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a b s t r a c t

This paper presents a conservative numerical implementation of a new cavitation model that is well

suited for lubrication problems with cavitated regions in which the fluid film is attached to just one of

the participating surfaces, as happens for instance in piston–ring assemblies. This new model was

recently proposed by Buscaglia et al. (2011) and is the first successful attempt at modifying the Elrod–

Adams model considering a physically realistic value for the lubricant transport velocity in the

incomplete-film region in those cases. In this work we show first the reasons for previous attempts

to have failed, which come from a loss of uniqueness of the associated exact mathematical problem.

Then, the new model is briefly recalled and a one dimensional numerical implementation by means of a

finite volume scheme is presented together with several test-case results.

& 2012 Elsevier Ltd. All rights reserved.
1. Motivation

The main function of piston–rings is to seal the space between
the piston and the liner, acting as slider bearings subjected to
alternating motion. These systems have been thoroughly studied
before (see for instance [1–5]). Among the many reciprocating
components present in internal combustion engines, piston–
rings/liner contacts are responsible of an important part of the
total power loss due to friction; therefore, it is of great concern
whether the friction can be diminished, for instance, by texturing
the surfaces with microtextures, that are now a days produced
with well defined sizes and shapes using different techniques
available in the industry. At the theoretical level, the effect of
textures on the performance of lubricated devices is not fully
understood. Though some experimental data are available (see,
e.g., [6–10]) suggesting that a friction reduction can be achieved,
at least in the mixed lubrication regime, numerical studies are
more difficult to find (e.g. [11–13]).

The key issue in the simulation of these lubricated devices is
the correct treatment of cavitation phenomena by means of
incorporating appropriate mass-conserving conditions at the
unknown cavitation boundaries. By simple inspection of the
All rights reserved.

,

.univ-lyon1.fr (I.S. Ciuperca),
Reynolds equation, it can be noticed that the phenomenon of
cavitation may take place: due to insufficient feeding, due to a
positive squeeze (i.e., a transient variation of the gap between the
lubricated surfaces) or as a result of a divergent film geometry
and consequently at microtextures (microcavitation).

Two models are predominantly used in hydrodynamic lubrica-
tion: the Reynolds model and the Elrod–Adams model [14]. The
former, easier to implement numerically, though being non-
conservative, gives reasonable predictions in many cases and is
thus still used in engineering practice. In the Elrod–Adams model,
the JFO conditions proposed by Jacobson and Floberg [15] and
Olsson [16] are applied at the cavitation boundary to enforce
mass conservation. However, due to the highly non-linear nature
of the problem, numerical implementations of this model are
more prone to numerical instabilities. Implementations of con-
servative algorithms can be found for instance in [17–19]. The
importance of using a conservative model has been shown by
means of several numerical examples in [20,21] for problems
including transient effects and/or microtextures.

Piston–ring/liner systems need special consideration, however.
In the cavitated or non-pressurized region the amount of avail-
able oil is, logically, insufficient to fill the entire separation
between the surfaces. For the particular case of the piston–ring/
liner pair, the lubricant film remains essentially adhered to just
one of the lubricated surfaces (the liner), at least far away from
rupture boundaries. This is a fundamental difference with respect
to other reciprocating components such as journal or thrust
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bearings in which the available oil cannot be thought as attached
to one specific surface of the two. This is related to the concept of
streamers (see [22,23]). The mathematical and numerical model-
ing of piston–ring/liner systems becomes thus a challenge, since
the already mentioned mathematical models do not account for
this fact. Mathematically speaking, the Elrod–Adams model yields
a lubricant transport velocity in the cavitated (non-pressurized)
region that is half of the physically realistic value in the case of
piston–rings. Now, we aim to illustrate this situation.

For this purpose, the two-phase Navier–Stokes (N–S) equa-
tions are solved and the results are compared to the Elrod–Adams
(E–A) model as done in [24]. A two-dimensional implementation
of an interface capturing technique is used to track the material
surface separating the lubricant fluid phase from the gas phase
and the N–S equations are solved on each phase. The numerical
formulation adopted here is the one presented in [25], but, with
surface tension effects neglected.

