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Abstract—Neighbor finding is an important and a basic part of 
image processing in quadtrees.  A constant time algorithm is 
proposed for neighbor finding in quadtrees in [1].  In this paper, 
empirical tests are given for the constant time algorithm in 
comparison with usual neighbor finding algorithm using 
quadtrees [2] and another constant time algorithm using linear 
quadtree [3].  Experiments using synthetic images simulating 
worst case situations show that the proposed algorithm is in 
constant time complexity while others are not.  Even for 
experiments using natural images, the proposed algorithm is 
more than twice as fast as algorithm using quadtrees and is 
slightly as fast as algorithm using linear quadtrees. 

Keywords-component; image processing, quadtrees, linear 
quadtrees, neighbor finding 

I.  INTRODUCTION 
Quadtrees were originally proposed in [4].  An image is 

stored in a tree such that each node has four sons, each of 
which represents a quadrant (NE, NW, SE, and SW) of a given 
square at corresponding level (Fig. 1(a) and 1(b)).   To 
facilitate better understanding of our proposal, the tree 
structures are reviewed briefly. 

 

Figure 1.  An example of the quadrants of an image and the corresponding 
quadtree. 

Each quadrant is checked whether the image fills it completely, 
partially, or not at all.  If a quadrant is filled completely, the 
corresponding node of a quadtree is assumed "BLACK".  If a 
quadrant is filled partially, the corresponding node is assumed 
"GRAY".  BLACK and WHITE nodes become leaf nodes, 
while GRAY nodes are subdivided into four subquadrants.  
This process continues until all leaf nodes are labeled BLACK 
or WHITE, or a given level is reached, called the resolution r 
(or height) of the quadtree (see Fig. 2 for r = 3).  There are at 
most r subdivision levels.  For in-depth expositions, see [5] 
and [6]. 

 
Figure 2.  A black and white image and its quadtree representation. 

A variant, linear quadtree was proposed in [7].  Each leaf 
node of a linear quadtree is represented by an ordered pair, (n, 
l), where n is its spatial address called the location code and l is 
its level.  The level of the root node is 0, that of its four sons is 
1, etc.  A linear quadtree is a list of the code/level pairs of all 
BLACK nodes. 

Finding the neighbors of a specific leaf node is a 
fundamental operation for many algorithms which manipulate 
quadtree data structures.  In quadtrees, finding neighbors takes 
O(r) computational time for the worst case (see, e.g., [2]).  
Schrack [3] proposed a constant time algorithm for finding 
equal-sized neighbors in linear quadtrees.  His algorithm 
calculates the location codes of equal size neighbors only, 
without determining their existence.  To find the location codes 
of different-sized neighbors requires computational time 
proportional to the level difference of these neighbors (i.e., at 
most O(r)), necessary for searching the list of location codes of 
the given linear quadtree in general.  In [1], a new algorithm to 
find the neighbors of a given leaf node in a quadtree is 
proposed, which requires only O(1) (i.e., constant) 
computational time for the worst case.  Moreover, the 
algorithm does not claim consideration of the existence or 
non-existence of neighbors.  Therefore, no additional checking 
is needed. 

In this paper, empirical tests are given for our constant time 
algorithm in comparison with Samet’s neighbor finding 
algorithm using quadtrees and Schrack’s constant time 
algorithm using linear quadtree.  Experiments using synthetic 
images simulating worst case situations show that the proposed 
algorithm is in constant time complexity while others are not.  
Even for experiments using natural images, the proposed 
algorithm is more than twice as fast as algorithm using 
quadtrees and is slightly as fast as another constant time 
algorithm using linear quadtrees. 

ISCCSP 2008, Malta, 12-14 March 2008 505

978-1-4244-1688-2/08/$25.00 c©2008 IEEE



The rest of the paper is organized as follows.  In Section II, 
basic definitions and properties of linear quadtrees are 
reviewed, as well as Schrack’s algorithm.  In Section III, 
constant time algorithm for finding neighbors in quadtree with 
location codes and level differences (QTLCLD) is reviewed 
briefly.  Experiments results are given in Section IV.  Finally a 
brief conclusion is given in Section V. 

II. LINEAR QUADTREES 
A location code is denoted as a quaternary integer.  

Quadrants are labeled according to a labeling scheme, where 
the SW, SE, NW, NE quadrants are labeled 0, 1, 2, 3, 
respectively.  The most significant quaternary digit of a 
location code represents the quadrant of level 1, the following 
digit is the quadrant of level 2, and so on.  Therefore, a location 
code has always exactly r digits and the given image is 
represented by 

! 

