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aCentro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
bInstituto de Ciências Matemáticas e de Computação,
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Abstract

We consider incompressible Stokes flow with an internal interface at which

the pressure is discontinuous, as happens for example in problems involving

surface tension. We assume that the mesh does not follow the interface,

which makes classical interpolation spaces to yield suboptimal convergence

rates (typically, the interpolation error in the L2(Ω)-norm is of order h
1

2 ).

We propose a modification of the P1-conforming space that accommodates

discontinuities at the interface without introducing additional degrees of free-

dom or modifying the sparsity pattern of the linear system. The unknowns

are the pressure values at the vertices of the mesh and the basis functions

are computed locally at each element, so that the implementation of the pro-

posed space into existing codes is straightforward. With this modification,

numerical tests show that the interpolation order improves to O(h
3

2 ).

The new pressure space is implemented for the stable P+
1 /P1 mini-element

discretization, and for the stabilized equal-order P1/P1 discretization. As-
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sessment is carried out for Poiseuille flow with a forcing surface and for a

static bubble. In all cases the proposed pressure space leads to improved

convergence orders and to more accurate results than the standard P1 space.

In addition, two Navier-Stokes simulations with moving interfaces (Rayleigh-

Taylor instability and merging bubbles) are reported to show that the pro-

posed space is robust enough to carry out realistic simulations.

Key words: Finite elements, interface, interpolation, discontinuous

pressure, surface tension

1. Introduction

Though much progress has been made over the last years in the field of

finite-element-based computational fluid mechanics, the accurate simulation

of flows with significant surface tension effects remains a challenge. This is

a consequence of two main difficulties that are inherent to such flows:

(i) The surface tension force FΓ is a surface Dirac distribution over the

interface Γ, proportional to the curvature of Γ. The singularity of the

force, together with its dependence of second derivatives of the interface

shape, renders it difficult to approximate.

(ii) Some of the flow variables, most importantly the pressure, are discontin-

uous across Γ. This leads to suboptimal interpolation accuracy when-

ever the finite element interpolants are continuous across Γ.

In a recent careful study, Gross and Reusken [1, 2] (see also [3]), have

shown that both of the aforementioned difficulties need to be specifically
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addressed or otherwise the convergence is poor (of order h
1

2 in the L2(Ω)-

norm). In this article the attention is focused in difficulty (ii), for which

Gross and Reusken propose to adopt an XFEM [4] enrichment of the pressure

space, incorporating functions that are discontinuous at Γ, as had been also

proposed by Minev et al [5]. With this modification, they are able to get

improved convergence behavior, at the expense of the well-known pitfalls

of the XFEM methodology: The ill-conditioning of the system matrix due

to approximate linear dependence of the basis, and the introduction of new

unknowns that depend on the location of the interface, thus requiring the

code to completely rebuild the linear system structure for each interface

location.

Similar considerations have been made recently by Ganesan et al [6].

They compare mixed finite elements with continuous and discontinuous ap-

proximations for the pressure, and end up recommending the use of meshes

that follow the interface together with discontinuous pressure interpolants.

Clearly, this is the only combination of classical finite elements that yields a

pressure space that is discontinuous at Γ, which is the key to properly tackle

difficulty (ii) above. However, in a dynamic simulation it is cumbersome and

sometimes impossible to maintain the mesh aligned with the interface, so

that other remedies must be sought.

In this article we introduce a novel pressure space which accommodates

discontinuities at the (given) interface Γ, which is approximated by piecewise-

linear segments in 2D and piecewise-planar facets in 3D. The proposed space

is nothing but the classical conforming P1 space, locally modified at those

elements that are cut by the interface (which will be denoted as interface
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elements). The modification is local, computed element-by-element, and it

does not introduce any additional degrees of freedom. It is thus extremely

easy to incorporate the proposed space into existing codes. Further, the

only discontinuities take place at Γ, so that no special treatment is needed

at other interfaces (such as element-to-element interfaces, for example, as

happens with Discontinuous Galerkin methods).

The proposed pressure space will be introduced in the framework of the

(two-dimensional for simplicity) problem

−µ∇2u + ∇p = FΓ in Ω (1)

∇ · u = 0 in Ω (2)

u = 0 on ∂Ω (3)

where FΓ = f δΓ n, with f a given function, δΓ the Dirac delta distribution

on the line Γ, and n its normal. The singular force FΓ acts in fact as a jump

condition on the normal stress across Γ, namely,
s
−p + 2µ

∂un

∂n

{
= f, (4)

whereas both the velocity and the tangential stress remain continuous. In

fact, in this constant-viscosity case the velocity gradient exhibits no jump

across Γ [2], so that (4) reduces to JpK = −f . Notice that this simplified

model also represents the so-called actuator-disk model that is very popular

in the analysis of rotors (propellers, wind turbines, etc.) [7, 8, 9, 10, 11].

