
Algorithms 2 and 3 when we make use of different time steps for the different components.

4.2. 3D–1D–0D blood flow modeling in a cerebral aneurysm

In this case, we use the same HP–LP system as in Section 4.1 and couple a SV component repre-
senting a patient-specific cerebral aneurism located at the middle cerebral artery. Clearly, the com-
putational cost is driven by the SV component for which an adequate time step is �tL,SV 6 0.002.
For this application, we limit ourselves to a few number of simulations to compare the performance,
because the goal here is to show the applicability in cases of potential medical interest.

The geometry of the aneurism is reconstructed from a set of DICOM (Digital Imaging and
Communication in Medicine) images following standard segmentation procedures. The number of
degrees of freedom in the SV component is 165, 046.
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Table IV. Wall time taken by the iterative and monolithic approaches to solve
the HP–LP system for several combinations of global and local time steps (�tG ,
aHP, and aLP specified in each case; in the monolithic case�t D�tG). For each

�tG , the cheapest simulation is highlighted in bold.

Time stepping Simulation time Œs�

�tG Œs� aHP aLP Iterative solution Monolithic solution

0.0005 1 1 4369 2552
1 1 2119.L/

0.0010 1 1 2311 1441
1 2 2089
1 2 1151.L/

0.0020 1 1 1448 832
1 2 1404
1 2 615.L/

1 4 604.L/

0.0040 1 2 1006 –
1 4 971
2 4 2271

0.0080 1 4 760 –
1 4 222.L/

1 8 706
1 8 216.L/

Table VII summarizes the simulations performed in this case. The cheapest simulation, given that
aSV D 1, is obtained when aHP D 2 and aLP D 2 for both time steps (�t D 0.001 and �t D 0.002),
which is consistent with the conclusions obtained from the previous section.

The number of iterations showed to be insensitive to the multi-stepping strategy used (once �tG
has been fixed), as concluded from Table VII. Moreover, the convergence history is approximately
constant throughout the entire cardiac cycle. For �tG D 0.001, the number of iterations is smaller
than for �tG D 0.002, but the computational cost turns to be less in the latter case because the
reduction in Nci

�tG
does not make up for the increase in the number of times per cardiac cycle the SV

component has to be solved (see last column in Table VII).
In this case, the measure of the computational cost for the solution of the coupled system is given

by the number of iterations of the most expensive component, that is, Nss,SV.
Figure 4 shows the geometry of the patient-specific vessel and the results at all the coupling

interfaces. These results correspond to the cases aHP D 2, aLP D 2, and aSV D 1 and to the last
cardiac cycle.

Finally, in Figure 5, the local structure of blood flow is presented at three characteristic instants
corresponding to the last cardiac cycle.

4.3. 3D–1D–0D blood flow modeling in the arm

This last example is used to show an application in which several SV components are consid-
ered within the HP–LP system seen before. These components correspond to the five arterial
branchings taking place at one of the arms. Each bifurcation is constructed such that it matches
the lumen radii and arterial wall parameters with the corresponding artery in the HP component.
The aim here is to show the robustness in the solution process even for a large number of SV com-
ponents (see Figure 6 for a schematic placement of the bifurcations in the region of interest). In
this case, the computational cost should be carefully evaluated because the number of degrees of
freedom in the SV components ranges between 85,365 and 136,941, and this can generate problems
in the balance of load as already stated in Section 3.5. This is currently a matter of current research.
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Figure 3. Flow rate and pressure at the aortic root. Comparison between monolithic and iterative solutions
for several representative cases taken from Tables II and III (�tG , aHP and aLP specified in each case; in the
monolithic case �t D �tG). (a) �tG D 0.0005, aHP D aLP D 1; (b) �tG D 0.0020, aHP D aLP D 1; (c)
�tG D 0.0010, aHP D 1, aLP D 2; (d) �tG D 0.0020, aHP D 1.L/, aLP D 4; (e) �tG D 0.0040, aHP D 1,

aLP D 2; (f) �tG D 0.0080, aHP D 1.L/, aLP D 4. See notation in Table II.

