
Constant Time Neighbor Finding in Quadtrees:
An Experimental Result

Kunio Aizawa, Koyo Motomura, Shintaro Kimura, Ryosuke Kadowaki, and Jia Fan
Department of Mathematics and Computer Science

Interdisciplinary Faculty of Science and Engineering
Shimane University, Matsue

Shimane 690-8502 Japan
aizawa@cis.shimane-u.ac.jp

Abstract—Neighbor finding is an important and a basic part of
image processing in quadtrees. A constant time algorithm is
proposed for neighbor finding in quadtrees in [1]. In this paper,
empirical tests are given for the constant time algorithm in
comparison with usual neighbor finding algorithm using
quadtrees [2] and another constant time algorithm using linear
quadtree [3]. Experiments using synthetic images simulating
worst case situations show that the proposed algorithm is in
constant time complexity while others are not. Even for
experiments using natural images, the proposed algorithm is
more than twice as fast as algorithm using quadtrees and is
slightly as fast as algorithm using linear quadtrees.

Keywords-component; image processing, quadtrees, linear
quadtrees, neighbor finding

I. INTRODUCTION
Quadtrees were originally proposed in [4]. An image is

stored in a tree such that each node has four sons, each of
which represents a quadrant (NE, NW, SE, and SW) of a given
square at corresponding level (Fig. 1(a) and 1(b)). To
facilitate better understanding of our proposal, the tree
structures are reviewed briefly.

Figure 1. An example of the quadrants of an image and the corresponding
quadtree.

Each quadrant is checked whether the image fills it completely,
partially, or not at all. If a quadrant is filled completely, the
corresponding node of a quadtree is assumed "BLACK". If a
quadrant is filled partially, the corresponding node is assumed
"GRAY". BLACK and WHITE nodes become leaf nodes,
while GRAY nodes are subdivided into four subquadrants.
This process continues until all leaf nodes are labeled BLACK
or WHITE, or a given level is reached, called the resolution r
(or height) of the quadtree (see Fig. 2 for r = 3). There are at
most r subdivision levels. For in-depth expositions, see [5]
and [6].

Figure 2. A black and white image and its quadtree representation.

A variant, linear quadtree was proposed in [7]. Each leaf
node of a linear quadtree is represented by an ordered pair, (n,
l), where n is its spatial address called the location code and l is
its level. The level of the root node is 0, that of its four sons is
1, etc. A linear quadtree is a list of the code/level pairs of all
BLACK nodes.

Finding the neighbors of a specific leaf node is a
fundamental operation for many algorithms which manipulate
quadtree data structures. In quadtrees, finding neighbors takes
O(r) computational time for the worst case (see, e.g., [2]).
Schrack [3] proposed a constant time algorithm for finding
equal-sized neighbors in linear quadtrees. His algorithm
calculates the location codes of equal size neighbors only,
without determining their existence. To find the location codes
of different-sized neighbors requires computational time
proportional to the level difference of these neighbors (i.e., at
most O(r)), necessary for searching the list of location codes of
the given linear quadtree in general. In [1], a new algorithm to
find the neighbors of a given leaf node in a quadtree is
proposed, which requires only O(1) (i.e., constant)
computational time for the worst case. Moreover, the
algorithm does not claim consideration of the existence or
non-existence of neighbors. Therefore, no additional checking
is needed.

In this paper, empirical tests are given for our constant time
algorithm in comparison with Samet’s neighbor finding
algorithm using quadtrees and Schrack’s constant time
algorithm using linear quadtree. Experiments using synthetic
images simulating worst case situations show that the proposed
algorithm is in constant time complexity while others are not.
Even for experiments using natural images, the proposed
algorithm is more than twice as fast as algorithm using
quadtrees and is slightly as fast as another constant time
algorithm using linear quadtrees.

ISCCSP 2008, Malta, 12-14 March 2008 505

978-1-4244-1688-2/08/$25.00 c©2008 IEEE

The rest of the paper is organized as follows. In Section II,
basic definitions and properties of linear quadtrees are
reviewed, as well as Schrack’s algorithm. In Section III,
constant time algorithm for finding neighbors in quadtree with
location codes and level differences (QTLCLD) is reviewed
briefly. Experiments results are given in Section IV. Finally a
brief conclusion is given in Section V.

II. LINEAR QUADTREES
A location code is denoted as a quaternary integer.

Quadrants are labeled according to a labeling scheme, where
the SW, SE, NW, NE quadrants are labeled 0, 1, 2, 3,
respectively. The most significant quaternary digit of a
location code represents the quadrant of level 1, the following
digit is the quadrant of level 2, and so on. Therefore, a location
code has always exactly r digits and the given image is
represented by

!