Denoting by V = H1
0 (Ω) × H1

0 (Ω) and Q = L2(Ω)/R, the variational

formulation that corresponds to (1)-(3) reads: “Find (u, p) ∈ V × Q such

that
∫

Ω

[

µ(∇u + ∇T u) : ∇v − p ∇ · v + q ∇ · u
]

dΩ =

∫

Γ

f n · v dΓ (5)
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for all (v, q) ∈ V × Q”. The bilinear and linear forms associated to the

variational formulation will be denoted by B(·, ·) and L(·), so that (5) can

be rewritten as

B((u, p), (v, q)) = L(v, q). (6)

Under reasonable regularity assumptions on Γ and f this problem admits a

unique solution, since it is only necessary that L be a bounded linear func-

tional. The finite element discretization of (5) is briefly recalled in Section

2, together with the description of the proposed pressure space. Section

3 contains several numerical experiments that assess the advantages of the

proposed space with respect to classical spaces. Some conclusions are finally

drawn in Section 4.

2. Finite element approximation

2.1. Galerkin mini-element formulation

In the Galerkin formulation, the exact variational formulation is restricted

to the space Vh×Qh, where Vh ⊂ V and Qh ⊂ Q are the approximation spaces

for velocity and pressure, respectively. The discrete formulation thus reads

“Find (uh, ph) ∈ Vh × Qh such that

B((uh, ph), (vh, qh)) = L(vh, qh) (7)

for all (vh, qh) ∈ Vh × Qh”. As is well-known, for this formulation to be

well-posed and convergent it is sufficient that the Babuška-Brezzi stability

condition[12, 13] be satisfied:

inf
qh ∈Qh

sup
vh ∈Vh

∫

Ω
qh ∇ · vh dΩ

‖qh‖Q ‖vh‖V

≥ β > 0 (8)
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with β a mesh-independent constant.

The pressure and velocity spaces that correspond to the so-called mini-

element [14] are, for a finite element mesh Th:

Qh = Q1
h := {qh ∈ Q ∩ C0(Ω), qh|K ∈ P1(K), ∀K ∈ Th} (9)

Vh = V mini

h := {vh ∈ V, vh|K ∈ (P1(K) ⊕ span(bK))2 , ∀K ∈ Th} (10)

where bK is the cubic bubble function that vanishes on all three edges of K.

Notice that the pressure space is nothing but the usual continuous P1 space,

while the space for each velocity component has been enriched by the bubble

functions so as to satisfy the stability condition. Being stable, this element

satisfies the a priori estimate

‖u − uh‖V + ‖p − ph‖Q ≤ C

(

inf
wh ∈Vh

‖u − wh‖V + inf
rh ∈Qh

‖p − rh‖Q

)

(11)

where C does not depend on the mesh size h. In the case of a smooth so-

lution, there exists a constant c such that infwh ∈Vh
‖u − wh‖V ≤ c h |u|H2(Ω)

whereas infrh ∈Qh
‖p − rh‖Q ≤ c h2 |p|H2(Ω). In the case of non-smooth so-

lutions involving pressure jumps, however, the latter interpolation estimate

deteriorates significantly [2], to

inf
rh ∈Qh

‖p − rh‖Q ≤ C
(

h
1

2 ‖JpK‖L∞(Γ) + h2 ‖p‖H2(Ω\Γ)

)

This approximation error of order h
1

2 is a direct consequence of the pressure

interpolants being continuous across Γ, so that switching to discontinuous-

pressure elements does not cure it, unless the mesh follows the interface.

2.2. A discontinuous pressure space with the same unknowns

The proposed variant of the mini-element combines the velocity space

V mini

h (Eq. 10) with a new pressure space QΓ
h discussed below, without any
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modification of the Galerkin formulation (7).

2.2.1. The finite element interpolant

Let us now propose a different finite element space, denoted by QΓ
h, which

has the same unknowns as the conforming P1 space Q1
h but admits disconti-

nuities across Γ. For all elements not cut by Γ standard P1 interpolants are

chosen. The only modifications appear in interface elements.

Consider the triangle ABC, which is cut by Γ into subtriangle APQ and

subquadrilateral BCQP (see Fig. 1). We assume for simplicity that, locally,

Γ is approximated by linear segments (this would probably add an additional

error of order h2, much smaller than the other errors involved). Let pA, pB,

pC denote the nodal values of the discrete pressure ph, to be interpolated in

the triangle ABC.