We consider one single ring of parabolic shape (the fix upper
surface) and a flat liner (the lower surface) moving from left to
right relative to the ring with a constant sliding velocity of 10 m/s
as seen in Fig. 1. A viscosity equal to 2�10�2 Pa s is used for the
lubricant phase and 2�10�5 Pa s for the gas phase. Densities are
equal to 900 kg/m3 and 1 kg/m3. The minimum and maximum
separations between surfaces are 6:5 mm and 50 mm, respectively
(for additional details refer to [24]). As shown in the figure, at the
initial time the fluid film is flat and in contact with the ring just in
the central region (thin dashed line in pink color). The film profile
evolves from this initial condition and at a later time ð � 60 msÞ
the result is the one drawn with thick continuous line, in blue
color for the two-phase N–S formulation and in red color for the
Elrod–Adams formulation. The differences are quite remarkable.
First, the reformation discontinuity of the film profile (to the left
of the minimum thickness point) travels faster to the left in the
N–S solution than in the E–A one. Second, and perhaps more
important, at the rupture point P (to the right of the minimum
thickness point), the N–S formulation predicts a discontinuity of
the profile (rupture meniscus) that is absent in the E–A model.
Therefore, the size of the pressurized region, and thus the lift and
friction forces, will significantly differ from one model to the
other. Specifically, the lift force corresponding to the N–S solution
is 358.5 N/m and that corresponding to the E–A solution is
247.7 N/m.

Previous attempts at modifying the E–A model so as to
improve the agreement with Navier–Stokes results have lead to
ill-posed mathematical problems (see [24,26]). A new lubrication
model that successfully addressed the problem has been
Fig. 1. Comparison of the two-phase Navier–Stokes solution with the Elrod–Adams

solution for a single parabolic ring. (For interpretation of the references to color in

this figure caption, the reader is referred to the web version of this article.)
introduced in [27]. The purpose of this paper is to propose a
conservative finite volume method for the new model, and to
show some of the model’s results in non-trivial situations.

By way of outline, after this introduction, the mathematical
model and the governing equations for the new model are briefly
recalled. After that, the numerical procedure for the one-dimen-
sional case is presented. We restrict ourselves to the case of
constant sliding velocity for the sake of simplicity. In the Results
section, several problems are presented: first, a case with known
exact solution. It consists of a single ring on a smooth liner and is
solved to show convergence of the numerical predictions as a
function of the grid size. Second, the case of a moving texture on
the liner with two rings is simulated. This case is important
because the ring upstream can influence the one downstream.
Comparisons to the Elrod–Adams model are presented for this
case. Finally, an example with a transient applied load is pre-
sented, in which the dynamical equilibrium equations governing
the evolution of the ring are simultaneously solved with the new
model equations.
2. Mathematical model

We consider a domain O�Rd (d¼1 or 2) divided through a
cavitation boundary S into two regions: the pressurized region
(or full-film region) and the cavitated region (or incomplete-film
region) as shown in Fig. 2. In piston–ring/liner systems, the
velocity profile in the incomplete-film region is planar as a
consequence of having the lubricant film attached to just one of
the participating surfaces. In the pressurized region, on the other
hand, the velocity profile is linear or parabolic (i.e., a Poiseuille/
Couette flow) depending on the pressure gradient.

The two subdomains in which O is divided are labeled as Oþ
and O0 and defined as follows:

Oþ ðtÞ ¼ f x
!AO,pð x

!
,tÞ40g ð1Þ

O0ðtÞ ¼ f x
!AO,pð x

!
,tÞ ¼ 0g ð2Þ

where p is the pressure field. The two regions are coupled through
the conservation conditions (sometimes named as the Rankine–
Hugoniot conditions) at the cavitation boundary, whose position
Fig. 2. Problem setting of the piston–ring/liner system.
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is to be determined. The problem is governed by an elliptic
equation for the pressure field in the complete-film region and
by a hyperbolic equation for a saturation field yð x!,tÞ which
represents the fraction of the total gap occupied by oil, in the
cavitated region, i.e. the lubricant film thickness is equal to
hð x
!

,tÞyð x!,tÞ. The problem (in non-dimensional form) reads:
‘‘Find ðpð x

!
,tÞ,yð x
!

,tÞÞ such that for the full-film region Oþ ðtÞ,
the saturation field yð x!,tÞ ¼ 1 and the pressure field satisfies

@th¼r � ðh
3
rpÞ�

S

2
ê1 � rh ð3Þ

while for the incomplete-film region O0ðtÞ, the pressure field
pð x
!