2
r
" 2

r  pixels.  A node at level l < r has a 
location code the last r – l digits of which are all 0s.  Although, 
a linear quadtree  usually is a list of location code/level pairs of 
its BLACK nodes only, in this paper, we will include all 
WHITE nodes as well.  The linear quadtree of the image in Fig.  
3 is then becomes: 

linear quadtree = {(000, 1), (100, 2), (110, 2), (120, 2), (130, 
2), (200, 1), (300, 2), (310, 2), (320, 3), (321, 3), (322, 3), (323, 
3), (330, 2)}. 

 

Figure 3.  Location codes for an image of resolution r = 3. 

Gargantini [7] has shown that the binary representation of 
the location code n of a pixel is an interleaved coordinate, that 
is to say it has the structure 

 

! 

n = yr"1xr"1...y1x1y0x0 , 

! 

xi,yi " {0,1} (1) 

where 

! 

x = x
r"1...x1x0 , 

! 

y = yr"1...y1y0  are the binary 
representations of the coordinates of the quadrant with 
location code n.  For example, the binary representation of the 
quaternary location code “320” is “111000.”  Thus the binary 
integer “100” is the x-coordinate and “110” is the y-coordinate 
of the quadrant “320.” 

For Schrack’s algorithm [3], the following operators are 
assumed: 

 + normal addition of two binary integers, 
 | bitwise OR, 
 ^ bitwise AND, 

 << n “shift left” n times, 
 >> n “shift right” n times. 
In addition, two constants (in binary representation) are 
required: 
 

! 

t
x

= 01...0101 “01” repeated r times, 
 

! 

ty =10...1010  “10” repeated r times. 
The quad location addition operator 

! 

"q
 becomes  

 

! 

mq = nq "q #ni

= (((nq | ty ) + (#ni $ tx ))$ tx ) | (((nq | tx ) + (#ni $ ty ))$ ty )
 (2) 

where 

! 

nq  is  the binary representation of a given location code, 

! 

"ni  is one of the basic direction increments defined below, 
and 

! 

mq
 is the location code (in binary) of the neighbor of the 

quadrant 

! 

nq .  For r = 3, the eight basic direction increments 
are defined by 
 

! 

"n0 = 000001 East neighbor, 
 

! 

"n1 = 000011 North-East neighbor, 
 

! 

"n2 = 000010 North neighbor, 
 

! 

"n3 = 010111 North-West neighbor, 
 

! 

"n4 = 010101 West neighbor, 
 

! 

"n5 =111111 South-West neighbor, 
 

! 

"n6 =101010 South neighbor, 
 

! 

"n7 =101011 South-East neighbor. 
To obtain the equal-sized neighbors of any level is 

summarized by the following theorem. 

Theorem 1 (Calculation of neighbors of equal size) [3]: 
Given a location code 

! 

nq  and its level l, the eight neighbors of 
equal size are given by 

 

! 

mq = nq "q (#ni << (2(r $ l))) , 

! 

i = 0,1, ... ,7, (3) 

where 

! 

"q
 is the quad location addition operator, 

! 

"ni  are the 
eight basic direction increments, and r is the (fixed) resolution.  
This calculation is of constant time-complexity. 
 

Note that the 2(r – l) times “shift-left” operation can be 
replaced by the single multiplication by 

! 

2
2(r"l). 

III. CONSTANT TIME ALGORITHM FOR FINDING NEIGHBORS 
In [1], a new data structure for quadtrees is proposed, which 

holds the location codes as linear quadtrees and also holds the 
differences of levels between adjacent quadrants.  For example, 
the data structure takes the form represented in Fig. 4 for the 
image of Fig. 2.  Length of the location code varies in 
proportion to the resolution of image, i.e., if r =3 then the code 
has three digits.  The Fig. 4 is in the case of r =3.  The 
meanings of numbers for each quadrant are in Fig. 5. 

To describe a quadrant with level differences, we will use the 
following notation: 

(location code, level, color, 

! 

"east, 

! 

"north, 

! 

"west, 

! 

"south), 
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where 

! 

"east, 

! 

"north, 

! 

"west, and 

! 

"south represent the level 
differences between east, north, west, and south neighbors, 
respectively. 

 
Figure 4.  An example of level differences between adjacent quadrants. 

 
Figure 5.  Legend of numbers for a quadrant of quadtree. 