Let us arbitrarily denote the triangle APQ the “green” side of Γ and

quadrilateral BCQP the “red” side. For the approximation to be discontin-

uous, the function ph on the green side needs to be solely determined by the

only green node, i.e., A. Similarly, ph on the red side must depend on just

pB and pC . To accomplish this, we simply “carry” the value at each node

towards the intersection of any edge emanating from it with the interface.

In this way, on the green side of Γ, the values at P and Q will be pA, and

thus ph will be constant:

ph|APQ = pA

On the red side, the value at P will be pB and the value at Q will be pC . One

can here choose either to adopt a Q1 interpolation in BCQP from these nodal

values, or subdivide the quadrilateral into two triangles, BCP and CQP . In

any case, since the nodal values are given, the interpolation is immediate.
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For the red triangle CQP , for example, ph will be the linear function that

takes the value pC at vertex C, the value pC at vertex Q, and the value pB at

vertex P . Notice that this interpolation leads to ph being discontinuous only

at Γ, since the function ph restricted to any edge of the triangle is uniquely

determined by the values at the nodes lying at the endpoints of that edge.

As a consequence of carrying the nodal values towards the intersection of

each edge with the interface, the space QΓ
h consists of functions with locally

an oblique derivative (in the direction of the edge that happens to cross Γ at

each point) equal to zero. The interpolation error ‖p−Ihp‖Q is thus expected

to be of order h
3

2 for arbitrary p ∈ W 1,∞(Ω \ Γ).

Remark: It could be interesting to modify the proposed space in such a way

as to obtain an interpolation order of h2 for functions with any derivative

at Γ. A suitable way to do this would be by extrapolation along the edge

using some recovered gradient at the nodes. This is an operation that cannot

be carried out at the element level alone, and has not been explored in this

work.

Remark: Some modifications are needed if the interface Γ ends within the

domain (i.e., a cracked domain). Consider that the interface ends at some

point T that lies between P and Q, so that the segment TQ is not contained in

Γ. In this case the value of ph at Q is computed by linearly interpolating the

values pA and pC along the edge AC. The treatment of the intersection point

P is as before, so that the interpolant is continuous at Q and discontinuous

at P .

The extension of the proposed methodology to three dimensions follows

the lines described above. For completeness, the basis functions are given
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explicitly for the different possible cases in the paragraphs that follow.

2.2.2. Two-dimensional case: Standard interface element

Consider as before the triangle ABC, which is cut by Γ into the “green”

subtriangle APQ and the “red” subtriangles BCP and CQP . The basis

functions NA, NB and NC are defined to be piecewise affine inside each of

these subtriangles. It only remains to define their values at the vertices of

the subtriangles, i.e., at the points A, B, C, P and Q. However, since they

are discontinuous at Γ, two values are given at points P and Q. The values

on the green side will be assigned a “plus” sign, while those on the red side

a “minus” sign. The values at the vertices are:

NA( A ) = 1 NB( A ) = 0 NC( A ) = 0 (12)

NA( B ) = 0 NB( B ) = 1 NC( B ) = 0 (13)

NA( C ) = 0 NB( C ) = 0 NC( C ) = 1 (14)

NA(P+) = 1 NB(P+) = 0 NC(P+) = 0 (15)

NA(P−) = 0 NB(P−) = 1 NC(P−) = 0 (16)

NA(Q+) = 1 NB(Q+) = 0 NC(Q+) = 0 (17)

NA(Q−) = 0 NB(Q−) = 0 NC(Q−) = 1 (18)

Notice that these functions satisfy several useful properties: (i) They form

a nodal basis, in the sense that they take the value one at their corresponding

node and zero at the other nodes; (ii) their sum equals the constant function

equal to one in K; (iii) their extreme values (zero and one) take place at the

nodes. A picture of the interpolation functions for this case can be seen on

Fig. 2.
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Remark: Though unlikely in practical cases, it could happen that Γ passes

exactly through a vertex. This is a degenerate case in which one of the

subtriangles becomes a needle of vanishingly small volume.

2.2.3. Two-dimensional case: Element containing an interface endpoint

In the case that Γ has an endpoint at element K, special basis functions

are needed. Consider P to be the last edge-interface intersection point, and

T to be the interface endpoint (see Figure 3). The point Q is defined as

the intersection of the line PT with the edge AC. The difference with the

previous case is that now the functions need to be continuous at point Q.

For this purpose, let g be an affine function defined on the edge AC such

that g(A) = 1 and g(C) = 0 (in other words, g is the restriction to edge AC

of the P1 basis function corresponding to node A). The values of NA, NB

and NC at points A, B, C, P+ and P− are as in (12)-(16). At point Q the

functions are continuous, with values

NA(Q) = g(Q), NB(Q) = 0, NC(Q) = 1 − g(Q) (19)

Properties (i)-(iii) above are also satisfied by this basis. An illustration

of these functions can be seen on Fig. 4.