,tÞ ¼ 0 and the saturation field satisfies

@tðhyÞþaSê1 � rðhyÞ ¼ 0 ð4Þ

where the parameter a is to be defined’’.
The key issue is the treatment of the rupture boundary, at

which some of the fluid detaches from the wall because otherwise
the pressure would become negative. It is not clear whether,
immediately after the rupture boundary, the fluid remains
attached to the upper or lower surfaces. However, it is clear that
further away from the rupture boundary, the fluid remains
attached to the lower wall and travels at velocity S (see Fig. 2
where the gas–gap is indicated as being much bigger than the
film thickness hf). For the well-known Elrod–Adams model, the
parameter a affecting the transport velocity is a¼1/2 which, for
the case of piston rings, needs to be modified. Otherwise, the film
profile downstream of the first rupture point, which ‘‘feeds’’ the
second ring, would be incorrectly predicted.

The model proposed in [27] is an attempt to fix by allowing the
parameter a to take values in [1/2,1] while maintaining the well
posedness of the mathematical problem. For the cases studied in
this work, we make the particular choice a¼1. More appropriate
choices for this parameter and/or additional conditions at the
rupture point, where the physics is unclear, should be made on a
physical basis, from experiments or using other simulation
strategies and are out of the scope of this paper.

Now, the condition to be satisfied at the cavitation boundary
S is the conservation of mass

ð J
!þ
� J
!�
Þ � n̂ ¼ ðhþyþ�h�y�ÞV

!
S � n̂ ð5Þ

where n̂ is the normal to SðtÞ pointing outwards from Oþ ðtÞ and V
!

S

is the (unknown) velocity of S. The flux vector J
!

for the full-film
region is given by

J
!
¼�h3

rpþ
S

2
ê1h ð6Þ

while for the incomplete-film region is given by

J
!
¼ aSê1hy ð7Þ

and the supraindexes ‘‘þ ’’ and ‘‘� ’’ refer, respectively, to the right
and left sided limits of J

!
at S. Next we describe the new model in

the one-dimensional case. For a thorough description and mathe-
matical analysis of the new model see [27].

2.1. The new model in the one-dimensional case

We consider a one-dimensional setting. The complete formu-
lation of the new model and its discretization in the two-
dimensional case are the subject of ongoing work.

In the one-dimensional case the cavitation boundary is repre-
sented by a set of points in the computational domain O¼ ½x‘ ,xr �.
For the sake of simplicity in the exposition we consider the
velocity S40 with just one ring and thus a unique central
pressurized region with boundary points denoted by x¼ aðtÞ
and x¼ bðtÞ (see Fig. 2). The extension to consider a velocity S of
arbitrary sign and multiple rings, each one with a pressurized
region and corresponding boundaries, can be easily obtained. In
fact, in the results section we present numerical examples with
two rings.

We describe now the different parts involved in the resolution
of the new model:

J Initial condition:
We consider an initial condition given by a0 ¼ aðt¼ 0Þ and

b0 ¼ bðt¼ 0Þ, the left and right boundaries of the pressurized
region, together with the saturation field y0ðxÞ ¼ yðx,t¼ 0Þ given
for xoa0 and x4b0 (see Fig. 2).

J Solution in the pressurized region Oþ :
At each time t, it is assumed that the solution of the Reynolds

equation

@xðh
3@xpÞ ¼

S

2
@xhþ@th

� �
with pðaðtÞ,tÞ ¼ pðbðtÞ,tÞ ¼ 0 ð8Þ

yields a non-negative pressure pðx,tÞ for all xA ðaðtÞ,bðtÞÞ.
J Computation of front velocities:
In order to obtain the velocities of the boundary fronts a0ðtÞ

and b0ðtÞ, we apply the mass conservation given by (5) at x¼ a and
x¼ b, using the fluxes defined by Eqs. (6) and (7), yielding

a0ðtÞ ¼
�h3
ðaÞ@xpðaþ ,tÞþ

S

2
hðaÞ½1�2ayða�,tÞ�

hðaÞ½1�yða�,tÞ�
ð9Þ

b0ðtÞ ¼
�h3
ðbÞ@xpðb�,tÞþ

S

2
hðbÞ½1�2ayðbþ ,tÞ�

hðbÞ½1�yðbþ ,tÞ�
ð10Þ

Remark 1. In the steady state, a0ðtÞ ¼ b0ðtÞ ¼ 0. In this case (with
S40), the point x¼ a is termed a reformation front, since a
transition from a cavitated to a pressurized region occurs, while
the point x¼ b is termed a rupture front, since a transition from a
pressurized to a cavitated region occurs. In the transient case (i.e.,
when the fronts are moving), the definition is the same, provided
that both a0ðtÞ and b0ðtÞ are smaller than S.

J Solution in the cavitated region O0:
The equation for yðx,tÞ in the cavitated region reads

@tðyhÞþaS@xðyhÞ ¼ 0 ð11Þ

for which boundary conditions are needed at the left boundary
yðx‘ ,tÞ ¼ yinðtÞ and at bðtÞ whenever b0ðtÞoS (which is in general
the case).