2
r
" 2

r pixels. A node at level l < r has a
location code the last r – l digits of which are all 0s. Although,
a linear quadtree usually is a list of location code/level pairs of
its BLACK nodes only, in this paper, we will include all
WHITE nodes as well. The linear quadtree of the image in Fig.
3 is then becomes:

linear quadtree = {(000, 1), (100, 2), (110, 2), (120, 2), (130,
2), (200, 1), (300, 2), (310, 2), (320, 3), (321, 3), (322, 3), (323,
3), (330, 2)}.

Figure 3. Location codes for an image of resolution r = 3.

Gargantini [7] has shown that the binary representation of
the location code n of a pixel is an interleaved coordinate, that
is to say it has the structure

!

n = yr"1xr"1...y1x1y0x0 ,

!

xi,yi " {0,1} (1)

where

!

x = x
r"1...x1x0 ,

!

y = yr"1...y1y0 are the binary
representations of the coordinates of the quadrant with
location code n. For example, the binary representation of the
quaternary location code “320” is “111000.” Thus the binary
integer “100” is the x-coordinate and “110” is the y-coordinate
of the quadrant “320.”

For Schrack’s algorithm [3], the following operators are
assumed:

 + normal addition of two binary integers,
 | bitwise OR,
 ^ bitwise AND,

 << n “shift left” n times,
 >> n “shift right” n times.
In addition, two constants (in binary representation) are
required:

!

t
x

= 01...0101 “01” repeated r times,

!

ty =10...1010 “10” repeated r times.
The quad location addition operator

!

"q
 becomes

!

mq = nq "q #ni

= (((nq | ty) + (#ni $ tx))$ tx) | (((nq | tx) + (#ni $ ty))$ ty)
 (2)

where

!

nq is the binary representation of a given location code,

!

"ni is one of the basic direction increments defined below,
and

!

mq
 is the location code (in binary) of the neighbor of the

quadrant

!

nq . For r = 3, the eight basic direction increments
are defined by

!

"n0 = 000001 East neighbor,

!

"n1 = 000011 North-East neighbor,

!

"n2 = 000010 North neighbor,

!

"n3 = 010111 North-West neighbor,

!

"n4 = 010101 West neighbor,

!

"n5 =111111 South-West neighbor,

!

"n6 =101010 South neighbor,

!

"n7 =101011 South-East neighbor.
To obtain the equal-sized neighbors of any level is

summarized by the following theorem.

Theorem 1 (Calculation of neighbors of equal size) [3]:
Given a location code

!

nq and its level l, the eight neighbors of
equal size are given by

!

mq = nq "q (#ni << (2(r $ l))) ,

!

i = 0,1, ... ,7, (3)

where

!

"q
 is the quad location addition operator,

!

"ni are the
eight basic direction increments, and r is the (fixed) resolution.
This calculation is of constant time-complexity.

Note that the 2(r – l) times “shift-left” operation can be
replaced by the single multiplication by

!

2
2(r"l).

III. CONSTANT TIME ALGORITHM FOR FINDING NEIGHBORS
In [1], a new data structure for quadtrees is proposed, which

holds the location codes as linear quadtrees and also holds the
differences of levels between adjacent quadrants. For example,
the data structure takes the form represented in Fig. 4 for the
image of Fig. 2. Length of the location code varies in
proportion to the resolution of image, i.e., if r =3 then the code
has three digits. The Fig. 4 is in the case of r =3. The
meanings of numbers for each quadrant are in Fig. 5.

To describe a quadrant with level differences, we will use the
following notation:

(location code, level, color,

!

"east,

!

"north,

!

"west,

!

"south),

506 ISCCSP 2008, Malta, 12-14 March 2008

where

!

"east,

!

"north,

!

"west, and

!

"south represent the level
differences between east, north, west, and south neighbors,
respectively.

Figure 4. An example of level differences between adjacent quadrants.

Figure 5. Legend of numbers for a quadrant of quadtree.

So, the complete quadtree with location codes and level
differences (QTLCLD) for the image of Fig. 2(a) is as follows:

QTLCLD = {(000, 1, WHITE, 1, 0, #, #), (100, 2, WHITE, 0,
0, –1, #), (110, 2, WHITE, #, 0, 0, #), (120, 2, BLACK, 0, 0,
–1, 0), (130, 2, BLACK, #, 0, 0, 0), (200, 1, BLACK, 1, #, #,
0), (300, 2, BLACK, 0, 1, –1, 0), (310, 2, WHITE, #, 0, 0, 0),
(320, 3, BLACK, 0, 0, –2, –1), (321, 3, WHITE, –1, 0, 0, –1),
(322, 3, BLACK, 0, #, –2, 0), (323, 3, WHITE, –1, #, 0, 0),
(330, 2, WHITE, #, #, 1, 0)}

Algorithm to construct the quadtree with location codes and
level differences for a given image is in Fig. 6. The algorithm
is based on breadth-first expansion of a quadtree. In the middle
of this expansion, Schrack’s algorithm is used to find equal size
neighbors in constant time. In these neighbors, the level
differences are recalculated according to the following method.
The recalculations are done in four cases:

The recalculations are represented in Fig. 7. As stated

before, value “1” means only the fact that “they are smaller

than me.” But in the level differences adjusting algorithm in
Fig. 6, quadtree expansion proceeds in “breadth-first” style. So
whenever an quadrant is intended to divide, therefore the
smaller neighbors must be smaller than at most ONE level.