2.2.4. Three-dimensional case: Standard interface element

Consider that the element K cut by the interface is the tetrahedron

ABCD as shown in Fig. 5, of which either three (case (a)) or four (case

(b)) edges are cut by Γ.

In case (a), there appear three intersection points P , Q and R (see Fig.

5(a)), at which the nodal functions NA, NB, NC and ND are bi-valued. As

10



ACCEPTED MANUSCRIPT 

in the two-dimensional case, the plus and minus values at the intersection

points correspond to the “green” and “red” sides of the interface. Carrying

the values to the interface as explained, the values of the basis functions at

the vertices and intersection points are:

NA( A ) = 1, NB( A ) = 0, NC( A ) = 0, ND( A ) = 0 (20)

NA( B ) = 0, NB( B ) = 1, NC( B ) = 0, ND( B ) = 0 (21)

NA( C ) = 0, NB( C ) = 0, NC( C ) = 1, ND( C ) = 0 (22)

NA( D ) = 0, NB( D ) = 0, NC( D ) = 0, ND( D ) = 1 (23)

NA(P+) = 1, NB(P+) = 0, NC(P+) = 0, ND(P+) = 0 (24)

NA(P−) = 0, NB(P−) = 1, NC(P−) = 0, ND(P−) = 0 (25)

NA(Q+) = 1, NB(Q+) = 0, NC(Q+) = 0, ND(Q+) = 0 (26)

NA(Q−) = 0, NB(Q−) = 0, NC(Q−) = 1, ND(Q−) = 0 (27)

NA(R+) = 1, NB(R+) = 0, NC(R+) = 0, ND(R+) = 0 (28)

NA(R−) = 0, NB(R−) = 0, NC(R−) = 0, ND(R−) = 1 (29)

The truncated tetrahedron BCDPQR is divided into subtetrahedra and

from the values at the vertices given above the basis functions are obtained

by affine interpolation over each subtetrahedron. Satisfaction of 3D analogs

of properties (i)-(iii) is straightforward. In this case, for the resulting inter-

polant not to be discontinuous at the faces (outside Γ) the neighbor element

must be subdivided in a compatible way. For face ABC, for example, conti-

nuity of NB and NC is only obtained if both elements sharing this face divide

the quadrilateral BCPQ by the same diagonal.

In case (b) there appear four intersection points, namely P , Q, R and
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S (see Fig. 5(b)). The values of the basis functions at A, B, C and D are

obviously the same as in (20)-(23). The values at the intersection points

follow the same procedure as before, yielding

NA(P+) = 1, NB(P+) = 0, NC(P+) = 0, ND(P+) = 0 (30)

NA(P−) = 0, NB(P−) = 0, NC(P−) = 1, ND(P−) = 0 (31)

NA(Q+) = 1, NB(Q+) = 0, NC(Q+) = 0, ND(Q+) = 0 (32)

NA(Q−) = 0, NB(Q−) = 0, NC(Q−) = 0, ND(Q−) = 1 (33)

NA(R+) = 0, NB(R+) = 1, NC(R+) = 0, ND(R+) = 0 (34)

NA(R−) = 0, NB(R−) = 0, NC(R−) = 1, ND(R−) = 0 (35)

NA(S+) = 0, NB(S+) = 1, NC(S+) = 0, ND(S+) = 0 (36)

NA(S−) = 0, NB(S−) = 0, NC(S−) = 0, ND(S−) = 1 (37)

Properties (i)-(iii) are easily seen to hold, while continuity across the faces

again depends on the compatibility of the subdivisions between neighboring

elements.

2.2.5. Three-dimensional case: Interface with boundary

If the interface Γ has a boundary ∂Γ within the domain, the basis func-

tions need to be modified in much the same way as in the two-dimensional

case. Let K be an element cut by the surface Γ and such that ∂Γ ∩ K 6= ∅.

We assume that Γ ∩ K is a planar polygon and thus the intersection of this

plane with the edges of K defines the points P , Q, R and, in a case-(b)

situation, S, as before.

Consider for example that the intersection is as shown in Fig. 6, so

that the subdivision corresponds to case (b). Notice, however, that the edge
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BD is not crossed by the interface, so that the basis functions must be

continuous along this edge and thus, in particular, at point S. Proceeding

as in the two-dimensional case, we assign to S a unique value provided by

the linear interpolation between nodes B and D. This procedure is adopted

for all intersection points falling outside Γ. Properties (i)-(iii) are easily seen

to hold, as well as continuity of the basis functions across the faces (again

depending on a compatible choice of diagonals for quadrilaterals).