Remember that the Elrod–Adams model and the new model
being studied here differ in the treatment of the rupture bound-
ary. For piston rings, the physically wrong (since a¼1/2) Elrod–
Adams model leads to a well-posed mathematical problem. In
particular, the saturation field and the pressure gradient at bðtÞ
are uniquely defined, i.e.,

@xpðb�ðtÞ,tÞ ¼ 0 and yðbþ ðtÞ,tÞ ¼ 1 ð12Þ

The model of [27] aims at allowing a physically correct value of
a (strictly greater than 1/2, in general). For such a choice of a to
lead to a well-posed problem; however, an additional condition at
the rupture boundaries is needed as we shall see.

Lack of uniqueness: Remember that pZ0 on Oþ , from which it
is easily seen that @xpðb�ðtÞ,tÞ must be negative. Now, taking this
into account and using Eq. (10), one gets

yðbþ ðtÞ,tÞZFðb0ðtÞÞ ¼

S

2
�b0ðtÞ

aS�b0ðtÞ
ð13Þ

where the function F is plotted in Fig. 3 (the continuous red line). If
a¼1/2, this condition reduces to yðbþ ðtÞ,tÞ ¼ 1 (Elrod–Adams model).
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Now, if a41=2 then yðbþ ðtÞ,tÞ is not fully determined, since, from
condition (13) it can only be said that

maxf0,Fðb0ðtÞgryðbþ ðtÞ,tÞr1 ð14Þ

i.e., for any given b0ðtÞ, yðbþ ðtÞ,tÞ can take any value in the interval
given by (14), which is represented by the green shaded region of
Fig. 3. Each of these values leads to a different solution of the
problem. This explains the lack of uniqueness of the model so far
when aa1=2 and the need for an additional condition in order to
have a unique solution.

Recovering uniqueness: To recover uniqueness, among the
multiple values possible for yðbþ ðtÞ,tÞ, we adopt a specific choice
that leads to a well–posed problem, which is

yðbþ ðtÞ,tÞ ¼ Gðb0ðtÞÞ ¼

S

2
�b0ðtÞ

aS�b0ðtÞ
if b0ðtÞr0

1

2a
if b0ðtÞ40

8>>>><
>>>>:

ð15Þ

(the dashed blue line in Fig. 3). This choice is convenient for
numerical implementations, since it avoids the more violent
behavior of F for values of b0 near S/2.

Remark 2. By direct inspection, it can be seen that the use of
Eq. (10) with this choice actually leads to a zero pressure gradient
and therefore, no equation from which to obtain the velocity b0

when b0o0. This can introduce some difficulties in the numerical
Fig. 4. Scheme of the finite volume discretization for the one-dimensional computation

reader is referred to the web version of this article.)

Fig. 3. Plot of the function Fðb0Þ given in Eq. (13). (For interpretation of the

references to color in this figure caption, the reader is referred to the web version

of this article.)
implementation of such model at the rupture point as explained
in the next section.

3. Numerical method

The numerical procedure is an explicit algorithm similar to
that presented in [13], though generalized to deal with more
complex boundary conditions at the cavitation fronts.

From now on, we assume the value a¼1 for the sake of
simplicity. Let us also consider a time step Dt and a computational
domain ½x‘ ,xr � divided into cells of uniform size Dx, such that

tn ¼ nDt, Xi ¼ x‘þ iDx ð16Þ

The time level of a discretized variable is shown as a superscript
and the nodal value as a subindex. For the cavitation fronts, an and
bn denote the discrete values of aðtnÞ and bðtnÞ respectively, not
coincident with the grid nodes at positions Xi. At time level n, the
computational domain is divided into the set of cavitated-node
indices Cn (Xioan or Xi4bn) and the set of pressurized-node
indices Pn

ðanoXiobn
Þ. In Fig. 4 we illustrate the finite volume

discretization used for a particular case with a0o0 and b0o0. We
have to distinguish between the ‘‘standard’’ cells, defined as the
intervals ½Xi�ð1=2Þ,Xiþð1=2Þ� and the two cells having a or b as cell
faces, that, for the situation drawn in Fig. 4 are defined at time level
nþ1 as ½anþ1,Xiaþð3=2Þ� and ½Xib�ð3=2Þ,b

nþ1
�. We assume that always

along the calculation there are several cells between the cavitation
boundaries. Now, for given fyn

i giACn , the numerical procedure to
find the new pressure and saturation field and the new position of
the cavitation boundaries consists of steps 1–3 below.
1.
al d
Numerically solve Reynolds equation for pn: A finite volume
solver for fpn

i giAPn is used to solve Eq. (8), where Pn is the set of
pressurized-node indices. The conditions pnðanÞ ¼ pnðbn