We consider �tG D 0.001 and aHP D aLP D aSV D 1. In Figure 6, the results in terms of
pressure and flow rate at the inlets of the SV components are shown. In turn, Figure 7 shows the
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Table V. Iterative and monolithic solution of the HP–LP system for several
combinations of global and local time steps considering interpolation (�tG ,

aHP, and aLP specified in each case; in the monolithic case �t D�tG).

Time stepping Iterative solution with linear interpolation

�tG Œs� aHP aLP Nci ( Nci
N�tG

) Nss,HP Nss,LP

0.0010 1 2 3808 (3.81) 10,540 44,066
1 2 5250 (5.25) 5250.L/ 60,920
2 2 3563 (3.56) 29,290 41,361

0.0020 1 2 2302 (4.60) 7115 29,938
1 2 2998 (6.00) 2998.L/ 39,116
2 2 2039 (4.08) 18,052 26,494
1 4 2190 (4.38) 6981 50,800
1 4 2962 (5.92) 2962.L/ 68,778
2 4 2015 (4.03) 17,866 46,802
4 4 2019 (4.04) 33,156 46,905

See notation in Table II.

Table VI. (Continuation of Table V) Iterative and monolithic solution of the
HP–LP system for several combinations of global and local time steps consid-
ering interpolation (�tG , aHP, and aLP specified in each case; in the monolithic

case �t D�tG).

Time stepping Iterative solution with linear interpolation

�tG Œs� aHP aLP Nci

�
Nci
N�tG

�
Nss,HP Nss,LP

0.0040 1 2 – – –
1 2 – –.L/ –
2 2 – – –
1 4 1307.�/ (5.23) 4876 33,910
1 4 1662.�/ (6.65) 1662.L/ 43,282
2 4 1072 (4.29) 11,780 27,972
4 4 1066 (4.27) 18,972 27,957
1 8 1305.�/ (5.22) 4852 60,033
1 8 1691.�/ (6.76) 1691.L/ 78,673
2 8 1061 (4.24) 11,656 49,369
4 8 1062 (4.25) 18,884 49,452
8 8 1062 (4.25) 34,947 49,494

0.0080 2 2 – – –
1 4 760 (6.08) 3684 22,341
1 4 1064 (8.51) 1064.L/ 31,401
2 4 567 (4.54) 7764 16,866
4 4 576 (4.61) 12,691 17,182
1 8 746 (5.97) 3578 38,751
1 8 1054 (8.43) 1054.L/ 54,984
2 8 560 (4.48) 7671 29,337
4 8 567 (4.54) 12,491 29,822
8 8 571 (4.56) 20,356 29,991

See notation in Table II.

convergence history in the last cardiac cycle and the change in the pressure wave at the inlets of the
SV components as we move forward in the distal direction. Even though the system of nonlinear
equations comprises 36 interface unknowns, the iterative algorithm takes just four to six iterations
(occasionally seven and eight) to converge at each time step.
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Table VII. Iterative solution of the HP–LP–SV system for some combinations of global
and local time steps.

Time stepping Iterative solution

�tG Œs� aHP aLP aSV Nci

�
Nci
N�tG

�
Nss,HP Nss,LP Nss,SV

0.0010 1 1 1 4239 (4.24) 14,044 13,912 11,130
1 2 1 4289 (4.29) 14,089 49,612 11,135
2 2 1 4237 (4.24) 34,845 49,024 11,110

0.0020 1 1 1 2514 (5.03) 9719 8287 7517
1 2 1 2549 (5.10) 9854 33,019 7610
2 2 1 2475 (4.95) 22,180 32,085 7432

See notation introduced in Tables II and III.

Figure 4. Aneurysm geometry and results (pressure and flow rate) at coupling interfaces. Units are dyn/cm2

for pressure and cm3/s for flow rate.

Figure 5. Local blood flow in the aneurysm visualized through streamlines at three instants within the
cardiac cycle.
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Figure 6. Embedding of five SV components to replace arterial branches of the arm in the HP component.
Results, pressure, and flow rate, at coupling interfaces, are displayed. Units are dyn/cm2 for pressure and

cm3/s for flow rate.

Figure 7. Convergence history for the blood flow simulation in the arm, and results at the inlets for all the
SV components. Pressure units are dyn/cm2 and flow rate units are cm3/s.