2.3. A stabilized method

It is also possible to consider finite element formulations that do not

satisfy the Babuška-Brezzi condition (8), but are rendered convergent by

means of stabilization techniques [15, 16]. This is the case of the equal-order

P1/P1 formulation in which the discrete spaces are

Qh = Q1
h (as before) (38)

Vh = V 1
h := {vh ∈ V, vh|K ∈ P1(K)2, ∀K ∈ Th} (39)

and the formulation reads: “Find (uh, ph) ∈ Vh × Qh such that

B((uh, ph), (vh, qh)) +
∑

K ∈Th

τK

∫

K

R(uh, ph) · ∇qh dK = L(vh, qh) (40)

for all (vh, qh) ∈ Vh × Qh”. The stabilization coefficient τK is taken as

τK =
h2

K

4µ

where hK is the element size, and the residual is defined as

R(uh, ph) = −µ∇2uh + ∇ph − FΓ. (41)
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For regular forces (e.g., forces in L2(Ω), which is not the case of FΓ), it is

possible to prove an error estimate [16] which is essentially equivalent to (11).

To our knowledge, no analysis exists of stabilized methods in problems

involving singular forces. Our approach is to set τK to zero whenever the

element K is cut by the interface. Though this could potentially lead to lack

of stability, no spurious pressure modes were detected in any of the numerical

tests. We attribute this to the band-like structure of the submesh in which

the stabilization is omitted, which is too narrow (just one band of elements)

for spurious modes to develop. In a different context, Lew and Buscaglia [17]

observed that switching the elements crossed by Γ to a discontinuous Galerkin

discretization required no stabilization, though the same space indeed requires

stabilization when used in the whole domain.

3. Numerical experiments

In this section we carry out numerical assessments of the proposed space.

We first investigate the interpolation accuracy of the space QΓ
h and indeed

obtain the claimed h
3

2 -order in the L2(Ω)-norm. Then we turn to academic

Navier-Stokes tests with analytic solution in which QΓ
h is used as pressure

space. These tests show that the new space does not deteriorate the stability

properties of either the stable mini-element formulation or the stabilized

equal-order formulation. Finally, two more realistic problems are simulated

to show that the proposed method is robust enough to handle arbitrarily

moving interfaces in two and three dimensions.

14
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3.1. Interpolation properties of the space QΓ
h

We first assess purely the interpolation properties of QΓ
h. For this pur-

pose we perform tests similar to those conducted by Reusken [3]. Let Ω =

(−π
2
, π

2
) × (−π

2
, π

2
) and let Γ = {(x, y) ∈ Ω | x = 0 , y > 0}. Let p be the

function

p(x, y) =







e−x sin2(y) if (x > 0 and y > 0)

0 otherwise
. (42)

Notice that Γ is a “crack” in the domain, and that p is discontinuous across

Γ.

The interpolant Ihp of p is now defined as the unique element of QΓ
h that

coincides with p at all the vertices of Th.

A sequence of unstructured meshes was built, of which the first one is

shown in Fig. 7. To this mesh, which consists of 326 triangles, we assign

a mesh size of h = 0.2. The following meshes in the sequence are built by

successively dividing each of the triangles of the previous mesh into four equal

triangles, leading to meshes with h = 0.1, h = 0.05 and so forth, until the

finest mesh with h = 3.125 × 10−3.

We measured the error of p − Ihp in the L2(Ω)-norm. The results are

shown in Table 1, in which we also include the interpolation error of the

P1-conforming interpolant for comparison (Q1
h). Figure 8 displays the con-

vergence rate of the order of h
3

2 .

3.2. Couette flow

In this experiment we consider the domain [0, L] × [0, H ], with periodic

boundary conditions in the x1-direction. The velocity is set to zero at the
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top and bottom boundaries

u(x1, x2 = 0) = u(x1, x2 = H) = 0

and the interface Γ is a straight vertical line x1 = a, on which a constant

unit normal force f = 1 is imposed. The exact solution for this problem is

u1(x1, x2) =
1

2µL
x2 (H − x2) (43)

u2(x1, x2) = 0 (44)

p(x1, x2) = −
1

L
x1 + H(x1 − a) (45)

where H(x1 − a) = 1 if x1 > a and zero otherwise, and the indeterminacy

of the pressure was removed by imposing p(0, 0) = 0 instead of setting the

average to zero, for simplicity.