Þ ¼ 0
are imposed placing two virtual nodes at the positions an

and bn. The pressure at each finite volume is found by means of
an iterative procedure similar to the one described in [20]. In
the kth iteration of the iterative procedure, fpn,k

i giAPn is found
according to

pn,k
i ¼ ðh

n
r Þ

3 pn,k�1
iþ1 þðh

n
‘ Þ

3pn,k�1
i�1 �g

ðDxÞ2

Dt
ðhnþ1

i �hn
i Þ

"

�
S

2
ðhn

r�hn
‘ ÞDx

�
=
ðhn

r Þ
3

gr

þ
ðhn
‘ Þ

3

g‘

" #
ð17Þ

where
– hn

‘ ¼ hn
i�1

2
, hn

r ¼ hn
iþ 1

2
and gr ¼ g‘ ¼ g¼ 1, for the standard cells

(not having an or bn as left or right faces);
om
ain. (For interpretation of the references to color in this figure caption, the
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– pn,k�1
i�1 ¼ 0, g¼ ðXiþ 1

2
�anÞ=Dx, g‘ ¼ g� 1

2, gr ¼ 1, hn
‘ ¼ hðanÞ,

hn
r ¼ hn

iþ 1
2
, for the cell having an as left face;

– pn,k�1
iþ1 ¼ 0, g¼ ðbn

�Xi�1
2
Þ=Dx, g‘ ¼ 1, gr ¼ g� 1

2, hn
‘ ¼ hn

i�1
2
,

hn
r ¼ hðbn

Þ, for the cell having bn as right face.
. 5.
Iterations are done until reaching convergence of the euclidean
norm of the difference between two consecutive iterations.
In the numerical experiments presented a numerical tolerance
of 10�10 is considered.
Two options considered to find bnþ1 in the case of a negative front velocity b0 .

Fig. 6. Film profiles at different times for the s

Fig
ðx‘ ,
Remark 3. This computation may result in a negative pressure
region to the left of bn, which has to be considered in the
next step.
2.
 Compute anþ1 and bnþ1: Here we use explicit updating

anþ1 ¼ anþDta0, bnþ1
¼ bn
þDtb0 ð18Þ

where a0 and b0 are obtained from (9) and (10), considering
yðbþ ,tÞ ¼ 1=2, i.e.,

b0 ¼ �2h2
ðbn
Þ@xpnðbn�

Þ ð19Þ
ingle ring test for ðhyÞðx‘ ,tÞ ¼ 0:65.

. 7. aðtÞ and bðtÞ for different grid resolutions for the first case with ðhyÞ
tÞ ¼ 0:65.
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This is correct if the resulting b0 is positive (and oS, which is
always the case in the considered examples).
Otherwise, remember that the first step may result in negative
pressures to the left of bn, implying that @xpnðbn�

Þ40 and b0

given by (19) negative. In this case, bnþ1 is chosen such that
bnþ1abn and with a value given by one of the two options
that we aim to test:
� Option 1: Find bnþ1 such that pnðbnþ1

Þ ¼ 0 by linearly
interpolating the nodal values of pn.
. 8.
Þðx‘ ,
Detail of aðtÞ for different grid resolutions for the first case with

tÞ ¼ 0:65.

Fig. 9. Film profiles at different times for the si
� Option 2: Find bnþ1 such that @xpnðbnþ1
Þ ¼ 0 by quadrati-

cally interpolating the nodal values of pn.
The two options are illustrated in Fig. 5. Option 2, though more
difficult to implement, seems a better choice, since, looking for
the point of zero pressure derivative when b0o0 is consistent
with the observation made in Remark 2. Note also that this can
be seen as performing only one fixed-point iteration for solving
pnþ1ðbnþ1