Figure 6. Algorithm to construct QTLCLD.

It is easy to see that the algorithm in Fig. 6 is just a
breadth-first expansion of a quadtree using Schrack’s constant
time algorithm to find equal size neighbors in two for-loops.
The number of equal size neighbors in the first for-loop is at
most four and in the second for-loop is at most eight. Then,
obviously, the following theorem holds.

Theorem 2 (Construction of QTLCLD) [1]: For an image of
resolution r having n quadrants, a linear quadtree with level
differences can be constructed within O((r + 1)n). Its time
complexity is the same as that of usual quadtree construction
algorithm.

Figure 7. Recalculation of level differences when a quadrant is divided into

four children.

A constant time algorithm for neighbors finding in
quadtrees is presented below by making use of the data
structure defined in the previous section. At first, neighbors in
given direction of a given quadrant must be defined.
Unfortunately, there are often more than one neighbors in
given direction. So, we follow Samet’s definition in [6].

Definition 1: The neighbor Q in given direction of given
quadrant P is the smallest quadrant (it may be GRAY) that is
adjacent to P in given direction and is of size greater than or
equal to the quadrant P.

The algorithm to calculate location code/level in given
direction for given location code/level pair is in Fig. 8, where r
is the resolution of given image and

!

"ni ’s are equal to that of
Schrack’s algorithm. In our case,

!

"ni is defined only for i = 0,
2, 4, 6. The algorithm is based on Schrack’s dilated integer
addition

!

"q
 but by making use of data structure introduced in

ISCCSP 2008, Malta, 12-14 March 2008 507

Fig. 5, it can calculate location code/level for neighbor in given
direction.

Figure 8. A constant time algorithm for finding neighbors in

quadtrees.

The algorithm is based on the following formulae:

!

mq = ((nq >> 2(r " l " dd)) << 2(r " l " dd))

#q ($nd << (2(r " l " dd)))
dd < 0

mq = nq #q ($nd << (2(r " l))) dd % 0

&

'
(

)
(

 (4)

where

!

nq is the location code (in binary) of given quadrant,

!

mq
 is the location code (in binary) of the neighbor in the

direction d (d = 0, 2, 4, 6), dd is the level difference for the
neighbor in the direction d, r is the resolution of quadtree, l is
the level of given quadrant,

!

"n0 = 000001, "n2 = 000010,"n4 = 010101,"n6 =101010 , for r =
3.

For the cases of dd ≥ 0, it is equal to Schracks' algorithm
because in such cases the neighbors are in the same size by
Definition 1. For the cases of dd < 0, the location code of
given quadrant is shifted right 2(r-l-dd) digits then left 2(r-l-dd)
digits to set the size of given quadrant equal to that of the
neighbor. Basic direction increments are also shifted left
2(r-l-dd) digits to set the proper size.

This algorithm consists of several substitution statements
and two calculation statements that includes dilated integer
addition, shift-right, and shift-left. It has no iterative process.
It is obvious that the algorithm is done in O(1) (i.e., constant
time). So the following theorem holds.

Theorem 3 (Neighbor finding in QTLCLD) [1]: Algorithm
“NeighborFinding” has constant-time complexity.

IV. EXPERIMENTAL RESULTS
We implement all three algorithm, i.e., our algorithm,

Samet’s algorithm, and Schrack’s algorithm. These
implementations are done on the following environment:

• CPU: Intel Core 2 Duo 4300 1.80GHz

• RAM: 1GB

• OS: Microsoft Windows XP Professional x64 Edition
Version2003

• Language: Microsoft Visual C++ 2005

A. Experiments on Synthetic Images
We prepare two sets of images synthetic and natural.

Synthetic images simulate worst-case situations. Roughly
speaking, all neighbor finding operations taking place in these
images are of searching for the largest quadrant from the
smallest one. An example of these images is represented in Fig.
9 (for the case level = 3).

Figure 9. Neighbor finding in a synthetic image (level = 3).

We made eight synthetic images of level 3 (8 x 8) to level
10 (1024 x 1024). We repeated each algorithm for 1,000,000
times for each image and took average for execution time. The
results are presented in Table I.