This problem, with L = 3, H = 1, µ = 1 and a = 2 was discretized both

with the mini-element and with the stabilized equal-order methods. In both

cases, the classical P1-conforming pressure space (denoted by Q1
h above) and

the new space QΓ
h were implemented.

As in the previous section, a sequence of unstructured meshes was built,

of which the first one is shown in Fig. 9. To this mesh, which consists of

220 triangles, we assign a mesh size of h = 0.176. The following meshes in

the sequence are built by subdivision. We measure the velocity error in the

H1(Ω)-norm and the pressure error in the L2(Ω)-norm for both methods as

functions of h. The results of the convergence analysis are displayed in Table

2 and Fig. 10. The experimental orders of convergence are

‖u − uh‖H1(Ω) = O(h
1

2 ), ‖p − ph‖L2(Ω) = O(h
1

2 )
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for the standard Q1
h space; and

‖u − uh‖H1(Ω) = O(h), ‖p − ph‖L2(Ω) = O(h)

for the proposed method. The optimal convergence of smooth problems is

thus recovered with the proposed modification of the pressure space.

The pressure field corresponding to the classical mini-element is compared

to that obtained with the proposed method in Fig. 11. As is clear from the

figure, the improved pressure space exhibits significantly smaller pressure

oscillations near the interface than the mini-element.

3.3. Static two-dimensional bubble

The second example we report here concerns a 2D static bubble. In this

case the interface Γ is the circle of radius R centered at the origin. On Γ, a

constant (inwards) normal force is imposed, f = σ
R
, where σ represents the

surface tension. Setting the pressure outside the bubble arbitrarily to zero,

the exact pressure inside the bubble equals σ
R
. The exact velocity vanishes

everywhere.

In this example we approximate Γ by Γh, which consists of straight seg-

ments inside each element that join the intersections of Γ with the element

edges (i.e., the points P and Q are joined by a straight segment). With Γh

fixed, we impose the surface tension force in two ways:

Direct forcing: We impose

FΓ = −
σ

R
δΓh

er (46)

where er is the radial unit vector, leading to

L(vh, qh) = −
σ

R

∫

Γh

er · vh dΓ (47)
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Laplace-Beltrami forcing: The Laplace-Beltrami treatment of surface ten-

sion is based on the identity (valid for a closed surface of curvature κ)

∫

Γ

κ n · v dΓ = −

∫

Γ

(I − n⊗ n) : ∇v dΓ (48)

where I is the identity tensor, the symbol ⊗ denotes the tensor product,

and “:” stands for the double contraction of rank two tensors. This

leads to the following linear form on the right-hand side of (7) and/or

(40):

L(vh, qh) = − σ

∫

Γh

(I − nh ⊗ nh) : ∇vh dΓ (49)

where nh is the unit normal to Γh.

For the numerical tests we chose R = µ = σ = 1, and the domain was set

to Ω = (−2, 2)× (−2, 2). The velocity is set to zero on ∂Ω, and the pressure

at the left bottom corner of the domain is set to zero to fully determine the

pressure. We present results for the mini-element formulation with direct

forcing (ME+DF), and for the stabilized formulation with Laplace-Beltrami

forcing (ST+LB). A mesh refinement study was conducted in the same way

as in the previous examples, starting with the mesh shown in Fig. 12, to

which we assign h = 0.2. Logarithmic plots of the velocity and pressure

errors are shown in Fig. 13. Clearly, both methods converge with order

O(h
1

2 ) if the standard pressure space Q1
h is used, while switching to QΓ

h

improves the order to O(h
3

2 ). The obtained pressure and velocity fields on

the mesh with h = 0.05, which consists of 14900 elements, are shown in

Figs. 14 and 15 for the ME+DF formulation, and in Figs. 16 and 17 for the

ST+LB formulation. The improvements brought by the proposed method are

evident. The parasitic velocities obtained with the ME+DF formulation have
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a maximum modulus of 1.6 × 10−3 when the P1 space is used for pressure,

whereas with the proposed space this value is much smaller (4.5 × 10−5).

Similarly, in the ST+LB formulation the maximum velocity modulus is 2.4×

10−3 for Q1
h and 7 × 10−5 for QΓ

h .

3.4. Rayleigh-Taylor instability

This is a well-known benchmark which has been computed by Puckett et

al [18], Popinet and Zaleski [19] and Jahanbakhsh et al [20], among others.

It consists of a layer of heavier fluid (ρ = 1.225) on top of a lighter fluid (ρ =

0.1694), both with viscosity µ = 3.13 × 10−2. The domain is the rectangle

Ω = (0, 1)× (0, 4) and the gravity is taken as g = 10. The interface between

the fluids is a horizontal line with a sinusoidal perturbation of amplitude 0.05.