Þ ¼ @xpnþ1ðbnþ1
Þ ¼ 0. Then, the velocity of the front is

recomputed as

b0 ¼
bnþ1

�bn

Dt
ð20Þ
3.
 Numerically solve the transport equation for ynþ1: Once the
cavitations fronts are updated, we compute the new values of y
on Cnþ1 ensuring that the amount of oil is conserved from one
step to the other. Mass conservation is obtained by using a
finite volume solver. Notice that (11) is an evolution
equation (in time) on a domain that is time-dependent. The
finite volumes thus move according to a0 and b0 and the result
is projected (conserving mass) onto the fixed nodal positions.
Clearly, the finite volumes immediately next to the cavitation
boundaries (in red, in Fig. 4) have to be dealt differently
from the rest of the (standard) finite volumes (in pink). This
is now explained for the particular situation illustrated in Fig. 4
corresponding to a0o0 and b0o0 and where the cavitation
boundaries cross the cell nodes from one step to the other.
ngle ring test with ðhyÞðx‘ ,tÞ ¼ 0:45.
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� For the standard finite volumes, we use a first-order (donor
cell) scheme

hnþ1
i ynþ1

i Dx¼ hn
i y

n
i DxþSðhn

i�1
2
yn

i�1�hn
iþ 1

2
yn

i ÞDt ð21Þ

where hn
i7 1

2
is the value of hn evaluated at position Xi7 1

2
. If

only discrete values are available for the distance field h, the
cell faces values hn

i�1
2

and hn
iþ 1

2
can be computed as

ðhn
i�1þhn

i Þ=2 and ðhn
i þhn

iþ1Þ=2, respectively.
� For the finite volumes next to the cavitation boundaries we

have: denoting by iaACnþ1 the first finite volume to the left
of anþ1, the value of ynþ1

ia
is computed from

hnþ1
ia

ynþ1
ia
ðanþ1�Xia�1

2
Þ ¼ hn

ia
yn

ia
ðan�Xia�1

2
Þþhn

iaþ1y
n
iaþ1

�ðan�anþ1Þþ½Shn
ia�1

2
yn

ia�1�ðS�a
0ÞhðanÞyn

ia
�Dt ð22Þ

Denoting by ibACnþ1 the first finite volume to the right of
bnþ1, the values of ynþ1

ib
and ynþ1
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We proceed in a similar way when the cavitation boundaries
. 1
Þðx‘
Fig. 11. Detail of aðtÞ for different grid resolutions for the second case with

ðhyÞðx‘ ,tÞ ¼ 0:45.
do not cross the cell nodes and/or the velocities a0 and b0 are
positive.

4. Numerical experiments

4.1. Convergence test

We simulate a single parabolic ring moving with constant
velocity S¼1 and a smooth liner. The computational domain is
the interval ½0,1�. The distance between the two lubricated
surfaces is given by

hðxÞ ¼ 1þð2x�1Þ2 ð25Þ

We consider two different situations corresponding to the follow-
ing initial conditions:
�
 ðhyÞðx‘ ,tÞ ¼ 0:65, a0 ¼ 0:30, b0 ¼ 0:59

�
 ðhyÞðx‘ ,tÞ ¼ 0:45, a0 ¼ 0:25, b0 ¼ 0:55
In these simple cases, the exact solution can be computed and
then compared to the numerical predictions. First, in Fig. 6 we
show the film profile at different times using a grid resolution
0. aðtÞ and bðtÞ for different grid resolutions for the second case with

,tÞ ¼ 0:45.
Dx¼ 0:0025. For the first case, corresponding to ðhyÞðx‘ ,tÞ ¼ 0:65,
we show in Fig. 7 the position of the left and right fronts as a
function of time using different grid resolutions, namely
Dx¼ 0:01,0:005,0:0025,0:00125. A time step Dt equal to 0.001 is
used for the first mesh. The Courant number is kept constant for
the rest of the simulations for which the time step is adjusted
accordingly. A detail of Fig. 7 is shown in Fig. 8 to appreciate how
the numerical solution converges to the exact one aeðtÞ for the left
(reformation) front. The convergence for the right (rupture) front
bðtÞ to beðtÞ shows a similar behavior.
Fig. 12. Detail of bðtÞ for different grid resolutions for the second case with

ðhyÞðx‘ ,tÞ ¼ 0:45 using the first option (top) and the second option (bottom) to

treat the negative velocity of the rupture front.
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For the second case, corresponding to ðhyÞðx‘ ,tÞ ¼ 0:45, in Fig. 9
we show the film profile at different times and in Fig. 10 we show
the position of the left and right fronts as a function of time for
the same grid resolutions used in the previous case. The reforma-
tion front moves to the right and the rupture front, initially moves
to the right and at time t	 1, it starts moving to the left so as the
pressurized region begins to reduce. The differences between the
exact and numerical solutions are better seen in the details shown
in Fig. 11 for the reformation front aðtÞ and in Fig. 12 for the
rupture front bðtÞ using the two options mentioned in Section 3.
Notice the stair-case like behavior in both cases. This behavior is
due to the type of algorithm chosen to deal with negative
velocities of the rupture boundary. Results corresponding to the
second option that involves the quadratic interpolation of the
pressure nodal values are closer to the exact solution as seen in
the figures.
Fig. 13. Comparison of the film profiles at different instants using the two options to

ðhyÞðx‘ ,tÞ ¼ 0:45 for the second mesh with Dx¼ 0:005.