So, the complete quadtree with location codes and level 
differences (QTLCLD) for the image of Fig. 2(a) is as follows: 

QTLCLD = {(000, 1, WHITE, 1, 0, #, #), (100, 2, WHITE, 0, 
0, –1, #), (110, 2, WHITE, #, 0, 0, #), (120, 2, BLACK, 0, 0, 
–1, 0), (130, 2, BLACK, #, 0, 0, 0), (200, 1, BLACK, 1, #, #, 
0), (300, 2, BLACK, 0, 1, –1, 0), (310, 2, WHITE, #, 0, 0, 0), 
(320, 3, BLACK, 0, 0, –2, –1), (321, 3, WHITE, –1, 0, 0, –1), 
(322, 3, BLACK, 0, #, –2, 0), (323, 3, WHITE, –1, #, 0, 0), 
(330, 2, WHITE, #, #, 1, 0)} 

Algorithm to construct the quadtree with location codes and 
level differences for a given image is in Fig. 6.  The algorithm 
is based on breadth-first expansion of a quadtree.  In the middle 
of this expansion, Schrack’s algorithm is used to find equal size 
neighbors in constant time.  In these neighbors, the level 
differences are recalculated according to the following method.  
The recalculations are done in four cases: 

 
The recalculations are represented in Fig. 7. As stated 

before, value “1” means only the fact that “they are smaller 

than me.”  But in the level differences adjusting algorithm in 
Fig. 6, quadtree expansion proceeds in “breadth-first” style.  So 
whenever an quadrant is intended to divide, therefore the 
smaller neighbors must be smaller than at most ONE level. 

 
Figure 6.  Algorithm to construct QTLCLD. 

It is easy to see that the algorithm in Fig. 6 is just a 
breadth-first expansion of a quadtree using Schrack’s constant 
time algorithm to find equal size neighbors in two for-loops.  
The number of equal size neighbors in the first for-loop is at 
most four and in the second for-loop is at most eight.  Then, 
obviously, the following theorem holds. 

Theorem 2 (Construction of QTLCLD) [1]:  For an image of 
resolution r having n quadrants, a linear quadtree with level 
differences can be constructed within O((r + 1)n).  Its time 
complexity is the same as that of usual quadtree construction 
algorithm. 

 
Figure 7.  Recalculation of level differences when a quadrant is divided into 

four children. 

A constant time algorithm for neighbors finding in 
quadtrees is presented below by making use of the data 
structure defined in the previous section.  At first, neighbors in 
given direction of a given quadrant must be defined.  
Unfortunately, there are often more than one neighbors in 
given direction.  So, we follow Samet’s definition in [6]. 

Definition 1: The neighbor Q in given direction of given 
quadrant P is the smallest quadrant (it may be GRAY) that is 
adjacent to P in given direction and is of size greater than or 
equal to the quadrant P. 

The algorithm to calculate location code/level in given 
direction for given location code/level pair is in Fig. 8, where r 
is the resolution of given image and 

! 

"ni ’s are equal to that of 
Schrack’s algorithm.  In our case, 

! 

"ni  is defined only for i = 0, 
2, 4, 6.  The algorithm is based on Schrack’s dilated integer 
addition 

! 

"q
 but by making use of data structure introduced in 
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Fig. 5, it can calculate location code/level for neighbor in given 
direction. 

 
Figure 8.  A constant time algorithm for finding neighbors in 

quadtrees. 

The algorithm is based on the following formulae: 

 

! 

mq = ((nq >> 2(r " l " dd)) << 2(r " l " dd))

#q ($nd << (2(r " l " dd)))
dd < 0

mq = nq #q ($nd << (2(r " l))) dd % 0

& 

' 
( 

) 
( 

 (4) 

where 

! 

nq  is the location code (in binary) of given quadrant, 

! 

mq
 is the location code (in binary) of the neighbor in the 

direction d (d = 0, 2, 4, 6), dd is the level difference for the 
neighbor in the direction d, r is the resolution of quadtree, l is 
the level of given quadrant, 

! 

"n0 = 000001, "n2 = 000010,"n4 = 010101,"n6 =101010 , for r = 
3. 

For the cases of dd ≥ 0, it is equal to Schracks' algorithm 
because in such cases the neighbors are in the same size by 
Definition 1.  For the cases of dd < 0, the location code of 
given quadrant is shifted right 2(r-l-dd) digits then left 2(r-l-dd) 
digits to set the size of given quadrant equal to that of the 
neighbor.  Basic direction increments are also shifted left 
2(r-l-dd) digits to set the proper size. 

This algorithm consists of several substitution statements 
and two calculation statements that includes dilated integer 
addition, shift-right, and shift-left.    It has no iterative process. 
It is obvious that the algorithm is done in O(1) (i.e., constant 
time).  So the following theorem holds. 

Theorem 3 (Neighbor finding in QTLCLD) [1]: Algorithm 
“NeighborFinding” has constant-time complexity. 