We consider the standard case, with no surface tension, and also simulate a

case with σ = 0.025 in which the ability of the numerical method to reproduce

the stabilizing effect of surface tension is tested.

To carry out this simulation (and the one in the next subsection) the

proposed pressure space was incorporated into a general purpose in-house

interface-capturing code that simulates fluids with evolving interfaces. The

details of the code are explained elsewhere [21]. Let us here simply summarize

its basic ingredients:

• Stabilized equal-order formulation of the time-dependent Navier-Stokes

equations.

• Level set formulation for interface representation and transport. Stan-

dard P1 conforming elements for the level set function φ. The transport
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of φ is handled with the SUPG method [22], with mass-preserving pe-

riodic reinitialization as proposed by Mut et al [23].

• Laplace-Beltrami treatment of the surface tension force.

Numerical results at several times, as computed on a uniform mesh con-

sisting of 331,776 elements with a time step ∆t = 6.25 × 10−4 are shown in

Fig. 18. The results with σ = 0 are in good agreement with those reported

by Jahanbakhsh et al [20], while the stabilizing effect of surface tension is

clear from the simulation results with σ = 0.025.

3.5. Merging bubbles

This experiment shows the good behavior of the proposed method in

three-dimensional complex cases. We study the rise of two buoyant bubbles

(ρ = 0.04, µ = 5 × 10−3) in a quiescent liquid with ρ = 1 and µ = 0.1. The

diameter of the bubbles is 1 and the domain is Ω = (0, 3) × (0, 3) × (0, 4).

The gravity is g = 10, the surface tension σ = 0.2 and the initial positions

of the bubbles’ centers are (1.5, 1.5, 2.25) and (1.5, 1.75, 1) (notice that they

are not vertically aligned).

The finite element mesh consists of 885,000 tetrahedra, and the time step

is taken as 10−3. Shown in Fig. 19 is the interface shape at times t = 0.125,

0.25, 0.35, 0.4, 0.5 and 0.575. The bottom bubble follows and catches the

top one, and the results are in good agreement with those reported by Sousa

et al [24] and Marchandise et al [25].
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4. Conclusions

A new finite element space QΓ
h has been proposed, which has the same un-

knowns as the P1-conforming space but consists of functions that are discon-

tinuous across a given interface Γ, assumed not aligned with the mesh. The

proposed space is much simpler than the one proposed by Gross and Reusken

[2], which is based on XFEM enrichment, and also to the one proposed by

Fries and Belytschko [26], which avoids introducing additional unknowns by

switching to a moving-least-squares approximation in the vicinity of Γ.

Through numerical tests it was shown that the L2(Ω)-interpolation ac-

curacy of QΓ
h for functions that are smooth outside Γ is O(h

3

2 ). This is a

significant improvement with respect to the accuracy of continuous spaces of

any polynomial degree, which is O(h
1

2 ).

An interpolation accuracy of O(h
3

2 ) in the L2(Ω)-norm is suboptimal for

piecewise linear elements. However, the a priori estimate (11) implies that

the space QΓ
h , when taken as pressure space, will not limit the accuracy of a

(Navier-)Stokes calculation neither in equal-order velocity-pressure approxi-

mations, nor in the mini-element approximation. In fact, in both cases the

global accuracy is limited by the H1(Ω)-accuracy of the velocity space, which

is O(h).

The proposed space is easy to implement, requiring just local operations

at the element level to incorporate the improved pressure interpolation. Sev-

eral tests were reported which illustrate the improved behavior of both ve-

locity and pressure when the elements cut by the interface are treated with

the proposed pressure interpolants.

Some issues are left for future work. A rigorous proof of the interpolation
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estimate has been undertaken by Agouzal and Buscaglia, of which some pre-

liminary results have already been communicated [27] and a complete version

is in preparation. Another open theoretical question concerns the stability

estimates for the Vh-Q
Γ
h pair, of which strong numerical evidence has been

provided in this article but whose proof is far from evident. Finally, it would

be interesting to devise spaces analog to QΓ
h when the overall discretization

is Pk-conforming with k > 1, but this is, again, far from being an immediate

extension of the space proposed in this article.
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P

Q

Γ

Figure 1: Partition of a single finite element into subelements following the interface PQ.

(a) (b) (c)

Figure 2: Basis functions for the new finite element space inside an element crossed by

the interface: (a) NA, (b) NB and (c) NC .
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Figure 3: Endpoint T of the interface Γ inside the element ABC.
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(a) (b) (c)

Figure 4: Basis functions for the new finite element space inside an element containing an

endpoint of the interface: (a) NA, (b) NB and (c) NC .
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Figure 5: Partition of a tetrahedron following the interface Γ: (a) Interface crossing three

edges; (b) Interface crossing four edges.
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Figure 6: Partition of a tetrahedron K where ∂Γ ∩ K 6= ∅. Point S is obtained by

intersecting plane PQR with edge BD.