Fig. 14. Maximum error of aðtÞ (left) and bðtÞ (right) as a fu
Fig. 13 shows details at several instants of the film profiles
using the two options for the second mesh considered. Qualita-
tively, the second option exhibits a better behavior. These differ-
ences become less evident as the mesh size and time step are
refined. The corresponding convergence rates are shown in Fig. 14,
where the maximum over t of 9aðtÞ�aeðtÞ9 (left) and 9bðtÞ�beðtÞ9
(right) are plotted. By looking at the error of the b front (right part
of Fig. 14), the convergence order is the same for both options, but,
the error is smaller when the second one is used.

4.2. Textured-liner test

The aim in this case is to illustrate the differences between the
new lubrication model and the Elrod–Adams model. The initial
condition and geometry considered in this case is shown in Fig. 15.
The computational domain is the interval ½�0:5,1�. The total
deal with the negative velocity of the rupture front in the case corresponding to

nction of Dx for the second case with ðhyÞðx‘ ,tÞ ¼ 0:45.



Fig. 15. Initial condition for the textured liner test showing the two rings and the

moving texture.

Fig. 16. Film profiles at different times for the
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distance between the two lubricated surfaces hðx,tÞ has thus two
contributions: one is the shape of the ring assembly hr(x) given by

hrðxÞ ¼

1þ20 x� 1
4

� �2
if 0:025oxo0:475

1þ20 x� 3
4

� �2
if 0:525oxo0:975

2 elsewhere

8>><
>>: ð26Þ

and the other is the contribution of the moving texture on the liner,
which is taken to be

htðx,tÞ ¼maxf0,h0 sin½6ðx�tÞ�g ð27Þ

where h0 is taken equal to 0.1. There are thus four fronts to be
tracked in time whose initial positions are taken as

að1Þ0 ¼ 0:125, bð1Þ0 ¼ 0:275 ð28Þ
textured-liner test using the new model.
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að2Þ0 ¼ 0:625, bð2Þ0 ¼ 0:775 ð29Þ

The mesh size Dx is set to 0.0015 and the time step Dt to
0.0001. The inlet film hf ðx‘ ,tÞ is set to a fixed value of 0.67. To
satisfy this boundary condition we adjust at each time step the
value of yðx¼ x‘ ,tÞ since hðx¼ x‘ ,tÞ is not constant due to the
moving texture. In Fig. 16 we show the film profile at
different times.

We also simulate the same problem with the Elrod–Adams
p2y model. As mentioned before, this problem is important
because the behavior of the second ring can be very much
affected by the first (upstream) ring. In this case, in order to
perform a fairer comparison, we consider an inlet film height
Fig. 17. Film profiles at different times for the textur
hf ðx‘ ,tÞ equal to 2� 0:67, that corresponds in this model to the
same inlet flow used for the simulations using the new model.
Results are shown in Fig. 17. There are remarkable differences
between the two models. First, since according to the Elrod–
Adams model the texture travels at velocity S¼1 while the
saturation field y is transported with velocity S/2 in the cavitated
region, the film profile results perturbed in the left region
ð�0:5,að1ÞðtÞÞ, while for the new model the film profile remains
flat. Second, the fronts move with different velocities in each
model, leading to a different temporal evolution of the pressur-
ized region for each ring. We illustrate this difference in Fig. 18
where the pressure profiles for both models at selected times are
plotted. Third, the new model predicts a discontinuity at the
ed-liner test using the Elrod–Adams p2y model.
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rupture boundaries bð1Þ and bð2Þ which does not occur with the
Elrod–Adams model.