TABLE I. NEIGHBOR FINDING EXECUTION TIME IN SYNTHETIC
IMAGES

Levels
No. of
pixels

Quadtree
(Secs)

Linear
quadtree

(Secs)
QTLCLD

(Secs)

3 64 6.2130E-08 2.9533E-08 2.6359E-08

4 256 7.3245E-08 3.2344E-08 2.6605E-08

5 1024 8.3680E-08 3.5365E-08 2.7067E-08

6 4096 9.4344E-08 3.8490E-08 2.7067E-08

7 16384 1.0451E-07 4.2212E-08 2.6437E-08

8 65536 1.1682E-07 4.5219E-08 2.6691E-08

9 262144 1.2574E-07 4.9570E-08 2.6701E-08

10 1048576 1.4163E-07 5.2839E-08 2.6513E-08

The results in Table 1 show that our algorithm (QTLCLD)
is two to five times as fast as Samet’s algorithm (quadtree).
More importantly, it is the only constant time algorithm. Due

508 ISCCSP 2008, Malta, 12-14 March 2008

to size difference between two quadtrants, Schrack’s algorithm
(linear quadtree) needs execution time, which is proportion to
image levels. Fig. 10 shows these situations clearly.

Figure 10. Neighbor finding in synthetic images.

B. Experiments on Natural Images
Fifty natural images from the image database of the USC

(University of Southern California) which are 1024 x 1024
pixels in size (level 10), were used for evaluation (see, Fig.11).
The images were transformed into binary images by making
use of the method in [8]. From these images we produced
smaller images from 32 x 32 (level 5) to 512 x 512 pixels
(level 9).

Figure 11. An example of images from the image database of the USC.

In these images, there are some possibilities that neighbor
finding from larger quadrant to smaller quadrants happens. So,
we extended each algorithm to handle such situations. Again,
we repeated each algorithm for randomly chosen 1,000,000
points for each image and took average for execution time.
The results are presented in Table II.

The results in Table II show that our algorithm is still more
than twice as fast as algorithm using quadtrees. Algorithms
using QTLCLDs and linear quadtrees have constant time
complexities generously. Their execution times are increased
less than 0.2 x 10-8 while the sizes of images are increased 210

times. However the difference between linear quadtrees and

QTLCLDs is a slight. Fig. 12 and Fig. 13 show these situations
clearly.

TABLE II. NEIGHBOR FINDING EXECUTION TIME IN NATURAL
IMAGES

Levels No. of
pixels

Quadtree
(Secs)

Linear
quadtree

(Secs)

QTLCLD
(Secs)

5 1024 6.4111E-06 2.6962E-06 2.6070E-06

6 4096 6.7178E-06 2.7115E-06 2.6289E-06

7 16384 6.8755E-06 2.7235E-06 2.6498E-06

8 65536 7.0260E-06 2.7354E-06 2.6604E-06

9 262144 7.3569E-06 2.7534E-06 2.6795E-06

10 1048576 7.5942E-06 2.7643E-06 2.6895E-06

Figure 12. Neighbor finding in natural images.

Figure 13. Difference between QTLCLD and linear quadtree.

V. CONCLUSION
This paper has given empirical tests for three neighbor

finding algorithm in quadtrees. It demonstrated the algorithm

ISCCSP 2008, Malta, 12-14 March 2008 509

based on QTLCLD takes less execution time. Even in the
worst-case situations, it takes constant execution time, while
other two algorithms need execution time proportional to
image level.

ACKNOWLEDGMENT
Kunio Aizawa thanks Prof. Shojiro Tanaka of Shimane

University and Prof. Akira Nakamura for his valuable
suggestions.

REFERENCES

[1] Aizawa, K. and S. Tanaka, A constant time algorithm for finding
neighbors in quadtrees, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2007 (Submitted).

[2] Samet, H., Neighbor finding techniques for images represented by
quadtrees, Computer Graphics and Image Processing, 18, pp. 35-57
1982.

[3] Schrack, G., Finding neighbors of equal size in linear quadtrees and
octrees in constant time, CVGIP: Image Understanding, 55, pp. 221-230
1992.

[4] Finkel, R. A. and J. L. Bentley, Quad trees: a data structure for retrieval
on composite keys, Acta Informatica, 4, pp. 1-9, 1974.

[5] Samet, H., The design and analysis of spatial data structures,
Addison-Wesley, 1990.

[6] Samet, H., Applications of spacial data structures: computer graphics,
image processing, and GIS, Addison-Wesley, 1990.

[7] Gargantini, I., An effective way to represent quadtrees, Communications
of the ACM, 25, pp. 905-10, 1982.

[8] Otsu, N., A threshold selection method from gray-level histgrams, IEEE
Transaction on Systems Man Cybernetcs, 9, pp. 62-66, 1979.

510 ISCCSP 2008, Malta, 12-14 March 2008