−π

2

−π

2

0

0

π

2

π

2

Figure 7: First mesh used in the interpolation test, with 326 elements. The interface Γ is

a line from (0,0) to (0,π

2 ).
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Figure 9: Mesh with 220 elements, h = 0.176, for the Couette convergence test.
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Figure 10: Error norms for the velocity (a) and pressure (b), showing the convergence

rates for the Couette flow. Dashed lines represent the standard Q1
h

pressure interpolation

and continuous lines represent the new QΓ
h

discontinuous element.
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Figure 11: Computed pressure using the stable formulation (mini-element), with standard

and new pressure space.
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Figure 12: Mesh for the static bubble convergence study, with 1104 elements and h = 0.2.
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Figure 13: Error norms for the velocity (a) and pressure (b), showing the convergence

rates for the static bubble. Dashed lines represent the standard Q1
h

pressure interpolation

and continuous lines represent the new QΓ
h

discontinuous element.
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Figure 14: Pressure field for the mini-element with direct forcing, obtained with h = 0.05:

(a) Q1
h
; (b) QΓ

h
.
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Figure 15: Spurious velocities for the mini-element with direct forcing, obtained with

h = 0.05: (a) Q1
h
; (b) QΓ

h
.
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Figure 16: Pressure field for the stabilized element with Laplace-Beltrami forcing, obtained

with h = 0.05: (a) Q1
h
; (b) QΓ

h
.

36



ACCEPTED MANUSCRIPT 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 2.4x10-03

2.0x10-03

1.6x10-03

1.2x10-03

8.0x10-04

4.0x10-04

0.0x10+00

x

y

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2 7.0x10-05

6.0x10-05

5.0x10-05

4.0x10-05

3.0x10-05

2.0x10-05

1.0x10-05

0.0x10+00

x

y

(b)

Figure 17: Spurious velocities for the stabilized element with Laplace-Beltrami forcing,

obtained with h = 0.05: (a) Q1
h
; (b) QΓ

h
.
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t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9

Figure 18: Two-dimensional Rayleigh-Taylor instability test case. Numerical results at

times t = 0.5, 0.6, 0.7, 0.8 and 0.9. The left part of each frame corresponds to σ = 0.025,

while the right part corresponds to zero surface tension. Shown are color contours of the

pressure (value increasing from red to blue), instantaneous streamlines, and location of

the interface.
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t = 0.125 t = 0.25 t = 0.35

t = 0.575t = 0.40 t = 0.50

Figure 19: Merging bubbles test case. Shown are interface shapes at times t = 0.125, 0.25,

0.35, 0.4, 0.5 and 0.575.
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Table 1: Error ‖p−Ip‖L2(Ω) computed for g(x) = e−x, for the standard Q1
h

space and for

the new pressure space QΓ
h
.

h Q1
h QΓ

h

2.0 × 10−1 1.332321 × 10−1 4.166473 × 10−2

1.0 × 10−1 1.120209 × 10−1 1.593032 × 10−2

5.0 × 10−2 7.209146 × 10−2 4.456308 × 10−3

2.5 × 10−2 5.126917 × 10−2 1.606452 × 10−3

1.25 × 10−2 3.607274 × 10−2 5.286712 × 10−4

6.25 × 10−3 2.565891 × 10−2 2.010631 × 10−4

3.125 × 10−3 1.786352 × 10−2 6.614845 × 10−5

Table 2: Convergence study for the Couette flow computed with the new pressure space

QΓ
h

in both stabilized (P1/P1) and stable (P+
1 /P1) formulations.

h
P1/P1 P+

1 /P1

‖u − uh‖H1(Ω) ‖p − ph‖L2(Ω) ‖u − uh‖H1(Ω) ‖p − ph‖L2(Ω)

1.76 × 10−1 2.9635 × 10−2 2.9413 × 10−2 2.6850 × 10−2 1.0408 × 10−2

8.80 × 10−2 1.4681 × 10−2 8.6496 × 10−3 1.3479 × 10−2 3.5439 × 10−3

4.40 × 10−2 7.2939 × 10−3 3.2792 × 10−3 6.7448 × 10−3 1.6185 × 10−3

2.20 × 10−2 3.6309 × 10−3 1.1239 × 10−3 3.3695 × 10−3 6.6834 × 10−4

1.10 × 10−2 1.8115 × 10−3 3.9940 × 10−4 1.6833 × 10−3 2.5230 × 10−4
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