4.3. Dynamical test

In this final numerical test we consider again just one single
ring in the domain [0,1], and solve the dynamical equilibrium
equation for the ring simultaneously with the governing equa-
tions using the new model. We consider the ring shape given by

hðx,tÞ ¼ hmðtÞþð2x�1Þ2 ð30Þ

Denoting by Wa
ðtÞ the applied load and by M the mass of the

piston ring, the dynamical equilibrium equation can be written
for the minimum film thickness hm(t) as

M
d2hmðtÞ

dt2
¼WðtÞþWa

ðtÞ ð31Þ

where the load carrying capacity is given by

WðtÞ ¼

Z xr

x‘

pðx,tÞ dx¼

Z bðtÞ

aðtÞ
pðx,tÞ dx ð32Þ

since the pressure is zero in the cavitated region. The numerical
procedure to solve the problem is based on a Newmark scheme as
done in [20,13], in which we compute the new position and
velocity according to

hnþ1
m ¼ hn

mþDtVn
þ
Dt2

2M
½Wa
ðtnÞþWn

� ð33Þ

Vnþ1
¼ Vn

þ
Dt

M
½Wa
ðtnÞþWn

� ð34Þ

where Vn is an approximation for _hmðt
nÞ.

For the simulation we use a mesh size Dx¼ 0:004, a time step
Dt¼ 0:0004 and consider a piston ring mass M equal to 10�6 and
an inlet film hf¼0.65. The problem is solved for two different
applied loads:
Fig. 19. Resulting ring position hm(t) in the dynamical test problem for the case

with a constant applied load (green) and the case with a time dependent applied

load (red). (For interpretation of the references to color in this figure caption, the
�
Fig
refe
Constant load: Wa
¼�0:004
reader is referred to the web version of this article.)
�
 Time dependent load: Wa
ðtÞ ¼�0:0004þ0:00005 cosð2ptÞ
. 18. Comparison of non-dimensional pressure profiles at different times using the n

rences to color in this figure caption, the reader is referred to the web version of t
The second option corresponding to the quadratic interpola-
tion of the pressure was used to deal with the case of negative
velocities at rupture points. First, we show the evolution of hm(t)
for both cases in Fig. 19. In the first case, the position of the ring
assumes a steady state value while for the second case, a periodic
behavior of hm(t) is observed. This behavior is also observed if we
plot the position of the cavitation fronts aðtÞ and bðtÞ for both
types of applied loads. This is shown in Fig. 20. This example
already shows that the proposed algorithm is capable of dealing
with a more complicated transient situation.
5. Conclusions

The main objective of this paper has been the presentation of a
finite volume implementation of the new lubrication model
recently introduced in [27], which can be seen as a variant of
the Elrod–Adams model but deals in a more realistic way with the
peculiarities of piston–ring/liner systems. The proposed algorithm
ew model (red) and the Elrod–Adams p2y model (green). (For interpretation of the

his article.)



Fig. 20. Resulting aðtÞ and bðtÞ in the dynamical test problem for the case with a

constant applied load (green) and the case with a time dependent applied load

(red). (For interpretation of the references to color in this figure caption, the reader

is referred to the web version of this article.)
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for this new model is based on a finite volume scheme with an
explicit tracking of the cavitation fronts so as to impose the
appropriate boundary condition for the saturation field depending
on the velocities of such fronts. Although in this paper we have
focused on the one-dimensional case with constant sliding
velocity, the need for a new model and the numerical challenges
involved are already observed. Three different tests have been
presented. The first one, consisting in the simulation of a single
ring of parabolic shape with a smooth liner, a problem for which
an exact solution can be found, aimed to show that the proposed
numerical procedure gives convergent solutions. The second test,
that dealt with a more complicated setting, included two rings of
parabolic shape and a moving texture of sinusoidal shape. In this
case, a comparison to the Elrod–Adams model has been done to
show the fundamental differences between the two models.
Finally, in the third example, the dynamical behavior of one ring
was modeled by means of additionally solving the equation of
motion of the ring to show that the numerical algorithm is
capable of dealing with more severe transient situations.

The extension of the present numerical scheme to two dimen-
sions and to the case of a time dependent sliding velocity
(of alternating sign) is not immediate, since new ingredients
appear that need proper numerical treatment. In particular, the
boundary value at S for the transport of y depends on whether it
is a reformation boundary or a rupture boundary. The cells at the
boundary of the cavitated region, in the Elrod–Adams formula-
tion, take their boundary values from the pressurized region,
where y¼ 1. This makes the algorithm very simple. For the new
model, the boundary value can no longer come from the
neighboring pressurized cell (where y¼ 1 as before) when in
rupture, but instead be given by Gðb0Þ (Eq. (15)). This will
complicate the two-dimensional version of the algorithm, both
by having to discern rupture boundaries from reformation
boundaries and by having to compute a suitable approximation
to the front speed at each rupture cell. At reformation boundaries,
on the other hand, the code will be essentially equivalent to an
Elrod–Adams one. A suitable implementation is the subject of
ongoing work.
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