IV. EXPERIMENTAL RESULTS 
We implement all three algorithm, i.e., our algorithm, 

Samet’s algorithm, and Schrack’s algorithm.  These 
implementations are done on the following environment: 

• CPU: Intel Core 2 Duo 4300 1.80GHz 

• RAM: 1GB 

• OS: Microsoft Windows XP Professional x64 Edition 
Version2003 

• Language: Microsoft Visual C++ 2005 

A. Experiments on Synthetic Images 
We prepare two sets of images synthetic and natural.  

Synthetic images simulate worst-case situations.  Roughly 
speaking, all neighbor finding operations taking place in these 
images are of searching for the largest quadrant from the 
smallest one.  An example of these images is represented in Fig. 
9 (for the case level = 3). 

 
Figure 9.  Neighbor finding in a synthetic image (level = 3). 

We made eight synthetic images of level 3 (8 x 8) to level 
10 (1024 x 1024).  We repeated each algorithm for 1,000,000 
times for each image and took average for execution time.  The 
results are presented in Table I. 

TABLE I.  NEIGHBOR FINDING EXECUTION TIME IN SYNTHETIC 
IMAGES 

Levels 
No. of 
pixels 

Quadtree 
(Secs) 

Linear 
quadtree 

(Secs) 
QTLCLD 

(Secs) 

3 64 6.2130E-08 2.9533E-08 2.6359E-08 

4 256 7.3245E-08 3.2344E-08 2.6605E-08 

5 1024 8.3680E-08 3.5365E-08 2.7067E-08 

6 4096 9.4344E-08 3.8490E-08 2.7067E-08 

7 16384 1.0451E-07 4.2212E-08 2.6437E-08 

8 65536 1.1682E-07 4.5219E-08 2.6691E-08 

9 262144 1.2574E-07 4.9570E-08 2.6701E-08 

10 1048576 1.4163E-07 5.2839E-08 2.6513E-08 

 

The results in Table 1 show that our algorithm (QTLCLD) 
is two to five times as fast as Samet’s algorithm (quadtree).  
More importantly, it is the only constant time algorithm.  Due 
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to size difference between two quadtrants, Schrack’s algorithm 
(linear quadtree) needs execution time, which is proportion to 
image levels.  Fig. 10 shows these situations clearly. 

 
Figure 10.  Neighbor finding in synthetic images. 

B. Experiments on Natural Images 
Fifty natural images from the image database of the USC 

(University of Southern California) which are 1024 x 1024  
pixels in size (level 10), were used for evaluation (see, Fig.11).  
The images were transformed into binary images by making 
use of the method in [8].  From these images we produced 
smaller images from 32 x 32 (level 5) to 512 x 512 pixels 
(level 9). 

 
Figure 11.  An example of images from the image database of the USC. 

In these images, there are some possibilities that neighbor 
finding from larger quadrant to smaller quadrants happens.  So, 
we extended each algorithm to handle such situations.  Again, 
we repeated each algorithm for randomly chosen 1,000,000 
points for each image and took average for execution time.  
The results are presented in Table II. 

The results in Table II show that our algorithm is still more 
than twice as fast as algorithm using quadtrees.  Algorithms 
using QTLCLDs and linear quadtrees have constant time 
complexities generously.  Their execution times are increased 
less than 0.2 x 10-8 while the sizes of images are increased 210 

times.  However the difference between linear quadtrees and 

QTLCLDs is a slight.  Fig. 12 and Fig. 13 show these situations 
clearly. 

TABLE II.  NEIGHBOR FINDING EXECUTION TIME IN NATURAL 
IMAGES 

Levels No. of 
pixels 

Quadtree 
(Secs) 

Linear 
quadtree 

(Secs) 

QTLCLD 
(Secs) 

5 1024 6.4111E-06 2.6962E-06 2.6070E-06 

6 4096 6.7178E-06 2.7115E-06 2.6289E-06 

7 16384 6.8755E-06 2.7235E-06 2.6498E-06 

8 65536 7.0260E-06 2.7354E-06 2.6604E-06 

9 262144 7.3569E-06 2.7534E-06 2.6795E-06 

10 1048576 7.5942E-06 2.7643E-06 2.6895E-06 

 

 
Figure 12.  Neighbor finding in natural images. 

 
Figure 13.  Difference between QTLCLD and linear quadtree. 

V. CONCLUSION 
This paper has given empirical tests for three neighbor 

finding algorithm in quadtrees.  It demonstrated the algorithm 
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based on QTLCLD takes less execution time.  Even in the 
worst-case situations, it takes constant execution time, while 
other two algorithms need execution time proportional to 
image level. 
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