Finally, Figure 8 presents the velocity magnitude inside each bifurcation at some time instants
within the last cardiac cycle. Notice that each SV component is embedded in its corresponding
hemodynamics environment, obtained from the closed-loop interaction provided by the HP–LP
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Figure 8. Slices showing the blood flow in the SV components at different time instants.

components. Clearly, a Womersley-like velocity develops after systole as a result of the inversion of
the pressure gradient, and then the flow stabilizes its direction during diastole (see also Figure 6).
In the fifth SV component, this phenomenon is less evident, because back flow is not present after
systole as in the rest of the SV components (Figure 7).

This kind of application motivates the use of heterogeneous models in order to account for the
effect of bifurcations (SV components) in the flow rate–pressure relation, for which simple and
reliable models based on correlations are not available.

5. FINAL REMARKS

Let us now explain the idea in more general terms, so as to elucidate its wide applicability. Suppose
you have a collection of systems (hydraulic, thermal, mechanical, electrical, etc.), each of which
you model with a black-box code. Assume, further, that you control this code by a set of inputs
at its boundaries and that each input of the set has some ‘conjugate’ or ‘associated’ output. This
conjugacy between an input (I) and an output (O) is to be understood in the following sense: At
each boundary, the black-box code allows you to impose the value of either I or O, but not both.
Also, having imposed the value of I (pressure, temperature, displacement, voltage, etc.), the code
provides, as an output, the value of O (flow rate, heat flux, force, current, etc.); and vice versa. For
each model, you have a preferred set of inputs, which are easier to impose, or for which you have
tuned some numerical parameters.

Assume now that you decide to couple these systems together into a larger system of which the
aforementioned black-box models are components. In formal terms, to couple a set of components
means that the input and output values of component X at some boundary are required to equal some
corresponding input/output values of another component Y, which is happening simultaneously for
all of the coupling interfaces in the system. Solving the coupled system amounts to finding the value
of each input of each black-box component, such that by imposing these values and running all
component codes, the output of each code at each interface matches the corresponding input/output
variable of the neighbor component with which that interface is shared.

The essential point in the present approach is to regard the vector consisting of all the coupling
variables of all interfaces as interface unknowns (global unknowns). Getting rid of the point of
view in which, component-wise, inputs are data and outputs are results allows us to write the set
of equations (1) in terms of inputs and outputs of each code, both being interface unknowns of the
global coupled system.
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Let us go back to the system of equations (1) and elaborate on a more intuitive interpretation.
Assume we have a candidate solution vector X. Some of the entries in X correspond to the input
variables of component HP, for example. The rather abstract operator GtHP in the first equation of
(1) tells us, simply, ‘run the code of component HP and compute its outputs’. These outputs also
correspond to specific entries in X, and that equation tells us to compare the values in X with those
yielded by the HP code. If they are the same, the first equation of (1) is satisfied, and if this happens
for all the components, the candidate vector X is indeed a solution of the coupled system. If not, a
residual will appear from the set of equations, by simply subtracting values. This residual, or better
the procedure for building it so described, corresponds to Algorithm 3 (condensed in step 8 from
Algorithm 2) and is the only system-dependent step of the procedure proposed here. The rest is
numerical technology for solving systems of equations having access just to the residuals, and the
Broyden algorithm is not the only choice but instead the one that has proved to be more robust and
effective in the (many) tests that we have conducted.

Our whole contribution, thus, is already contained in equations (1). In a nutshell, it amounts to
separating the ‘input versus output’ reasoning, which we use to build the equations of each compo-
nent, from the ‘datum versus result’ reasoning, which is overruled once the system is coupled, both
inputs and outputs being, simply, interface unknowns.

Specifically, this black-box decomposition strategy allowed us to solve efficiently problems in the
hemodynamics field, which consisted in the coupling of heterogeneous components. Its applicability
to solve a closed-loop model of the CVS has been demonstrated through several detailed examples.
Partitioned simulations with multi-time-stepping technique allowed us to reduce computational time
by setting proper time steps for the different components. Also, we observed that even increasing the
number of coupling interfaces, the performance of the iterative method remained bounded to a few
number of coupling iterations resulting in high scalability with respect to the number of components
in the system.
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